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Abstract: 3D concrete printing (3DCP) requires precise adjustments to parameters to ensure accurate
and high-quality prints. However, despite technological advancements, manual intervention still
plays a prominent role in this process, leading to errors and inconsistencies in the final printed part.
To address this issue, machine learning vision models have been developed and utilized to analyze
captured images and videos of the printing process, detecting defects and deviations. The data
collected enable automatic adjustments to print settings, improving quality without the need for
human intervention. This work first examines various techniques for real-time and offline corrections.
It then introduces a specialized computer vision setup designed for real-time control in robotic 3DCP.
Our main focus is on a specific aspect of machine learning (ML) within this system, called speed
control, which regulates layer width by adjusting the robot motion speed or material flow rate. The
proposed framework consists of three main elements: (1) a data acquisition and processing pipeline
for extracting printing parameters and constructing a synthetic training dataset, (2) a real-time ML
model for parameter optimization, and (3) a depth camera installed on a customized 3D-printed
rotary mechanism for close-range monitoring of the printed layer.

Keywords: 3DCP; additive manufacturing; computational modeling; automation; machine learning;
computer vision

1. Introduction

Driven by environmental concerns and the growing need to identify sustainable
solutions and cost-effective construction methods, the construction industry is confronted
by unprecedent challenges to revolutionizing this sector with innovative solutions. With
a considerable environmental impact worldwide, the construction industry accounts for
40% of solid waste generation, 40% of energy consumption, and 38% of greenhouse gas
emissions [1]. This framework is leading the industry to pursue a revolutionary milestone
by implementing 3D printing technologies to accomplish their activities, innovating not
only the construction method but also redefining how structures are built, offering design
freedom that allows for the construction of innovative and complex concrete geometries
while significantly reducing material waste and costs [2–4].

Different from traditional methods, which usually require hand-made efforts and
intensive resource practices, 3D printing technologies take advantage of machines and
computer tools to build structures in an automatic layer-by-layer manner. This allows
for the accurate deposition of material where it is indeed needed, avoiding undesired
deposition and material waste. Furthermore, combined with the environmental benefits it
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brings, the use of 3D printing technologies in this area provides opportunities to conceive
of structures never seen before, leveraging the design imagination of architects and engi-
neers to improve structure efficiency. Thus, as this technology promises to revolutionize
the construction industry, it becomes imperative to investigate and optimize the entire
process, understanding the influence of different printing parameters to reach the desired
printed design.

Throughout the 3D printing processes, the volatile material characteristics of con-
crete often require frequent adjustments to printing parameters due to its very particular
challenges, which can also pose health concerns due to volatile organic compound (VOC)
emissions [5,6]. Factors such as environmental conditions, variations in concrete batches,
mixing duration, and even the geometric definition of printing paths can significantly
influence the final quality of printed pieces. Nevertheless, as depicted in Figure 1, in the
context of 3D concrete printing (3DCP) at ARENA—the robotic fabrication research lab of
the School of Design and Architecture of the University of Minho—two primary variables
crucial to layer morphology quality stand out: material flow and motion speed.

Inventions 2024, 9, x FOR PEER REVIEW 2 of 19 
 

and material waste. Furthermore, combined with the environmental benefits it brings, the 
use of 3D printing technologies in this area provides opportunities to conceive of struc-
tures never seen before, leveraging the design imagination of architects and engineers to 
improve structure efficiency. Thus, as this technology promises to revolutionize the con-
struction industry, it becomes imperative to investigate and optimize the entire process, 
understanding the influence of different printing parameters to reach the desired printed 
design. 

Throughout the 3D printing processes, the volatile material characteristics of concrete 
often require frequent adjustments to printing parameters due to its very particular chal-
lenges, which can also pose health concerns due to volatile organic compound (VOC) 
emissions [5,6]. Factors such as environmental conditions, variations in concrete batches, 
mixing duration, and even the geometric definition of printing paths can significantly in-
fluence the final quality of printed pieces. Nevertheless, as depicted in Figure 1, in the 
context of 3D concrete printing (3DCP) at ARENA—the robotic fabrication research lab of 
the School of Design and Architecture of the University of Minho—two primary variables 
crucial to layer morphology quality stand out: material flow and motion speed. 

 
Figure 1. A survey of the most important variables involved in the printing process in the context 
of 3D concrete printing at ARENA. 

