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Abstract: The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker
system. Cardiac contractions commence at very early embryonic stages and coordination remains
crucial for survival. The underlying molecular mechanisms of pacemaker cell development and
function are still not fully understood. Heart form and function show high evolutionary conservation.
Even in simple contractile cardiac tubes in primitive invertebrates, cardiac function is controlled by
intrinsic, autonomous pacemaker cells. Understanding the evolutionary origin and development of
cardiac pacemaker cells will help us outline the important pathways and factors involved. Key
patterning factors, such as the homeodomain transcription factors Nkx2.5 and Shox2, and the
LIM-homeodomain transcription factor Islet-1, components of the T-box (Tbx), and bone morphogenic
protein (Bmp) families are well conserved. Here we compare the dominant pacemaking systems
in various organisms with respect to the underlying molecular regulation. Comparative analysis
of the pathways involved in patterning the pacemaker domain in an evolutionary context might
help us outline a common fundamental pacemaker cell gene programme. Special focus is given
to pacemaker development in zebrafish, an extensively used model for vertebrate development.
Finally, we conclude with a summary of highly conserved key factors in pacemaker cell development
and function.
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1. Introduction

The heart is an evolutionary success story. During the course of evolution, novel structures
and functions have been added to the primitive ancient pump. The network of transcription
factors regulating mammalian embryonic heart development shows a high degree of evolutionary
conservation. Similar signalling pathways controlling muscle growth, patterning, and contractility
have been found in animals as distantly related as humans and drosophila [1–13].

Even the most basic heart-like structure shares the common crucial feature of all hearts, the
ability to rhythmically contract and pump fluid through the body. Thus, the heart is the motor of
a fluid-based transport system for nutrients, metabolites, and oxygen. Even animals with radically
different lifestyles and body plans, such as insects, fish, birds, and terrestrial animals show a striking
conservation in cardiac function [1,7,11–13] (Figure 1). The cardiac pacemaker and conduction system
in the mammalian heart can be considered as an important advancement to increase cardiac efficiency.
Mammals possess a sophisticated network of pacemaker nodes, specially coupled cardiomyocytes
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and a fast conduction system enabling coordinated, sequential contraction of the chambered heart.
In comparison, the primitive tubular pumps in invertebrates resemble early mammalian embryonic
hearts both in structure (slow-conducting, poorly coupled myocytes, lack of valves and a conduction
system) and function (peristaltic contraction pattern) [2,6,12,14–17]. It is appealing to hypothesise
that these analogies reflect the ancestral background of the mammalian heart. Thus, analysis of heart
morphogenesis from an evolutionary perspective might help to understand the mechanisms observed
during embryonic development. Many of the morphological changes of the heart have been attributed
to physiological adaption of an ancestral cardiac network to an increase in metabolic rate and body size
and complexity, and the transition from aquatic to terrestrial habitats. With regard to the pacemaker,
it is unclear when exactly the distinct structures evolved.

J. Cardiovasc. Dev. Dis. 2017, 4, 4 2 of 18 

 

chambered heart. In comparison, the primitive tubular pumps in invertebrates resemble early 
mammalian embryonic hearts both in structure (slow-conducting, poorly coupled myocytes, lack of 
valves and a conduction system) and function (peristaltic contraction pattern) [2,6,12,14–17]. It is 
appealing to hypothesise that these analogies reflect the ancestral background of the mammalian 
heart. Thus, analysis of heart morphogenesis from an evolutionary perspective might help to 
understand the mechanisms observed during embryonic development. Many of the morphological 
changes of the heart have been attributed to physiological adaption of an ancestral cardiac network 
to an increase in metabolic rate and body size and complexity, and the transition from aquatic to 
terrestrial habitats. With regard to the pacemaker, it is unclear when exactly the distinct structures 
evolved. 
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vertebrates. 
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depolarise and initiate an action potential is responsible for the basal heart rate. They are located in 
the sinoatrial node (SAN) in mammals and the corresponding structures in other vertebrates and 

Figure 1. Evolutionary adaption of the cardiac circulation system, with regard to important
morphological (red) and functional (purple) novelties. Heart and pacemaker evolution of existent
Eumetazoans, from the presumptive common bilaterian ancestor to vertebrates (top) and within the
vertebrate subphylum (bottom). Orange: All groups with an intrinsic pacemaker system, includes
all vertebrates.

