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Abstract: Spliced X-box binding protein-1 (XBP1s) is a protein that belongs to the cAMP-response
element-binding (CREB)/activating transcription factor (ATF) b-ZIP family with a basic-region
leucine zipper (bZIP). There is mounting evidence to suggest that XBP1s performs a critical function
in a range of different cardiovascular diseases (CVDs), indicating that it is necessary to gain a
comprehensive knowledge of the processes involved in XBP1s in various disorders to make progress
in research and clinical therapy. In this research, we provide a summary of the functions that
XBP1s performs in the onset and advancement of CVDs such as atherosclerosis, hypertension, cardiac
hypertrophy, and heart failure. Furthermore, we discuss XBP1s as a novel therapeutic target for CVDs.

Keywords: spliced X-box binding protein-1; hypertension; cardiac hypertrophy; heart failure;
cardiovascular diseases

1. Introduction

Since the 20th century, the prevalence and incidence of cardiovascular diseases (CVDs)
have increased exponentially worldwide, with devastating medical and economic conse-
quences. Approximately 17.9 million people die from CVDs worldwide every year [1].
The global increase in cardiovascular disease requires a thorough understanding of the
pathophysiological molecular mechanisms of disease occurrence. Over centuries of re-
search into the pathophysiology of cardiovascular diseases, we have identified several
classes of pathological processes and metabolic systems that are critical to human health.
Dysfunctional endoplasmic reticulum (ER) stress and unfolded protein response (UPR),
characterized by the obstruction of the production of key ER proteins in the body and an
increase in the accumulation of potentially toxic misfolded proteins, are typical examples of
the pathophysiological conditions found in patients with cardiac, vascular, and metabolic
diseases [2].

The ER is a membranous organelle involved in the production and maturation of
proteins and is crucial for the folding, maturation, and post-translational modification of
proteins [3]. Cellular stress caused by physiological or pathological stimuli contributes
to the accumulation of misfolded or unfolded proteins in the ER, which imposes a load
on the ER protein-folding mechanism, thus overwhelming its capacity, a state known
as ER stress (ERS) [4]. To guarantee that the capacity for protein folding is balanced
with the required level, cells have evolved an adaptive signal transduction pathway that
transduces signals from the ER to the nucleus, called the UPR, which attempts to restore
ER homeostatic balance and alleviate or reduce stress [5]. This UPR pathway has salient
and unique features [2]. For example, it can induce translational attenuation, which then
lowers the number of nascent proteins that are translocated into the ER. Furthermore, the
UPR is capable of transcriptionally activating the genes that encode ER chaperones and
enzymes to restore the expression of folding-defective proteins. Last but not least, the
UPR works through the induction of the ER-associated degradation (ERAD) components
and degradation of misfolded or unfolded proteins. A compensational reaction to ER
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stress mainly involves the activation of three signaling pathways by the following sensor
proteins: Inositol-requiring kinase 1 (IRE1a), activating transcription factor 6 (ATF6), and
double-stranded RNA-activated protein kinase-like ER kinase (PERK) [6]. Under normal
conditions, glucose-regulating protein 78 (GRP78), the ER chaperone, binds to the luminal
domains of these sensors and keeps them inactive. Under stressed conditions, GRP78
dissociates from IRE1α, PERK, and ATF6 and allows UPR activation, which occurs in a
variety of cardiovascular diseases (Figure 1). These proteins collaborate in a complementary
manner to bring the system of unfolded proteins/chaperones into a state of homeostasis
in the ER. Differential roles of the individual UPR transducers have been proposed [7].
PERK is a kinase that is responsible for the phosphorylation of the downstream eukaryotic
translation initiation factor 2α (eIF2α) to induce an immediate adaptive response to ER
stress [8]. eIF2α can further improve the capability of the ER to fold proteins by processing
the translation of the mRNA encoding factor 4 (ATF4) [9]. As one of the major signaling
pathways of ER stress, ATF6 plays a significant role in regulating gene coding. Once ATF6
has translocated to the Golgi, it is cleaved by the proteasomes at sites 1 and 2. The cleaved
fragment of ATF6 eventually enters the nucleus to regulate the genes encoding the ERAD
components and X-box binding protein-1(XBP1) [10]. The IRE1α pathway is a branch of
the UPR that is considered to be highly conserved [11]. IRE1α is an ER transmembrane
protein that functions as both a protein kinase and an endoribonuclease (RNase). In the
presence of ER stress, IRE1α dimerizes and undergoes trans-autophosphorylation via the
cytoplasmic kinase domain. Upon activation of the UPR, activated IRE1α processes the
XBP1 mRNA to generate a spliced form of the transcription factor XBP1 (XBP1s) that is
both functional and highly active by the removal of a 26-base intron from the initial mRNA
in an unconventional splicing reaction [12]. Abundant studies have shown that XBP1s is
engaged in a variety of human CVDs. Targeting XBP1s is considered a promising treatment
strategy for CVDs. Regulation of this target by inhibition or activation may bring different
clinical benefits depending on the CVDs status. However, this is not a comprehensive
review. In the disease conditions described below, we focus on related CVDs, in which the
regulation of the XBP1s pathway may lead to the development of new therapies. Therefore,
we review a variety of cellular functions of XBP1s and the molecular mechanism underlying
the regulatory role of XBP1s in CVDs.
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2. XBP1s Structure and Cellular Function