Based on our experience with robotic 3D concrete printing (3DCP), it has become 
evident that frequent adjustments to both the motion speed of the extruder and the rate 
of material deposition are essential to ensure high-quality results (Figure 2). Elevated mo-
tion speed values lead to a decrease in layer width, as do high extrusion flow rates. How-
ever, altering either of these variables can also have additional effects. 

 
(a) (b) 

Figure 2. Effects of material flow and motion speed on layer width: (a) constant flow and speed; (b) 
varying both parameters. 

Figure 1. A survey of the most important variables involved in the printing process in the context of
3D concrete printing at ARENA.

Based on our experience with robotic 3D concrete printing (3DCP), it has become
evident that frequent adjustments to both the motion speed of the extruder and the rate of
material deposition are essential to ensure high-quality results (Figure 2). Elevated motion
speed values lead to a decrease in layer width, as do high extrusion flow rates. However,
altering either of these variables can also have additional effects.
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Figure 2. Effects of material flow and motion speed on layer width: (a) constant flow and speed;
(b) varying both parameters.

A low motion speed prolongs the printing duration, which is detrimental to the
concrete-printing process. Abrupt changes to the extrusion flow rate alter the material
behavior due to the varying kinetic energy imparted to the mix by the spindle rotation.
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Therefore, we have found that maintaining a consistent flow rate while adjusting the motion
speed produces superior results within our setup.

The 3D concrete-printing process requires different mechanisms to be controlled,
tuned, calibrated, and work synchronously in order to produce a quality print. It is
characterized by a pipeline where a lot of data can be captured and processed to learn
hidden correlations between variables and machine setups that can help improve the
quality of fabrication. A data engine capable of capturing these data can be vital to construct
datasets that represent the history of the fabrication process, something extremely valuable
to track down where things went wrong, why certain artefacts may have happened, or
even to construct further studies like a life cycle assessment.

Automating the control of motion speed offers several advantages, including reducing
human-induced errors and response delay, providing fine control over the desired layer
shape according to the design, and freeing operators from frequent adjustments. However,
accurately predicting the need for changes in motion speed is challenging. To enable this
automation effectively, two conditions must be met: the precise measurement of the printed
layer width and understanding the degree of change in motion speed required to achieve
the desired width under specific conditions.

In this study, an extreme gradient boosting (XGB) algorithm is informed by a depth
camera (Intel Realsense L515) mounted on a custom rotary mechanism, leveraging com-
puter vision (CV) frameworks like OpenCV [7]. These frameworks facilitate real-time
measurement, while the machine learning model accurately predicts printing parameter
values based on current conditions. Supporting our machine learning (ML) implementation
is the generation of a dataset from a numerical solver simulation utilizing OpenFOAM. This
approach ensures material-specific neural network training. The generation of synthetic
datasets, as proposed previously using encoded images [8], offers an efficient alternative to
the resource-intensive process of conducting numerous printing runs to collect the requisite
data [9].

In the realm of 3D printing optimization, the integration of machine learning (ML)
represents a vast and burgeoning area of research [10]. This application spans various
techniques, including fused deposition modeling, stereolithography, and selective laser
melting, and encompasses activities from material preparation to predicting the mechanical
properties of printed components [11]. Vision-based systems, which extract information
from captured images or videos, constitute a notable subset of these techniques. Significant
advancements have been made across various applications due to the ability of machine
vision to automatically identify and measure events with great accuracy in real time. A
notable example of this can be found in the world of sports, where it is used to automatically
identify and measure key moments during matches [12]. In the context of automation
in manufacturing processes, computer vision can increase efficiency and productivity of
industries as it can facilitate the identification and manipulation of objects in assembly
lines [13]. Further in the manufacturing environment, these systems facilitate tasks such
as deviation calculation from digital models [14], automatic path correction [15], defect
detection [16], surface quality control [17], and process monitoring [18]. Our proposal
aligns with this trend, aiming to integrate a camera-based system with an ML model.
However, the approach proposed in this work stands out by focusing on autonomously
controlling the motion speed of a six-axis robot throughout the printing process, with the
unique objective of maintaining a desired layer width.