Pacemaker cells are highly specialized myocardial cells whose intrinsic ability to rhythmically
depolarise and initiate an action potential is responsible for the basal heart rate. They are located
in the sinoatrial node (SAN) in mammals and the corresponding structures in other vertebrates and
several invertebrates (Figure 1). The capacity to trigger an action potential without external stimulation
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distinguishes pacemaker cells from the surrounding working myocardium. There have long been
two hypotheses addressing the mechanism behind the pacemaker capacity. On the one hand is
the expression of Hcn4, a specialized ion channel allowing Na+/K+ ion influx (If) in response to
hyperpolarisation specifically in pacemaker cells [18–20]. On the other hand is an oscillatory release
of Ca2+ from the sarcoplasmic reticulum (Ca2+-clock) [21]. However, it has recently been proposed
that both hypotheses are correct and cooperate in facilitating the rhythmic depolarization [22,23].
Pacemaker cells are directly coupled to each other as well as to the adjacent working myocardial
cells by gap junctions. These allow the exchange of ions from cell to cell, propagating the action
potential from the pacemaker cells through the entire myocardium. Gap junctions consist of connexins,
transmembrane proteins with different conductive properties [24]. The fast conducting subunits
Cx43 and Cx40 are the main connexins expressed in the chamber working myocardium. Pacemaker
cells express slow-conducting connexins, Cx45 and Cx32 [25,26]. This ensures the unidirectional
propagation of the electrical signal from the pacemaker cells to the working myocardial cells.
Congenital or degenerative defects in pacemaker cell function can cause sinus node dysfunction
(SND), a major reason for artificial pacemaker implantation [27–29].

Regarding the evolution of the cardiac pacemaker system, several questions arise. Did the distinct
pacemaker evolve out of necessity to accommodate the increasing morphological complexity of the
heart in vertebrates to ensure a controlled contraction pattern? Did it evolve to ensure coordinated,
unidirectional blood flow in a separated systemic-pulmonary circuit? Was it crucial as a mediator to
allow heart regulation by the nervous system?

2. Origin of the Basic Tubular Heart

The cardiac pacemaker might be described as the specialised, intrinsic structure initiating the
cardiac muscular contractions. The first heart-like organ is believed to have evolved in an ancestral
bilaterian about 500 million years ago (Figure 1) [1,8,11]. This ancestral “heart” was likely a simple
tubular structure, consisting of a single layer of pulsatile cells to force fluid through pericellular
interstices without an enclosed vascular system [1]. The initial appearance of muscle-like cells is
not entirely clear, but is proposed to have emerged from the gastrodermis prior to the divergence
of Cnidarians and Ctenophora from bilaterians [9,30]. Muscle cells are of mesodermal origin and
present in all triploblastic animals. Mesodermal cells specifying into early primitive myocytes arose
first in bilaterians [1]. It remains to be determined at what stage a subset of cells became functionally
dominant to coordinate the cellular contractions. Morphologically, it might have resembled the simple
tubular heart found in Amphioxus [31].

3. Bilateral Pacemaker System in Drosophila Melanogaster

Despite the large evolutionary distance between arthropods and mammals, there is compelling
evidence supporting a close structural relationship between cardiac systems. This indicates that a
basic tubular heart has been present in the common bilaterian ancestor. Although gene regulatory
modifications to accommodate the growing organism lead to morphologically distinct structures,
common basic mechanisms are still conserved [1].

Heart formation in arthropods has been widely studied in the most prominent model organism,
the fruit fly Drosophila melanogaster. The drosophila heart (also referred to as the dorsal vessel) is a
tubular organ consisting of a single layer of contractile mesodermal cardioblasts and an overlying
pericardial cell layer [1,16]. As generally found in arthropods, drosophila has an open circulatory
system with a dorsally positioned heart able to pump haemolymph through the body [32]. The heart
functions as a linear peristaltic pump and develops in several repetitive segments [16,33]. There
are no distinct chambers, but an aortic valve structure at the anterior opening supports fluid flow
direction [1,9,32]. On the posterior side, there are three (larval) or four (adult) pairs of ostia with a
valve-like structure [16,32,34,35]. Ostia are thought to be the drosophila analogues to vertebrate inflow
tract structures. Their formation depends on a distinct gene expression programme, similar to the
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differential development of sinus venosus structures versus chamber myocardium in vertebrates [35].
The primary pacemaker is situated at the posterior end of the heart and peristaltic contractions move
anteriorly to expel haemolymph into the aorta [36]. At the anterior side a secondary site of contraction
initiation has been observed. This allows for a reversal in haemolymph flow [34].