XBP1s belongs to the cAMP-response element-binding (CREB)/activating transcrip-
tion factor (ATF) b-ZIP family with a basic-region leucine zipper (bZIP) [13]. XBP1s is
composed of the original DNA binding domain at the amino terminal as well as a trans-
activation domain at the C-terminal and performs the role of a stress-inducible powerful
transcriptional factor by binding to the UPR element and therefore modulating the expres-
sion of the UPR target genes that encode proteins. XBP1s moves to the nucleus in response
to IRE1 activation, where it then stimulates the upregulation of its target genes that encode
ER-associated degradation (ERAD) components and ER chaperones, hence leading to an en-
hancement of the ER’s ability to fold newly generated proteins and degradation of proteins
that are either misfolded or unfolded [14]. Thus, strategies regulating the proper function
of XBP1s to reduce ER stress might provide attractive pathways for the development of
innovative therapeutic approaches for CVDs. Notably, there is an increasing body of data to
show that XBP1s may function as a modulator in CVDs, particularly in atherosclerosis [15],
myocardial ischemia/reperfusion injury [16], and cardiac hypertrophy [17]. Interestingly,
in some cardiovascular diseases, the involvement of XBP1s is also independent of ERS
and UPR activation [18]. Furthermore, XBP1s participates in transcriptional regulation,
apoptosis, and oxidative stress (Table 1 and Figure 2). However, a detailed specification is
necessary to provide valuable insights into the mechanisms behind XBP1s’ involvement in
the development of CVDs, and to facilitate the development of an optimal CVD-related
treatment that will reverse the progression of the illness and eventually result in the patient
being cured.

Table 1. Cellular functions of XBP1s and related mechanism of action.

Function Mechanism Ref.

Transcriptional Regulation

By binding to the UPRE of the Krüppel-like factor 9 (KLF9) promoter, XBP1s
up-modulates the KLF9 transcription in the case of severe ER stress. [19]

XBP1s induces ER expansion by activating the synthesis of phosphatidylcholine (PtdCho). [20]
XBP1s can upregulate insulin-like growth factor binding protein-3 (IGFBP3) expression. [21]
Upon ER stress, XBP1s specifically induces Forkhead Box A3 (FOXA3). FOXA3
exacerbates the excessive lipid accumulation induced by the acute ER-inducer TM. [22]

XBP1s binds to the XBP1-binding site in the Forkhead Box A2(FOXA2) promoter. [23]
XBP-1s may directly upregulate Kaposi’s Sarcoma-Associated Herpesvirus-Encoded
Thymidine Kinase (ORF21). [24]

The transcriptional activity of E1A is increased as a result of the binding of XBP1s to the
E1A enhancer/promoter. [25]

XBP1s is capable of binding to and recruiting RNA polymerase II to the IL6, SNAI1, and
MMP9 promoters, and the intragenic super-enhancer of glutamine-fructose-6-phosphate
transaminase 2 (GFPT2).

[26]

XBP1s activates MYC proto-oncogene expression. [27]
UDP-galactose-4-epimerase (GalE), a direct target of XBP1′s transcriptional function, is a
new modulatory nexus that connects the UPR to the characteristic postprandial metabolic
alterations in hepatocytes.

[28]

The activity of the histone acetyltransferase p300 contributes to an increase in the
stabilization of the spliced form of X-box binding protein 1 (XBP1s) and stimulates the
transcription of XBP1′s target gene known as homocysteine inducible endoplasmic
reticulum protein with ubiquitin-like domain 1 (Herpud1).

[29]

Insulin Signaling IGF-1 is responsible for inducing ER biogenesis in the bovine MEC line via the activation
of the IRE1-XBP1 axis following the modulation by mTORC1. [30]
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Table 1. Cont.