2. Materials and Methods
2.1. Fabrication Framework

This study aims to achieve four primary objectives: (i) generate a comprehensive
dataset of printing parameters for 3D concrete-printing (3DCP) fabrication, (ii) facilitate
real-time monitoring of printed layer width, (iii) assess the accuracy of XGB in predicting
the correct values for printing parameters according to a pre-intended outcome, and
(iv) evaluate the implications of XGB-based control on the design process.
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Figure 3 outlines the steps required for implementing XGB and its integration within
a fabrication framework. The material properties of the concrete mix are integrated into a
simulation of the 3D concrete-printing (3DCP) process, enabling the extraction of values
used in different printing parameters (e.g., the movement speed of the extruder) to achieve
a certain printed layer shape, as well as other measurable characteristics of the printed layer
(e.g., width and height) to generate a synthetic dataset. This dataset is subsequently utilized
to train an XGB model, which is deployed in real time with support from a computer vision
system. A data-capturing pipeline is employed to refine the model using experimental data.
The framework serves two main purposes: firstly, to more accurately estimate the time and
material required to complete the print, considering unpredictable variations in motion
speed and material flow rate throughout the process; and secondly, to autonomously
control the printing parameters.
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2.2. Machine Learning Framework
2.2.1. Data Pipeline

In order to understand how layer morphology is impacted by the different variables
involved in the printing process, it is essential to capture multiple states—i.e., the many
combinations of printing parameters and the resulting layer widths, as demonstrated in
Figure 4. The analysis of states looks to answer questions such as “how does layer width
relate to the other parameters?”, and “is there a way to predict how thick or thin the
extruded layer will be given the values for all the other variables?”. By capturing and
evaluating thousands of these states, we can start modeling the relationship between the
multiple variables and the target variable—layer width.
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However, datasets for machine learning applications require a very large number of
samples to be effective. This is particularly problematic in the context of digital fabrication,
as producing hundreds to thousands of prototypes can be extremely costly both in time
and material resources. For this reason, our approach was to build a synthetic dataset
from a numerical simulation of 3DCP, tailored to the material properties of the concrete
mix used. These simulations, as illustrated in Figure 5, can be computed at marginal
costs when compared to the printing process, as well as be produced with the exact
variable specifications that can capture a wide and representative corpus of data. Thus,
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it must be taken into account that numerical simulations are performed in a discretized
domain (mesh) and governed by discretized equations that represent an approximation
of the real-world solution, which then requires a special attention to correctly setting up
the simulation to provide accurate results and avoid improper/incorrect forecasts of the
experimental printings.
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To accurately represent the concrete material used in printing at the lab, a process of
fine-tuning and calibration was undertaken to ensure an adequate behavior between the
digital and the physical material, as shown in Figure 6. This process entailed identifying the
material properties (density, yield stress, kinematic viscosity, and consistency coefficient),
taking measurements of printed specimens and studying how the simulation would react to
changes to the printing parameters (material flow rate, motion speed, extrusion height, etc.).
Thus, motivated by inherent numerical constraints that may slightly deviate the simulated
result from the experimental one, different simulations were initially performed with
different printing parameters (as observed in Figure 6c) to study how the simulation reacts
to changes in printing parameters, providing insights for crucial adjustments in simulation
conditions (such as mesh refinement) to obtain the same behavior as the experimental
printed material while balancing computational time.
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2.2.2. Numerical Simulation

To accurately simulate the rheological behavior of the concrete mixture, which is
classified as a generalized Newtonian fluid (GNF) with yield stress, the Herschel–Bulkley
model was employed. This model describes a non-linear relation between the shear stress
and the shear rate (variable viscosity) above yielding, where the flow of this fluid only
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occurs once the shear stress is greater than the material yield stress [19,20]. This behavior is
described by the following Equation (1):

τij = τ0 + 2KDn
ij (1)

This model relates the shear stress tensor components (τij) and the rate of deformation
tensor components (Dn

ij), which is equivalent to the shear rate tensor, according to three
material parameters: consistency index (K), yield stress (τ0), and viscosity exponent (n) [19,21].
The viscosity exponent describes the viscosity non-linearity above yielding, which states
that when n < 1 the viscosity decreases with increasing shear rates (shear-thinning behavior);
n > 1 corresponds to a shear-thickening behavior, and when n = 1 the model matches the
Bingham model, corresponding to a constant viscosity (Newtonian fluid) [19,22].

In this work, the material had a shear-thickening behavior (n > 1), and the input
parameters used in the simulation are stated in Table 1.