Molecularly, the cardiac muscle cells in drosophila and mammalian species show a striking degree
of similarity. Transcription factor tinman, the drosophila homologue of Nkx2.5, is the determining
factor underlying cardiomyocyte differentiation [32,37,38]. Its expression is observed in all cardiac cells.
Notably, a subset of cardioblast at the posterior portion of the cardiac vessel lack tinman expression [39].
Seven-up, the homologue of vertebrate NR2F1 and -2 (Coup-TFI, -TFII), is specifically expressed in the
posterior part of the dorsal vessel [32,35,40]. These cells will form the ostia and can be distinguished
by re-expression of dorsocross genes (Tbx) and expression of wingless (Wnt1) [35,39,41]. Furthermore,
homologues of important mammalian cardiac factors also partaking in drosophila cardiogenesis are
tailup (Isl1), pannier (Gata4), mid (Tbx20), and Dpp (Bmp2) [41–45].

Since larvae lack nervous innervation of the heart, only an intrinsic pacemaker potential can
initiate the peristaltic contractions [46–48]. After metamorphosis, the heart is innervated and receives
neuronal input [48,49]. It therefore combines two established mechanisms of rhythmic contraction,
external input from the central nervous system and intrinsic control by an independent myogenic
pacemaker. Pharmacological studies showed that the important ion-channels found in mammalian
myocytes are also present in drosophila [50]. The only major difference was the substitution of the
inward sodium current with an inward calcium current as the main depolarization current [32,50].
The mechanism underlying the pacemaker potential in drosophila has not been identified. Drosophila
melanogaster Ih (DMIH), a homolog of the pacemaker-specific hyperpolarization activated cyclic
nucleotide gated potassium channel 4 (HCN4) is present. It similarly encodes a subunit of the slow
inward hyperpolarisation-activated potassium channel (Ih-channels) [51]. However, whether Ih- is
present in the drosophila pacemaker remains to be determined. The Ork1 gene, encoding a two-pore
domain potassium channel facilitating an open rectifier K+-current, is a critical component of the
drosophila pacemaker system. Ork1 regulates the duration of the slow diastolic depolarisation without
influencing basal cardiac automaticity [52]. Whether pacemaker depolarisation in drosophila relies on
a mechanism similar to the funny current If or a calcium clock mechanism as described in mammals
remains to be determined.

4. Basic Circulation System in Early Deuterostomia

A basic, but well-studied organism is the tunicate Ciona intestinalis (ascidia, urochordata).
C. intestinalis has an open circulatory system with a curved, V-shaped heart [53]. The tube consists of
cardiac myoepithelium containing striated myofilaments and an outer pericardial lining, but lacks an
endocardial cell layer [54]. Deuterostome evolution coincided with a multiplication and functional
divergence of contractile proteins [1]. There are no chambers or valves discernible and the tube itself
does not show morphological polarity [11]. The heart tube is situated on the ventral side of the body,
close to the stomach. It opens into single vessels at the posterior end connecting to the endostyle.
At the anterior end, it is connected to the dorsal part of the pharynx [54,55]. A series of studies by
Kriebel et al. in the 1960s morphologically and physiologically characterised the pacemaker system
in tunicates [56–60]. Early electrophysiology and microscopy studies could localise two independent
myogenic pacemakers, one at the posterior and one at the anterior opening of the ciona heart tube
generating rhythmic peristaltic contractions [1,55]. It is unclear whether one of the pacemakers has
a dominant function. The contractions show an alternating pattern and velocity is independent of
direction [56,58,61]. The reversal of the pumping direction might be a compensating mechanism for
inefficiency of the unidirectional fluid flow or a reaction to external stimuli [11,13,55,58,62]. Nervous
system innervation of the heart appears to be absent [58,63]. Humoral modulation and pharmacological
alterations of pacemaker frequencies have been reported. However, whether a similar mechanism of
control as in higher vertebrates exists remains unclear [60,64].
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Several factors important during mammalian heart development are also conserved in ciona,
which possesses orthologues of NK homeobox (NKX), GATA binding protein (GATA), T-box (TBX), and
heart and neural crest derivatives expressed (HAND) factors [62,65]. Recently, Stolfi et al. identified
Islet-expressing migratory cells in developing ciona embryos, which follow mechanisms homologous to
the second heart field (SHF) in vertebrates [66]. However, these cells did not contribute to the heart, but
to the adjacent pharyngeal structure. It can be speculated that further evolutionary progress in cardiac
differentiation factors lead to a reallocation of Isl+ cells [66]. This indicates that an Islet-expressing
precursor population is highly conserved and might have already been present in the early bilaterian
ancestor. Evidence for a distinct cardiac conduction system has not been found in the ciona heart.
Electrical coupling is believed to be facilitated by tight junctions between adjacent myocardial cells
without a preferred conduction pathway or direction [56–58,62].