Function Mechanism Ref.

Inflammation

Icariin (ICA) may reduce the expression level of TNF-α, IL-6, and IL-1β, by blocking the
IRE1/XBP1s pathway. [31]

The ER stress-inducing agent tunicamycin (Tm) and PA treatments significantly activate
the IRE1α-XBP1s signaling pathway and increase the expression of pro-inflammatory
mediators, including TNF-α, IL6, and IL1β.

[32]

LncRNA H19 plays a vital function in modulating inflammation in retinal endothelial cells
when subjected to high-glucose conditions via the modulation of the miR-93/XBP1s axis. [33]

The activation of the triggering receptor expressed on the myeloid cells 1 (TREM-1)
pathway in macrophages causes ER stress to occur via the IRE-1α/XBP-1s pathway, thus
contributing to the pro-inflammatory milieu.

[34]

Oxidative stress Complete activation of UPR, which would alleviate ER stress, is associated with
fructose-induced oxidative stress. [35]

Autophagy

Under PD conditions, the functional loop that governs mitophagy between XBP1s and
PINK1 was disturbed. [36]

ER stress/UPR is a mechanism that ultimately results in the activation of caspase-induced
proteolysis and an elevation in the level of expression of genes associated with autophagy. [37]

Metabolism

XBP1s overexpression in cardiac myocytes improves the HFpEF phenotype in mice and
decreases the accumulation of lipids in the myocardium. [38]

XBP1s may up-modulate the expression of particular enzymes implicated in the
metabolism of glucose and eventually enhance the O-linked β-N-acetylglucosamine
modification (O-GlcNAcylation).

[39]

Apoptosis

Inhibiting XBP1s expression might substantially improve the activities of lactate
dehydrogenase and creatine kinase-MB, as well as cell apoptosis, and as a result, activated
ischemia/reperfusion-mediated H9c2 cell damage is exacerbated.

[40]

Zonisamide (ZNS) up-modulated Bcl-2 activity, inhibited Bax and caspase-3 activity,
reduced the number of TUNEL-positive cells in cardiac tissues, and protected against
cardiac hypertrophy induced by type 2 diabetes by reducing the rate of apoptosis caused
by ER stress (IRE-1α/XBP-1s).

[41]

Grape seed proanthocyanidin extract (GSPE) relieved ER stress-elicited apoptosis via
suppressing the IRE1α/XBP-1S/caspase-12 and PREK/eIF2α pathways. [42]

IRE1 made a cell-type-specific contribution to the Tg-elicited cell death. This was linked
to the stimulation of c-Jun N-terminal kinase that was reliant on XBP1s, whose impact
was pro-apoptotic in LNCaP cells but had no impact on HCT116 cells.

[43]

STF-083010 reduced cell proliferation and induced apoptosis through XBP1/CHOP/Bim
signaling pathway. [44]

Hypoxia

The stimulation of the IRE1α/XBP1s/ HIF-1α pathway was considerably inhibited when
HSP47 was silenced by the use of small interfering RNA. [45]

The activation of p300 by hypoxia amplifies the unfolded protein response (UPR) that is
mediated by XBP-1s, helps prevent the degradation of XBP1s that is reliant on the
proteasome, and increases the level of transcriptional activity carried out by XBP1s
for Herpud1.

[29]

The activity of IRE1 in response to hypoxia elevates the levels of the HIF1α protein in a
way that is independent on XBP1s. [46]

Angiogenesis

The expression of XBP1s enhances cell proliferation, migration, and angiogenesis, which
helps to reverse the damage caused by miR-33a-5p. [47]

In BMECs that had been treated with OGD, XBP1s overexpression led to an increase in the
expression of HIF1α, VEGF, p-extracellular signal-regulated kinase1/2, p-GSK3β,
p-mTOR, p-AKT, and phosphatidylinositol-4,5-bisphosphate 3-kinase.

[48]

Through the activation of XBP1s, the ER stress activator tunicamycin enhanced the
production of VEGFA that was produced in human granulosa cells as a result of human
chorionic gonadotropin induction. VEGFA performs a fundamental function in
ovarian angiogenesis.

[49]

XBP1s is responsible for the modulation of VEGF-induced angiogenesis in the heart and
has a role in the development of adaptive hypertrophy. [17]
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Figure 2. Research into the functions of XBP1s. XBP1s plays an important role in cardiovascular
diseases by interacting with various signaling pathways. KLF9: Krüppel-like factor 9; FOXA3:
Forkhead Box A3; IGFBP3: insulin-like growth factor binding protein-3; FOXA2: Forkhead Box A2;
GFPT2: glutamine-fructose-6-phosphate transaminase 2.