Table 1. Input parameters used to describe the behavior of the concrete mixture [23].

Variable Value

Density [ρ] 2070 kg/m3

Yield Stress [τ0] 8.28 kPa
Consistency Index [K] 20.7 Pa.s1.56

Viscosity Exponent [n] 1.56

The numerical simulations executed in this work were performed using the “overIn-
terDyMFoam” solver from OpenFOAM [24] v2112, which is an open-source computational
library for several engineering, academic, and scientific applications. This solver uses the
VOF (Volume of Fluid) method to model the flow of two immiscible, incompressible, and
isothermal fluids: concrete mixture and air. The two-phase flow is integrated with an
overset mesh strategy [25], which combines a background mesh with an overset mesh. This
approach allows the extrusion nozzle to move within the domain and deposit the concrete
mixture onto the background mesh. In the overset approach used by “overInterDyMFoam”,
two meshes are used: the backgroundMesh, which is static and represents the printing
area, and the oversetMesh, which is dynamic and represents the extrusion nozzle region. In
this approach, the oversetMesh can move inside the backgroundMesh along a predefined
path. This enables the exchange of information and fluid flow results between the two
meshes, mimicking the behavior of the real system. For that purpose, these meshes must be
generated independently and later merged into one unique overlapped mesh, as illustrated
in Figure 7.

In order to obtain the correct interaction between meshes and fluid structure (concrete
mix and nozzle geometry), this solver uses the concept of “cellTypes” to distinguish three
different types of cells that compose this computational domain, labeling them as 0, 1,
and 2. Cells with values equal to 0 are defined as the cells that will be calculated in the
simulation, representing all cells of the static mesh and some of the dynamic mesh; those
with values equal to 1 are the interpolating cells, which represent the interface between
overlapping meshes (oversetMesh and backgroundMesh) as well as between structure and
mesh (extrusion nozzle and oversetMesh); and cells with values equal to 2 are the ones that
will not be calculated in the simulation, acting as inactive cells that represent the geometry
of the structure (extrusion nozzle) in the oversetMesh. The representation of the cell types
is shown in Figure 8, which illustrates a sliced view of the computational domain.
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assigning appropriate boundary conditions, since they define how the system interacts
with its surroundings.
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Table 2 shows the boundary conditions applied to the different solution fields, where
the outlet and floor patches are related to the backgroundMesh, and the inlet, overset, and
nozzleWalls patches are related to the oversetMesh.

Table 2. Employed boundary conditions for numerical simulations in the patches illustrated in
Figure 9.

Patch Pressure, p Velocity, U

inlet fixed flux fixed value Uin
overset overset overset

nozzle Walls fixed flux 0
outlet constant atmospheric pressure null normal gradient
floor fixed flux 0

2.2.3. Dataset Generation

Firstly, a Python script was developed to generate unique geometrical configurations
of print paths as shown in Figure 10. The objective of this script was to create a vast and
diverse collection of geometries that would empower the trained model to be applied to
any type of object, regardless of its geometrical definition.
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The script works by populating 7–13 control points that construct a spline. Additional
parameters, such as the maximum radius at which the control points are placed (and
therefore the distance between points), or the edginess—a parameter that controls the
smoothness of the curve—can be fine-tuned to create additional variations.

For each chosen print path geometry, each of the other variables (material flow, motion
speed, extrusion height, etc.) is matched in different combinations along that path, as
shown in Figure 11. This is essential to model not just how individual variations to one
parameter impact the width, but also how changes in many of them will. In the modeling
code, the printing path is inserted by specifying the various locations of the extrusion
nozzle (oversetMesh) and the velocity between them.
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A total of 6 simulations were collected using this method. The output for each of these
simulations is an STL type file containing a triangulated 3D surface mesh, which allows for
quantifying how the changes to the variables throughout a print impact the resulting layer
shape. Figure 12 shows the output of 3D surface meshes from simulation.
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Once produced, these mesh files can be post-processed to create the dataset that will be
used to train the machine learning model, as shown in Figure 13. The post-processing stage
is about creating the necessary features—that is, things that can be measured about and/or
related to the extruded layer at any point in time during the print and can help explain the
problem to a machine learning model. Features will include not just the variables that we
are in control of during a print—motion speed, material flow, extruder diameter, etc.—but
also new aspects that can help explain what is unique for each point (such as the overlap
with portions already extruded, or the evolution of the direction of the extruder by taking
its angle in relation to a previous moment in the print, etc.). A more detailed explanation of
features is provided below:

• Time (s)—The time elapsed since the start of the print until reaching that position;
• Speed (cm/s)—The motion speed of the extruder at that location;
• Flow (m/s)—The material flow at that location;
• Distance (mm)—The distance between that location and the previous location sampled

in the dataset;
• Angle (degrees)—The difference in angle between the tangent vector at that location

and the previous datapoint (important to distinguish between the type of motion
being executed—straight, curved, etc.);

• Height (cm)—The distance of the extruder tip to the deposition plane (printing base
or previous layer);

• Diameter (cm)—The diameter of the extruder;
• Width (cm)—The width of the layer at that location;
• Overlay—The number of intersections between a perpendicular line to the printing

path drawn at that location and previous locations.

The extraction of features was conducted in Grasshopper by importing the mesh
and computing the different measurements. Once extracted, the combination of locations
and features constructed the final dataset used to train the machine learning model. The
employed dataset was composed of 2245 entries and 9 features, taken from all the different
simulations produced before. A sample of this dataset is provided in Table 3, in which each
row represents a sampled location in the print path and each column represents one of
those features.
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Table 3. Sample of the dataset structure.

Time
[s]

Speed
[cm/s]

Flow
[m/s]

Distance
[mm]

Angle
[degree]

Height
[cm]

Diameter
[cm]

Width
[cm] Overlay

4.26344 11.3 0.233 30 0.036599 12 20 57.427403 0

7.22211 10.0 0.264 40 0.035724 12 20 57.337229 2

1.24866 12.7 0.264 60 0.033314 12 40 56.499766 0

3.27521 8.4 0.264 30 0.031016 8 20 55.649535 0

2.30175 8.9 0.264 30 0.028557 12 40 55.088962 3

15.3283 9.1 0.264 12 0.026146 10 20 57.243402 0

33.35485 7.7 0.292 30 0.023822 12 40 58.402407 0

64.3814 11.3 0.292 14 0.021642 12 20 63.236045 11

114.40795 11.0 0.292 30 0.01961 8 10 63.371653 0

26.43449 8.3 0.292 15 0.017804 10 20 63.022733 5

88.46104 12.3 0.307 15 0.015641 12 25 60.956338 0

179.48759 10.0 0.307 45 0.013088 14 20 61.726337 3

57.51414 10.0 0.307 76 0.010921 6 25 66.683418 1

61.54069 9.6 0.331 10 0.009159 12 20 63.430119 0

3. Results and Discussion
3.1. Algorithm: Training and Inference
3.1.1. Model Architecture

The choice of machine learning algorithm is an essential part of the process to attain
good results during inference. It is therefore essential to accurately structure and clean
the data with the final application in mind, as well as suiting it to the type of algorithm
used. An evaluation of our dataset reveals two clear distinct applications: (1) a model
that will help designers achieve variable layer shape by predicting the speed at which the
extruder needs to move in different parts of the geometry; and (2) the automated correction
of layer shape during fabrication. The first application is related to the design stages,
before manufacturing, by understanding the impacts of speed in the outcome. The second
application is related to the fabrication process itself, automating the control of speed in
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relation to live measured values to maintain the target layer widths even if other conditions
change. The dataset structure is shown in Figure 14.
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Figure 14. Dataset structure for (a) model training and (b) inference.

Even if there are differences between model architectures for each application, both
require the same data structure. It is therefore important to identify the target feature
(Y) used to control layer width in relation to each state (X). After training, inference is
achieved by locking a target value for the layer width and predicting the value of speed
that will result in that fixed layer width. Another important step is scaling the values for
the different features between 0 and 1, an important technique to be able to use the model
with different domains of measurements. Finally, the dataset is split between training (70%)
and validation data (30%).

Different model architectures were evaluated to understand what type of algorithm
would provide the best performance, as shown in Figure 15. A popular machine learning
package, ScikitLearn 1.2.2, was used to gain access to these architectures and fit them to
our dataset.
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The first model evaluated, a linear regression, showed very low accuracy (0.62). This
result reveals the complexity of the relationships between state variables, too high for such
a simple model. This was an expected result, but nonetheless important to validate the
need for a more advanced machine learning technique.