5. Transition to a Sequential Contraction Pattern in Lower Vertebrates

The evolutionary step from invertebrates to vertebrates includes significant remodelling of the
cardiac and circulatory system. The transition from a linear tube to a chambered heart is still not
fully understood. Therefore, it is also not clear whether the positioning and function of the primary
pacemaker in the complex vertebrate heart is a vertebrate-specific evolutionary novelty or secondary
to the major morphological remodelling of the heart tube.

With the evolution of the early chordates came a rapid structural and functional diversification of
the cardiac system, such as a looped heart with separate chambers, functional valves, and trabeculae,
facilitating unidirectional blood flow. In higher vertebrates, heart function is eventually controlled by
a coordinated pacemaker and conduction system [1,7–9,11,61,67].

All vertebrates have a closed circulatory system with an endocardial layer lining the heart [11].
This also abolishes the possibility to supply the myocardium by direct perfusion. Instead, an epicardial
layer and coronary artery system is established to serve the thickening myocardial layer [11]. A basic
configuration of alternating slow-conducting and poorly contracting pacemaker components with
fast-conducting myocardium appears to be conserved in all higher vertebrates with multi-chambered
hearts [68].

6. Two-Chambered Heart in Zebrafish

Fish have a single circuit circulation system. The heart is positioned upstream of the gills,
rendering a single pumping system sufficient. The best-studied representative is the teleost zebrafish
(Danio rerio) [69,70]. The adult zebrafish heart consists of two contractile chambers, a single atrium, and
a single ventricle delimited by valves at the atrioventricular junction. The ventricle of mature zebrafish
hearts is a thick muscular pump and is highly trabeculated. Furthermore, it has an enlarged outflow
tract, the bulbus arteriosus, and a non-muscular inflow reservoir, the sinus venosus (Figure 2) [71,72].

The onset of myocardial contractions is observed early during embryonic development, shortly
after formation of the linear heart tube. It originates from the venous pole and initially has a
peristaltic contraction pattern [70]. The embryonic fish heart resembles the dynamic suction pump
mechanism seen in invertebrate hearts [73]. During cardiac looping, the onset of a conduction delay
at the atrioventricular (AV) canal leads to a sequential atrial-ventricular contraction pattern [74].
An optogenetic study localised the functional pacemaker in the embryonic zebrafish heart at the
inner curvature of the atrium, immediately adjacent to the venous pole and restricted to a small
number of cells [75]. Voltage dynamics visualisation showed that depolarisation originates from the
sinoatrial (SA) region [74,76]. This location is considered to be similar to the SAN in mammalian hearts.
Interestingly, temperature acclimation studies in another teleostei, the rainbow trout, also located the
primary pacemaker at the sinoatrial junction [77].

Information on the molecular regulation of the pacemaker domain in the zebrafish has long been
sparse, largely due to the lack of a pacemaker specific marker. The LIM-homeodomain transcription
factor Islet-1 (Isl1), an important factor in the development of cardiomyocyte precursors of the
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second heart field, was identified as the first pacemaker specific molecular marker [78]. Zebrafish
embryos lacking Isl1 display a bradyarrhythmic and progressive sinus block phenotype reminiscent
of pacemaker function defects [78,79]. Isl1 expression marks cardiac pacemaker cells from 48 h
post fertilisation (hpf) to adulthood. Its expression remains highly restricted to a small number of
cardiomyocytes at the sinoatrial junction. The cardiac pacemaker cell domain in zebrafish is organised
in a ring structure around the sinoatrial junction, rather than a compact node [78]. The initiation
of depolarisation at the inner curvature side of the sinoatrial junction might reflect an intrinsic
hierarchy between the pacemaker cells in the ring with the dominant cells dictating the heart rhythm.
Electrophysiological analyses of isolated adult Isl1-expressing cardiomyocytes show the characteristic
pacemaker cell properties such as spontaneous independent depolarisation [78]. Furthermore, the adult
pacemaker domain shows expression of hcn4, tbx2b, and bmp4, and is devoid of nppa expression [78,80].
Bmp signalling is essential for atrial formation and inhibits cardiomyocyte differentiation [81,82].
Bmp4 is acting downstream of Isl1 since the expression of bmp4 is lost specifically at the sinoatrial
junction of Isl1 knockout mutant embryos [79].J. Cardiovasc. Dev. Dis. 2017, 4, 4 6 of 18 
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Figure 2. Illustration of heart evolution. (A) Drosophila dorsal vessel and (B) Ciona heart with bilateral
pacemaker structures. (C) two-chambered zebrafish heart with pacemaker ring at sinoatrial junction.
(D) Four-chambered mammalian heart, primary pacemaker in the sinoatrial node (SAN). (A–C: anterior
on the left, posterior on the right), Arrows indicate direction of blood flow. Red = myocardial/muscle
layer; orange = endocardium; A = atrium; V = ventricle; SV = sinus venosus; BA = bulbus arteriosus.