3. The Role of XBP1s in Smooth Muscle Cells

Smooth muscle cells (SMCs) are the principal cell constituents of the vessel wall and
are responsible for maintaining blood vessel pressure and tone [50]. In recent studies,
it has been shown that XBP1 splicing may be triggered in a way that is independent of
ER stress by physiological triggers which include vascular endothelial cell growth factor
(VEGF). Platelet-derived growth factor (PDGF) is a mitogenic factor that is extensively
recognized for its role in the proliferation of mature SMCs [51]. PDGF/PDGFR binding
activates several signaling pathways, including mitogen-activated protein kinases [52],
PI3K/Akt [53], and basic fibroblast growth factor (bFGF) [54]. PDGF may be released in the
injured area triggered by vascular injury. The released PDGF may then bind to PDGFR on
SMCs, causing PDGFR to interact with IRE1, and in this way, both the phosphorylation of
IRE1 and the splicing of XBP1 mRNA are activated. In contrast, calponin h1 (CNN1) over-
expression is known to suppress SMC proliferation and neointima formation. MiR-1274B
secreted into culture medium performs the role of a paracrine factor to downmodulate the
CNN1 mRNA in neighboring cells (Figure 3). Using a chromatin immunoprecipitation
test, it has been discovered that XBP1s is directly attached to the domain of the mir-1274B
promoter spanning from positions 520 to 290. Studies have shown that XBP1s not only
activates the PI3K/Akt pathway, which increases the migration of SMCs, but also miR-
1274B transcription, which targets and degrades CNN1 mRNA, resulting in a decrease in
the CNN1 protein and SMC proliferation [55]. By binding to the enhancers included within
exons 4 and 42 of the type IV collagen alpha 1(COL4A1) gene, the XBP1s protein is capable
of directing the transcription of the COL4A1 and COL4A2 genes. To get rid of the internal
sequence, the resultant COL4A1 mRNA could undergo an unconventional splicing process
that is mediated by IRE1α between exons 4 and 42. Alternatively, the XBP1s attached
to exons 4 and 42 might combine into a dimer, which would bring the two exons closer
together and direct the transcription of RNA polymerase from exon 4 to exon 42, bypassing
the internal sections. Both mechanisms result in the production of a shorter, more soluble
isoform of COL4A1s, which performs the role of a paracrine cytokine to mobilize vascular
progenitor cells (VPCs) to the wounded sites, thus contributing to the healing of injuries or
the improvement of illnesses [56]. In arterial diseases, transglutaminase 2(TG2) induces
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β-catenin- and PDGF- signaling in VSMCs, which in turn enhances the proliferative, migra-
tory, and phenotypic switching capacity of these cells. We observed that cells lacking XBP1s
could increase the proteasomal breakdown of TG2 by promoting K48 polyubiquitylation,
particularly in comparison to SUMOylation. The process of protein SUMOylation may help
proteins become more stable, partly because it inhibits ubiquitination at lysine residues,
and partly because proteins that have been SUMOylated exhibit a very unique pattern of
surface charge distribution compared to ubiquitinated proteins [57].
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Figure 3. Schematic representation of the critical molecular mechanism by which XBP1s regulates
smooth muscle cells proliferation and neointima formation in smooth muscle cells. PDGF may
be released in areas of injury caused by vascular injury. The released PDGF binds to PDGFR on
smooth muscle cells, causing PDGFR to interact with IRE1 and activate phosphorylation of IRE1 and
splicing of XBP1 mRNA. XBP1s directly linked to the region 520 to 290 of the mir-1274B promoter,
activated miR-1274B transcription, targeted and degraded CNN1 mRNA, resulting in decreased
CNN1 protein and decreased SMC proliferation. The XBP1s protein directs the transcription of
COL4A1 gene by binding to the enhancer in exons 4 and 42 of COL4A1 gene. COL4A1s acts
as a paracrine cytokine to mobilize vascular progenitor cells (VPCs) to the site of injury, thereby
promoting wound healing or disease improvement. TG2 induces β-catenin and PDGF signaling in
VSMCs, which in turn enhances the proliferation, migration, and phenotypic switching ability of
these cells. Cells lacking XBP1s can increase the proteasomal breakdown of TG2 by promoting K48
polyubiquitination. PDGF: Platelet-derived growth factor, CNN1: calponin h1, COL4A1: type IV
collagen alpha 1. TG2: Transglutaminase 2.