A deep neural network consisting of different combinations of dense layers was also
tried. This model showed good results for the portion of data it was trained on but failed
to yield good predictions for unseen data—a behavior also known as overfitting. This
shows that, although this type of architecture could eventually provide good results, the
amount of data it required was greater than the corpus established so far. For that reason,
we looked at a different approach.

A gated recurrent unit, an algorithm belonging to the family of recurrent neural
networks (models that take entire sequences of data points at a time during training), was
also evaluated. We believed this model would have good performance due to its ability to
track the evolution throughout the printing path by modeling large sequences of data points
(both current and past ones) when inferring motion speed. This could be an important
aspect in the context of 3DCP, as each state is not independent from past ones. Structuring
the dataset as a sequence with a time dimension allowed us to encode acceleration, as
well as characterize the print path geometry through the angle to p-1 (deviation in vector
direction to the previous point). The points were spaced out at irregular intervals (distance
to p-1) to accommodate any limitations in reading accuracy of the layer width using the
camera setup. Due to the lack of the necessity for a long sequence length, we opted to test
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a gated recurrent unit (GRU) beyond the more commonly used long short-term memory
(LSTM) architecture. This network requires less memory and is faster [26], both important
factors to achieve real-time inference and potentially deploy it in a minimal setup like a
Raspberry Pi board. However, the problem of overfitting was again encountered. The
sequenced nature of this model requires structured data, meaning that each sequence had
to be extracted from a simulation and kept in its original order. This is problematic because
it greatly reduces the amount of training data available.

Finally, an XGBoost (extreme gradient boosting) architecture achieved the greatest
results, with an accuracy of 0.92 when predicting motion speed. XGBoost is a variation of
decision tree algorithm that is known for very good results with tabular data, such as in
our case. This model has the advantage of being able to intake unstructured data points,
which makes it possible to combine all the simulations into one data set.

3.1.2. Model Application

The XGBoost model was then trained in two variations. Variation 1 predicted layer
width, given a state that included motion speed. Variation 2 predicted motion speed, given
a state that included the layer width. Figure 16 shows a comparison between the layer
width values extracted from a simulation and the predicted values of Variation 1 of the
XGBoost model. The results showed excellent performance throughout the entire print
path. A closer look revealed that the predictions were worse for the curved portions of the
print path, indicating that an expansion in the dataset in relation to the print path geometry
could provide even better performance in these areas.
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prediction (blue) of unseen data.

Particularly important for the application of this model in the context of the design was
to establish a live connection between commonly used modeling software and the Python
environment where inference could be computed. For this reason, we developed a solution
built on top of Hops—a component for Grasshopper that adds external functionality to the
software by connecting it with Python environments running on local or remote machines,
as demonstrated in Figure 17. This integration allows designers to apply the model to their
own geometries, simply providing the layer widths they are interested in achieving. The
model will return the correct values for motion speed, which can then be used in normal
3D printing workflows where the code that is provided to the robot or printing machines
needs to already have information on traveling speeds at each location.
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For the live monitoring application, the dataset had to be expanded in order to create
a relationship between the current state (the state that encapsulates the current motion
speed and layer width) and the target state (a state that would encapsulate the correct
measurement of layer width and the motion speed value necessary to achieve it). Instead
of predicting a value for motion speed, this model should predict how much the current
motion speed needs to change in order to attain a provided target width. To create this
relationship between states, the model previously trained was used. It can already predict
motion speed given a value for layer width, and vice versa. Therefore, it can expand the
original dataset with new data for target values. The new dataset structure is shown in
Figure 18.
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Another important aspect for this model is that inference will happen during fabrica-
tion. Because of this requirement, all the variables need to be provided in real time. The
variables time, angle, height, and overlay are constructed by reading the position of the
extruder in the print path. Diameter refers to the geometry of the extruder and is therefore
known a priori. Flow is given by reading the pump machine with an Arduino. However,
the layer width needs to be measured in real time, not by post-processing a simulation like
before. For that reason, we had to develop a computer vision algorithm that could provide
the necessary information during the print for inference.