Shox2 is expressed in the embryonic pacemaker domain in zebrafish. Antisense morpholino
knock-down of shox2 in zebrafish embryos results in bradycardia suggesting that Shox2 plays a role in
SAN development in fish, as it does in mice [83]. Both the zebrafish and human genome contain shox,
a homologue of shox2. In Human, SHOX and SHOX2 are very similar in sequence, have a common
homeodomain and appear to be redundant in function [84]. In zebrafish, shox expression has been
identified in the putative heart [85]. The absence of Shox in the mouse genome might explain the severe
developmental cardiovascular defects in Shox2−/− mice.

In the AV canal of the adult zebrafish heart, a secondary pacemaker has been identified. After
resection of the atrium, the pacemaker activity in the AV canal is sufficient to initiate ventricular
contraction [86]. In the developing heart, the T-box transcription factor Tbx2b is expressed in the AV
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canal, whereas the working myocardial marker Nppa is expressed in the chamber myocardium and is
absent from the AV canal [87]. The mature electrophysiological properties and electrocardiography
(ECG) pattern in zebrafish are comparable to the mammalian heart [72,88–90]. The important ion
currents for depolarisation, plateau phase, and repolarisation (INa, ICa,L and IKr) are similarly distributed
as in mammalian hearts. ICa,T, which has a prominent role in mammalian pacemaker cell depolarisation
was expressed in all cardiomyocytes of the zebrafish heart. Unlike the mammalian situation, expression
persists in mature cardiomyocytes [89].

In mammals, molecular and electrophysiological properties of pacemaker cells have been
characterised extensively. The expression of a hyperpolarisation-activated slow rectifier potassium
channel is considered the inherent property of mammalian pacemaker cells. Characterisation studies
of the zebrafish mutant slow-mo argued for the existence of a hyperpolarisation-activated inward
potassium current Ih. The mutant presents with bradycardia persisting into adulthood [91–93].
However, unlike the funny current (If) in mammalian pacemakers, Ih was found in all cardiomyocytes
and the underlying genetic components have not been identified, rendering it unsuitable as a
pacemaker cell marker [91,92].

Expression data for homologues of the mammalian cardiac connexins (Cx30.2, Cx40, Cx43, Cx45)
is sparse in zebrafish [94]. Cx43 (homologue of Cx43) expression has been observed in the embryonic
heart [74,95]. Cx45.6 (homologue of Cx40) is expressed in the chamber myocardium of the ventricle
and atrium, similar to the mammalian expression pattern [74,96]. Both pacemaker-specific mammalian
connexins (Cx30.2, Cx45) have not been described in zebrafish so far.

The adult zebrafish heart shows profound neuronal innervation, including innervation of the SA
junction near hcn4 and isl1 expressing pacemaker cells. The neuronal plexus at the SA junction contains
cholinergic, adrenergic, and nitrergic axons [80]. Furthermore, zebrafish embryonic hearts express
muscarinic acetyl choline and β-adrenergic receptors and the cholinergic agonist carbachol causes a
decrease in heart rate (i.e., bradycardia) [86,97]. This indicates a neuronal control of the pacemaker
domain possibly similar to the neuronal crosstalk reported in the mammalian SAN [80].

7. Septation and Conduction System Development in Amphibians

Contrary to zebrafish, amphibians and reptiles are not well studied on a molecular level. Gene
expression information remains sparse. A common amphibian model organism is the clawed frog
Xenopus laevis [98]. Heart rate measurements in Xenopus larvae [99] and adults [100] showed that
the ECG pattern is comparable to mammals and contractions showed sequential atrial-ventricular
contraction with a delay at the AV junction. Furthermore, drug sensitivity studies showed that the
pacemaking system in Xenopus interacts with sympathetic and parasympathetic nervous system
input [99]. The location of the primary pacemaker was not addressed in this study. It remains unclear
whether this pacemaker shows a similar right-sided laterality as the mammalian SAN.