4. The Role of XBP1s in Ischemia/Reperfusion Injury and Atherosclerosis

Local ischemia occurs when a local blood artery is occluded, which may happen as a
consequence of an injury, atherosclerosis, or thrombosis, leading to cell death and impaired
function in the ischemic organ. Angiogenesis is one of the processes that helps restore blood
circulation in ischemic tissues. A significant aspect of this process involves VEGF mediated
endothelial cell (EC) migration and proliferation. The splicing of XBP1s mRNA has a crucial



J. Cardiovasc. Dev. Dis. 2022, 9, 459 7 of 16

function in VEGF signaling and leads to the proliferation and angiogenesis of endothelial
cells in ischemic tissues [58]. Numerous lines of evidence also have indicated that ischemia
stimulates the activation of stress response pathways, which may help prevent damage
to tissues. Furthermore, XBP1 mRNA is spliced as a response to hypoxia, which also
results in an elevation in the level of XBP1s and induces GRP94 and GRP78 [59]. GRP78
is a direct transcriptional target of the UPR-induced transcription factor XBP1s [60]. The
majority of acute coronary syndromes are caused by the destabilization and rupture of
atherosclerotic plaques. Macrophages and the secretory products that they produce have
a significant impact on the destabilization of plaque [61]. Molsidomine, a donor of nitric
oxide (NO), was used in previous research to treat atherosclerosis in rabbits, which resulted
in the clearance of subendothelial macrophages and the formation of plaques primarily
composed of collagen fibrosis and SMCs. Hyperphosphorylation of eIF2a, suppression of
de novo protein synthesis and splicing of XBP1 mRNA may serve as the mechanism behind
an NO donor’s ability to selectively remove macrophages from atherosclerotic plaques [62].
Toll-like receptors (TLRs) specifically activate XBP1s via NOX2 NADPH oxidase, which
is required for the optimal and sustained production of proinflammatory cytokines in
macrophages [63].

ECs are essential biological constituents of blood vessels, performing the role of
barriers between blood and tissues that are selectively permeable [6]. It is hypothesized
that risk factors cause EC to undergo apoptosis, which then results in the disruption or
malfunction of the intact endothelium monolayer. This results in the accumulation of
lipids, the adhesion of monocytes, and inflammatory responses that start the induction of
atherosclerosis. Atherosclerosis is hallmarked by the production of lipid-laden foam cells,
particularly foam cells generated from macrophages, underneath the endothelial layer of
the vascular wall. ApoE-/- mice that had their blood flow disrupted experienced XBP1
splicing and persistent activation, which ultimately resulted in the apoptosis of endothelial
cells (ECs) and the development of atherosclerotic plaques [64]. Zeng et al. [58] showed
a correlation between EC proliferation and the transient activation of XBP1 splicing and
found that persistent activation causes apoptosis of endothelial cells, loss of cells from
vessel walls, and the formation of atherosclerotic plaques in an aorta isograft model by
down-modulating VE-cadherin expression. This study also indicated that VE-cadherin
expression can be downmodulated by XBP1s through transcriptional suppression and
MMP-induced degradation. Emerging paradigms have revealed several roles of B cells
that do not rely on antibodies and these functions may be significant in the onset and
progression of atherosclerotic plaques. Andrew et al. [18] demonstrated that the loss of
XBP1s leads to severe attenuation of the secretory capacity of plasma cells, which is enough
to considerably enhance plaque formation and create a highly unstable plaque state in
Ldlr-/-/XBP1sB-cKO mice. Furthermore, XBP1s has been reported to be highly expressed in
atherosclerosis and could boost macrophage survival and autophagy.

Recently, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been
shown to perform a critical function in diverse biological and pathological activities in
atherosclerosis. Meanwhile, previous research has proven that XBP1s, a signal trans-
ducer, contributes to atherosclerosis development by activating the apoptosis of ECs [64].
LINC00299 can work as a miR-135a-5p sponge to enhance XBP1s expression, thereby
promoting the development of atherosclerosis [15].