The evaluating accuracy for both the XGBoost model for designing applications—pre-
dicting speed for a given width (Figure 19)—and the XGBoost model for monitoring
applications—predicting speed correction given a target width with camera readings
(Figure 20)—presented good results. Accuracies above 80% are generally considered high
performance. However, we believe an increase in the dataset size could push these accuracy
values to better results. Furthermore, it is important to notice that these results are still to
be systematically evaluated under real print scenarios, where noise in data readings can
possibly have a negative impact on performance.
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3.2. Computer Vision System

To ensure accurate monitoring of layer width and precise motion control in a 3DCP
fabrication setup, a computer vision system is indispensable. To achieve this, a specialized
system (refer to Figure 21) was devised, capable of accommodating a camera and allowing
it to rotate 360 degrees for alignment with the printing direction. This system comprised
a pair of gears: one linked to a stepper motor regulating rotation and the other affixed to
a 3D-printed support holding the camera parallel to the ground, with the extruded layer
positioned at the image’s center. The rotation of the stepper motor, and consequently the
camera, was orchestrated by an Arduino unit external to the illustrated system. Conversely,
image-processing operations were executed on a Raspberry Pi, powered by a separate
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power bank. The Raspberry Pi, camera, and power bank rotated synchronously, ensuring a
self-contained system free from constraints posed by tangled wires.
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Figure 21. Rotary mechanism for camera tracking.

The real-time control of the rotary mechanism was facilitated by linking the Grasshop-
per environment with an Arduino through the Funken library [27]. Given the frequent
fluctuations in motion speed during fabrication, it was imperative to provide motor angle
adjustments promptly. The procedure involved exposing the live position of the extruder
via the JOpenShowVar API v0.2.2 [28], computing the vector difference from the initial
vector at the origin, and correlating it to the required number of motor steps for aligning
the camera with the print path.

3.3. Real-Time Deployment

At the heart of the proposed framework, depicted in Figure 22, was real-time communi-
cation among various computational processes and fabrication machines. The Grasshopper
environment served as the central hub, receiving live extruder location data and control-
ling both the concrete pump and rotary mechanism via Arduino serial communication.
Concurrently, the Python v3.9 environment handled the processing of the depth camera’s
video stream, extracting information regarding layer width. These data were subsequently
relayed to the machine learning model. Utilizing a sequence of data capturing movement
type and printing parameters, the model determined the optimal extruder speed required
to sustain or achieve a predefined target layer width.
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Figure 24 demonstrates the camera video stream as it performs real-time measurements
of the printed layer.
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4. Conclusions

The work described involved applying various technologies to create a smart system
for additive manufacturing. The main goal was to automate control of the printed layer
width, specifically by controlling the moving speed of the robot. The desired outcome was
to predict the robot’s motion speed along the printing path to maintain a predetermined
layer width or achieve a new target width.

The process began by using an algorithm to generate a collection of geometries that
simulated different printing patterns. These geometries were then used in a numerical
simulation to create a dataset consisting of various combinations of variables. This dataset
was later used to train a machine learning model. Different model architectures were tested
until a viable solution for real-time application was found—an XGBoost model. To monitor
the layer width during printing, a physical system capable of tracking the printing path
and measuring the printed layer width in real time using a depth camera was developed.
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While further experiments are needed to fully evaluate the fabrication framework,
the work undertaken has resulted in a machine learning algorithm that can accurately
predict the robot’s speed with 87% precision for any target width and a wide range of
printing setups. However, it should be noted that these results still need to be validated in
real-world printing scenarios. The work has also led to the development of a smart physical
system that can monitor the print in real time and adjust the motion speed, which is crucial
for controlling the layer width and may have other potential applications.

Concerning challenges encountered, the first one involved the rotary mechanism,
which affected the frequency of the camera’s readings. Depth streaming typically requires
a USB cable connection, which limited the camera’s rotation due to the risk of the wire
becoming tangled in the extruder. To address this, we integrated a Raspberry Pi directly
into the mechanism, eliminating the need for a direct connection to a computer. However,
the Raspberry Pi’s limited processing capacity occasionally caused failures in the video
stream readings.

Additionally, the most significant challenge to the application of our system was that
the simulations and synthetic dataset were specifically tailored to the exact concrete mix
used in our lab. This means that the system cannot be directly applied to other variations
of concrete mix without creating a new dataset and retraining the model. In our case,
the material mix was generally fixed, so this was not an issue. However, we recognize
that expanding the dataset to include other concrete mixes could enhance the system’s
versatility and broaden its application opportunities, opening doors for future work.
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