As described for zebrafish, the presence of an organised ventricular conduction system in Xenopus
is unclear. Due to the absence of a ventricular septum, it has been hypothesised, that the ventricular
trabeculae or discrete conduction pathways in the ventricular wall might constitute a fast pathway to
the apex of the ventricle [71,101].

The reptilian heart on the other hand shows a varied degree of ventricular septation [102–104].
The sinus venosus is well developed and the first reservoir to receive blood from the venous system
and has been considered to be a fourth chamber [103,105,106].

Data on the embryonic development of reptilian hearts is sparse. Early morphological
development is similar to that of higher vertebrates [67,107,108]. An initially peristaltic contraction
pattern of the early heart tube has been observed in several reptilian species [107]. Cardiac contractions
in the mature reptile heart originate from the sinus venosus. They result in a characteristic SV wave
in ECG measurements that precedes the P wave (atrial depolarisation) [106]. The pacemaker might
be less compact than in mammals, leading to a widespread pacemaker area across the sinus venosus,
leading to its referral as a pacemaker chamber [109]. The fully septated, four-chambered crocodilian
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heart morphologically closely resembles the avian and mammalian heart. A SAN with spontaneously
depolarising pacemaker cells has been morphologically outlined in the crocodile heart [12,110].

Nervous system innervation of the heart has been described for various reptiles and
amphibians [111–114]. Whether these directly interact with the pacemaker structure could not be
clarified yet, due to a lack of understanding of the pacemaker system in these animals.

8. Complex Pacemaker and Cardiac Conduction System in Birds and Mammals

The earliest electrophysiological observations of the primary action potential initiation in the
developing chick heart has located the pacemaker site at the left posterior inflow tract of the heart
at Hamburger and Hamilton stage 10 (HH10). During the course of heart morphogenesis, a notable
shift of the primary pacemaker to the ventral surface of the right inflow tract is accompanied
by a RhoA-dependent spatial restriction of a Tbx18+ Isl1+ Hcn4+, and Nkx2.5− myocardial
subpopulation [115,116]. Electrophysiological studies demonstrated impulse initiation in the right
atrium (HH29) [117]. Through direct cell labelling, Bressan et. al identified a distinct population of
pacemaker precursor cells within the right lateral plate mesoderm of the developing chick embryo,
favouring a very early pacemaker cell specification [115].

9. Transcription Factor Network Patterns the Mammalian SAN

The primary pacemaker in the mammalian heart is located in the SAN in the dorsal wall of the
right atrium, at the junction with the superior vena cava [118]. The pacemaker cells in the SAN are
automatic and the intercellular conduction velocity is slow. The SAN is surrounded by connective
tissue and has a nodal artery [119].

In mice, the SAN develops within the right sinus horn of the sinus venosus from E9.5 onward, and
can be morphologically identified at E10.5 [120]. Until E9, the transcription factor Nkx2.5 is expressed
in all cardiac cells of the primary heart tube [121,122]. Initially, Hcn4 is expressed in the early heart
tube, highest in the Nkx2.5+ inflow tract [123,124]. Between E9 and E12, Tbx18+ Nkx2.5− progenitor
cells differentiate into myocardium, are added to the inflow tract, and form the sinus venosus [122].
Hcn4 is highly expressed in the Tbx18+ Nkx2.5− sinus venosus cells and becomes downregulated
in the Nkx2.5+ cells of the inflow tract, which have moved on to form the Cx40+ and Nppa+ atrial
myocardium [123,125]. A subpopulation of right-sided sinus venosus cells maintains Isl1 expression
and has initiated Tbx3 expression upon their differentiation [123,126]. These cells most likely represent
the SAN primordium, and form a thickening within the sinus venosus immediately adjacent to the
Cx40+ atrial cardiomyocytes. Pitx2c controls right-sided SAN development by suppressing SAN
development within its own expression domain at the left side of the atrium and sinus venosus.
Pitx2c null mice develop a second left-sided SAN primordium as part of right atrial/sinus venosus
isomerism [123,127].