5. The Role of XBP1s in Hypertension

Hypertension is among the most significant risk variables for CVDs. The accumula-
tion of reactive oxygen species (ROS) derived from NADPH oxidase (Nox) leads to the
dysregulation of ECs and consequent vascular injury, which are important elements in
the pathophysiology of hypertension [65]. Livia et al. [66] showed that the IRE1–XBP1s
pathway participates in Nox/ROS-regulated mechanisms, contributing to vascular dys-
function in hypertension. Furthermore, the pathophysiology of hypertension is linked to
the activation of the renin angiotensin aldosterone system (RAAS) [67]. With regard to
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the role of XBP1s, research indicates that XBP1s binds to a site within the promoter region
of ACE/ANGII/AT1R axis components. Consequently, this results in the degradation
of vascular function, which eventually contributes to the occurrence of hypertension in
rats [68]. It has been discovered that activation of HIF1a is a necessary step before XBP1s
can bind to the corresponding response elements inside the promoter regions of the target
genes in the RAAS [69]. Thus, IRE1–XBP1s, as an arm of the ER stress response, is involved
in the signaling pathways of hypertension.

6. The Role of XBP1s in Cardiac Hypertrophy

Cardiac hypertrophy is an independent risk variable of cardiac-associated morbidity
and mortality that develops as a consequence of cardiac overload, as well as the hyperactiva-
tion of neurohumoral systems and the presence of toxic metabolic compounds. Activation
of XBP1s is one of the many complicated biomolecular processes that are involved in
cardiomyocyte hypertrophy, which is a cellular reprogramming mechanism that integrates
numerous other biomolecular pathways (Figure 4).
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phy. XBP1s is a direct upstream transcriptional activator of multiple enzymes in HBP, one of which is
called GFAT1. Under the action of GFAT1, glucose metabolism is shifted to the hexosamine biosyn-
thesis pathway, thereby participating in the pathological process of cardiac hypertrophy through
the mTOR pathway. Likewise, a unique transcriptional target of XBP1s, FKBP11 is involved in the
mTOR pathway. MiR-297 upregulates the activation of XBP1s signaling by inhibiting the expression
of the sigma-1 receptor (Sig-1R), thereby promoting cardiac hypertrophy. miR-30* and miR-214 target
XBP1s to synergistically regulate cardiac VEGF production and angiogenesis. GFAT1: glutamine:
fructose-6-phosphate amidotransferase 1; FKBP11: fk506-binding protein 11; miR-30*: miR-30 family.

One of the most significant risk variables that might lead to cardiac hypertrophy is
hypertension. When exposed to situations that cause hemodynamic stress, cardiomyocytes
respond by inducing ventricular thickening and subsequent ventricular enlargement to
alleviate wall stress. However, under persistent stress, this once adaptive response may
become inefficient, resulting in heart failure [70]. There is a substantial body of research
suggesting that metabolic dysregulation is among the most fundamental and early mech-
anisms underlying abnormal cardiac remodeling as a consequence of hypertension [71].
The hexosamine biosynthetic pathway (HBP), one of the routes by which glucose is metab-
olized, is maladaptive to pressure overload and thus contributes to pathological cardiac
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remodeling. Simultaneously, the persistent induction of glutamine: fructose-6-phosphate
amidotransferase 1 (Gfat1), the rate-limiting enzyme of HBP, in the heart may directly
activate the mechanistic target of rapamycin (mTOR) signaling, which acts as a trigger for
pathological cardiac hypertrophy under hemodynamic stress. Moreover, XBP1s acts as a
direct upstream transcription activator of a variety of enzymes that are part of the HBP, one
of which is Gfat1 [72].

Cardiomyocytes may keep the heart functioning normally in cases where cardiac
hypertrophy develops and are involved in the early adaptative phase. New research data
strongly indicate that during the adaptive phase, XBP1s confers significant cardioprotection
to prevent the progression of cardiac hypertrophy to heart failure. The process of cardiac
remodeling includes metabolic dysregulation, hypoxia, changes in calcium signaling, and
an increased demand for the synthesis of proteins. mTOR is a signaling nexus that is
involved in both the sensing of nutrients and the modulation of metabolic processes. It also
performs a fundamental function in hypertrophic growth that occurs as a result of pressure
overload. A recent study suggests that activation of the mTOR signaling pathway is the
mechanism via which XBP1s induces adaptive cardiac growth, and a unique transcriptional
target of XBP1s, FK506-binding protein 11 (FKBP11), is responsible for mediating this
process. In addition, knockdown of FKBP11 results in a considerable reduction in the rate
of XBP1s-mediated mTOR activation and adaptive cell proliferation [73]. Another study
came to the significant conclusion that XBP1s promotes cardiac hypertrophy triggered
by NADPH oxidase 4 (NOX4) by activating RIPK1-related NF-κB signaling [74]. Further
investigation revealed that insufficient angiogenesis is a crucial process in the progression
of cardiac hypertrophy to heart failure. These results indicate that in the beginning stages
of cardiac hypertrophy, an aberrant elevation in XBP1s levels is critical for the maintenance
of VEGF-elicited cardiac angiogenesis, whose presence is responsible for the development
of adaptive hypertrophy [17].

miRNAs are small non-coding RNAs that negatively regulate gene expression lev-
els once they bind to the 3′ untranslated region (UTR) of the gene that is being targeted.
Numerous studies have shown that miRNAs are involved in developing cardiac hypertro-
phy [75]. MiR-297 has been illustrated to upmodulate the activation of XBP1s signaling
to promote cardiac hypertrophy by suppressing the expression of the sigma-1receptor
(Sig-1R) [76]. Another study showed that during the transition from adaptive hypertrophy
to heart failure, miR-30* and miR-214 target XBP1s to produce a synergistic effect that
modulates cardiac VEGF production and angiogenesis [77].

These studies indicate that the advancement of cardiac dysfunction may be prevented
by overexpressing XBP1s in a manner that is restricted to the heart. Thus, discovering the
specific molecular processes through which XBP1s-elicited cardioprotection works may be
helpful in the creation of innovative treatment techniques for the prevention or reversal of
pathological hypertrophy.

7. The Role of XBP1s in Heart Failure

Heart failure is a diversified clinical syndrome resulting from cardiac overload and
injury that leads to substantial morbidity and mortality. It can be classified into distinct
phenotypes based on the volume of left ventricular ejection fraction (LVEF): heart failure
with preserved ejection fraction (HFpEF), heart failure with mildly reduced ejection fraction
(HFmrEF), or heart failure with reduced ejection fraction (HFrEF) [78]. Mizuho et al. [79]
demonstrated that the XBP1s level was decreased in the impaired diastolic dysfunction
group in contrast with that in the normal group via proteome analysis of human autopsy
myocardium. XBP1s is a powerful transcriptional factor that acts via a range of transcrip-
tional targets involved in several key cellular stress responses [80].

Recent research has shown that XBP1s can trigger promoter activity of brain natriuretic
peptides (BNPs) by binding to an AP1/CRE-like element in the BNP promoter region. BNPs
perform a momentous role in maintaining fluid homeostasis and cardiovascular growth.
Thus, the induction of BNPs by XBP1s is indirectly conducive to the amelioration of cardiac
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dysfunction under inducible conditions [60]. Gabriele et al. [81] demonstrated that with a
decrease in the abundance of XBP1s in mice with HFpEF, both diastolic dysfunction and
symptoms of heart failure were reduced, suggesting that XBP1s in cardiomyocytes consider-
ably drives HFpEF pathogenesis. Meanwhile, it was discovered that both experimental and
clinical HFpEF exhibited an increase in the abundance of iNOS present in the myocardium.
An increase in nitrosative stress and iNOS activity may enhance the S-nitrosylation of
cysteine residues across numerous proteins, which disrupts their function. Furthermore,
iNOS is responsible for modulating the activity of IRE1α by enhancing S-nitrosylation of
IRE1, which ultimately leads to a decrease in the synthesis of XBP1s in cardiac myocytes.
Past studies have demonstrated that metabolic derangement is decisive in the pathophys-
iological development of HFpEF based on both clinical trials and preclinical models. In
the meantime, in mice, the expression of XBP1s, which is suppressed in HFpEF cardiac
myocytes, attenuates the accumulation of lipids in the myocardium. Gabriele et al. also
established that FOXO1 (Forkhead box protein O1) mediates lipid aggregation in cardiac
myocytes, and up-modulation of XBP1s stimulates FOXO1 proteasomal degradation, as
well as ubiquitination. An increased abundance and activity of FOXO1 contribute to in-
creased myocardial lipid accumulation and cardiac metabolic modifications in HFpEF. The
study also pointed out that in cardiac myocytes, the E3 ubiquitin ligase STIP1 homology
and U-Box-containing protein 1 (STUB1), which is also a direct transcription target of
XBP1s, performs an indispensable function in the degradation of FOXO1 that is dependent
on XBP1s [38] (Figure 5). Doxorubicin is often limited in clinical application owing to its
cardiotoxicity. Research has shown that doxorubicin can disturb ER function by generating
ROS and disturbing Ca2+ homeostasis. XBP1s overexpression is involved in the attenuation
of caspase-12 cleavage and doxorubicin-induced cardiomyocyte death [82]. Collectively, it
appears that XBP1s has an integral function in the initiation and progression of heart failure.
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Figure 5. Schematic representation of the critical molecular mechanism of XBP1s in heart failure.
Endoplasmic reticulum stress occurs in normal cardiomyocytes, XBP1s promotes the transcription
of E3 ubiquitin ligase STUB1 by binding to the UPRE domain and promotes the ubiquitinated
proteasomal degradation of FOXO1, thereby inhibiting the progression of heart failure. Under
long-term pathological stimulation, endoplasmic reticulum stress is inhibited, XBP1 splicing is
reduced, and FOXO1 is increased, promoting the progression of heart failure. FOXO1: Forkhead box
protein O1, STUB1: STIP1 homology and U−Box−containing protein 1, ER: endoplasmic reticulum,
UPR: unfolded protein response.
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8. Therapeutic Potential of XBP1s in Cardiovascular Diseases