With further enlargement of the sinus venosus (now comprising the venous side of the venous
valves and the common, right, and left sinus horns), the Nkx2.5− Cx40− Isl1+ Tbx3+ Hcn4+ SAN
primordium runs from the thickening in the superior caval vein (Tbx18+; called ‘head’) to the
proximal part of the right venous valve (Tbx18+ derived; called ‘tail’) [125]. During the first stages
of development, the size of the SAN mainly increases by addition of cells from the progenitor pool.
However, SAN cells divide slowly, which will also contribute to growth of the SAN. During early
foetal stages, Hcn4 expression is maintained in the SAN but is downregulated in the remaining cells of
the sinus venosus. Cx40 and Cx43, not expressed in the SAN, are upregulated in the remainder of the
sinus venosus (referred to as atrialisation of the sinus venosus) [123].

Nkx2.5ires-Cre,+; R26RlacZ lineage tracing confirmed that the SAN forms from Nkx2.5− cells [123].
Nevertheless, Nkx2.5 is briefly expressed in sinus venosus precursors but is turned off prior to their
differentiation [128]. Tbx18 was found to be expressed exclusively in the Nkx2.5− sinus venosus,
a pattern that is conserved in human, mouse, xenopus, chicken, and zebrafish [122,129]. Genetic
lineage tracing using Tbx18cre,+/R26RlacZ mice revealed that the entire sinus venosus, including the
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SAN head and tail, are derived from Tbx18+ precursor cells, although the expression of Tbx18 becomes
downregulated in the tail part during development [125]. The critical role of Tbx18 in SAN and sinus
venosus formation was shown in Tbx18−/− mice, that form a hypoplastic sinus venosus and SAN head
region. In contrast to morphological abnormalities, the small SAN that is formed in Tbx18−/− mice
does not exhibit an altered SAN gene programme or changes in heart rhythm. However, transduced
overexpression of Tbx18 in neonatal ventricular cardiomyocytes in vitro and in vivo was sufficient to
induce a SAN-specific phenotype and spontaneous depolarization [130]. Moreover, injections with
Tbx18 expressing adenoviral vectors in pig ventricles with complete heart block showed enhanced
heart rhythm and decreased expression of Nkx2.5 and Cx43 in the injection area, whereas Hcn4 levels
were upregulated. Electroanatomic mapping further showed increased pacemaker activity at the
injection site [131]. In contrast, transgenic misexpression of Tbx18 in the mouse heart did not result in
ectopic pacemaker cell formation [132]. Therefore, the extent of Tbx18 mediated “reprogramming” and
the precise mechanism needs to be addressed further.

Tbx3 in the SAN acts as a transcriptional repressor of genes of the working myocardial gene
programme, including Nppa, Nppb, Scn5a, Cx40, and Cx43. In addition, it activates conduction system
genes like Hcn4. It was shown that ectopic expression of Tbx3 in developing atrial myocardium
reprograms these cells into bona fide functional pacemaker cardiomyocytes [133,134]. This indicates
that Tbx3 functions as a molecular switch between the genetic programme of working myocardium
and SAN.

In the heart tube, Tbx3 is repressed by Nkx2.5. Nkx2.5−/− embryos die before E10 due to abnormal
heart looping and show increased expression of Tbx3 and Hcn4 in the heart tube [123]. Ectopic
activation of Nkx2.5 in SAN cells induces expression of working myocardial markers Nppa and Cx40
and repression of Hcn4, indicating that Nkx2.5 activates the working myocardial gene programme
and suppresses the pacemaker programme [135]. The homeodomain transcription factor Shox2 is
expressed in the SAN and sinus venosus and was shown to repress Nkx2.5 and control expression
of Bmp4 [135–137]. Shox2−/− embryos have a reduced SAN size and exhibit increased expression of
Nkx2.5, Cx40, and Cx43, and decreased expression of Hcn4, Tbx3, and Isl1 in the SAN primordium
and show cardiac arrhythmias and embryonic lethality at day E11.5 [138]. These studies indicate a
regulatory function of Shox2 in repressing the working myocardial programme via the repression
of Nkx2.5 and induction of Tbx3. Expression of both Tbx3 and Shox2 depends on Tbx5 [139], a core
cardiac transcription factor expressed from early stages in the cardiac progenitors. Shox2 acts upstream
of Isl1 in pacemaker specification [83]. Isl1−/− mice exhibit severe abnormalities with respect to
second heart field formation [140] but conditional Isl1 knock-outs in the Hcn4 expression domain show
downregulation of Tbx3, Shox2, Hcn4, Bmp4, and Cacna1g in the developing SAN, whereas Nppa, Gja1,
Gja5, and Scn5a were upregulated [126,141]. Together with the observation that Isl1 is essential for
functional pacemaker development in zebrafish, this implies an important role for Isl1 in activating
the mammalian pacemaker programme. Interestingly, ISL1 is expressed in the cells of the human SAN
of both the embryonic and adult heart suggesting an evolutionary conserved function [17,78,142,143].

In both zebrafish and mice, Bmp signalling is involved in atrioventricular canal (AVC) and
atrioventricular conduction system development [144–146]. Bmp signalling co-operates through Smads
with Gata4 and histone acetylases (HATs) and histone deacetylases (HDACs) to activate AVC-specific
enhancers in the AVC and inactivate them in the atrial and ventricular chamber myocardium [145]. The
correlation between the HDAC inhibition and conduction system development is further emphasized
by knockout experiments, where deletion of HDAC1 and HDAC2 in mice resulted in neonatal lethality,
bradycardia and increased expression of Cacna2d2, a calcium channel that is present in the conduction
system [147]. Furthermore, an enhancer region in the first intron of the Hcn4 locus is activated in the
ventricular myocardium after exposure to both transcription factor Mef2c and HDAC inhibition [148].
Therefore, it is tempting to speculate that SAN gene expression is regulated by a mechanism involving
BMP-signalling, core cardiac transcription factors, and HDAC activity.
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10. Conclusions

The coordinated rhythmic contraction is the fundamental principle of cardiac function. Specialized
cardiac pacemaker cells are responsible for initiating the electrical impulse. Despite the vast
morphological differences between the simple invertebrate heart and the structurally more complex
mammalian heart, there is a striking degree of evolutionary conservation of the fundamental functional
and molecular pathways. The presence of specialized pacemaker cells at the inflow pole of the heart
is the common feature of all cardiac systems. In primitive invertebrate species, pacemaker cells
are present at several locations, even allowing a reversal of the pumping direction. In contrast, the
closed circulatory systems of vertebrates rely on a strictly unidirectional blood flow driven by a
single dominant pacemaker structure (Figure 2). When and how this restriction to a single dominant
pacemaker structure occurred during evolution remains unclear. During cardiac differentiation, the
precursor cells and derived pacemaker cardiomyocytes execute a cascade of patterning factors, driving
a pacemaker-specific gene programme. The pacemaker cells remain embedded in and coupled to the
surrounding myocardium, requiring a highly-controlled delineation from the working myocardial
gene programme (Figure 3). This highlights an ancestral network of gene regulation, which does not
seem to have changed dramatically as the heart evolved from a simple suction pump to the complex
four-chambered heart in mammals.
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Figure 3. Important factors in the specification of pacemaker cells in the SAN and atrial working
myocardium. SAN cells arise from a Tbx18+ Nkx2.5− mesenchymal progenitor population located
adjacent to the Nkx2.5+ posterior heart tube myocytes. Tbx18 is the main driving factors of myocardial
differentiation in the mesenchymal progenitors. It delineates the SAN primordium by competing
with Tbx5 and functionally repressing atrial differentiation factors such as Gata4, Nkx2.5, and Nppa.
Shox2 inhibits Nkx2.5 expression, activates Tbx3 and interacts with Isl1. Shox2 is a direct target of
laterality factor Pitx2 and is inhibited in the left compartments of the developing heart. Tbx3 is the
main factor to directly or indirectly activate pacemaker-specific factors. Tbx5 interacts with Gata4
and Nkx2.5 to initiate working myocardial cell differentiation. Tbx5 represses Shox2 in the working
myocardium. Nkx2.5 is the main determining factor for chamber myocardial cells and activates
working myocardium-specific factors. The transcription factor network leads to the establishment of
specific gene expression signatures. The SAN is characterised by the high expression of Tbx3, Shox2,
Isl1, Bmp4, Hcn4, Cacna1g, Cx30.2 (mouse), and Cx45, corresponding with the low expression or
absence of Cx40, Cx43, and Scn5a in embryos and adults. The working myocardium shows a contrary
expression pattern, with the high expression of Cx40, Cx43, Scn5a, and Nppa corresponding to low or
absent expression of Cx30.2 (mouse), Cx45, and Hcn4.
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The zebrafish is increasingly being used as a model to address pacemaker development and
function. Considerable homology between zebrafish and mammalian heart development and
physiology and the feasibility of high-throughput genetic or pharmacological manipulation provide
promising opportunities for cardiac research. Furthermore, novel gene editing techniques such as
the Transcription activator-like effector nucleases (TALEN) and Clustered regularly interspaced short
palindromic repeats (CRISPR-Cas9) systems allow for the precise modelling of deleterious human
gene mutations [69,70,89,149–152].
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