Pathophysiological factors occurring in CVDs, such as metabolic disarrangements,
hypoxia, and inflammation, can impose high demands on the ER protein-folding machin-
ery, thereby triggering ER stress. In turn, ER stress induces inflammation and oxidative
stress, the maladaptive UPR induces apoptosis and disruption of communication between
the ER and other organelles in cardiomyocytes, and endothelial cells can exert negative
effects on CVDs. Given the vital role of ER stress in the pathogenesis of CVDs, strategies
targeting ER stress, particularly the maladaptive UPR, are emerging as therapeutic avenues
for disease intervention. Many classic drugs used for the treatment of CVDs, such as
statins, can modulate ER stress, although these might induce severe adverse effects. To
this end, selectively and efficiently targeting ER stress holds promise for preventing and
treating CVDs. As one of the core proteins of ERS and UPR, XBP1s plays a crucial role in
cardiovascular diseases. It has been shown that increasing the levels of XBP1s by the use of
AAVs is protective in various experimental disease settings. Hence, targeting XBP1s offers
a promising treatment strategy for cardiovascular diseases. With the emergence of more
mechanistic data, regulation of this pathway through its inhibition or activation, depending
on the condition of the disease, may help achieve different clinical benefits.

Ginkgolide K significantly diminished the infarction size and improved heart function
with decreased cardiomyocytes apoptosis in vivo models. In the meantime, activation
of the IRE1α arm of the UPR, as shown by the increased level of phosphorylated IRE1α
and XBP1 mRNA splicing, contributes to the elevation in the expression of XBP1s protein,
which is a transcription factor for target genes, including GRP78 [83]. Studies have proven
that restoration of XBP1s levels in failing cardiomyocytes results in diminished heart
dysfunction and amelioration of the heart failure phenotype [81].

Imeglimin hydrochloride is a first-in-class glimin for treating type 2 diabetes [84]. In a
HFpEF model, imeglimin inhibited iNOS upmodulation while simultaneously restoring
the XBP1s and STUB1 expression, which is a significant contributor to the degradation of
FoxO1, an immediate target of XBP1′s transcriptional activity, located downstream of XBP1s
and is implicated in the formation of HFpEF and the progression of cardiac adipogenesis.
Cardiomyocyte-specific overexpression of XBP1s in HFpEF mice can improve the HFpEF
phenotype. Similarly, imeglimin normalizes the downregulation of IRE1a-XBP1 signaling
concurrently with reducing the phenotype of HFpEF [85].

In recent years, some new agonists or stabilizers of XBP1s have been found and
improved. For example, synthesized (Z)-N-dihydrocoptisine-8-ylidene aromatic amines,
dihydrocoptisine, (±)-8-acetyl dihydrocoptisine of QCA derivatives, and HLJ2 have been
ascertained to show significant activation of XBP1s transcription activity. These new com-
pounds may soon be used in more cardiovascular research and clinical applications [86–88].

9. Conclusions and Future Directions

XBP1s functions as a key mediator of the ER stress response. Recent studies indicate
that XBP1s may have a function in the pathogenic mechanisms that underlie various CVDs,
including VSMC dysfunction, oxidative stress, and inflammation. To conclude, XBP1s is
strongly linked to CVDs and has a role in the onset and progression of CVDs. XBP1s is
a possible treatment targets for CVDs. Nonetheless, the mechanisms of XBP1s in CVDs
have not yet been explored comprehensively. As a consequence, additional experimental
data and clinical samples are required to thoroughly assess the link between XBP1s and
cardiovascular disorders.
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XBP1s Spliced X-box binding protein-1
CVDs Cardiovascular diseases
ERS Endoplasmic reticulum stress
UPR Unfolded protein responses
ERAD ER-associated degradation
IRE1a Inositol-requiring kinase 1
ATF6 Activating transcription factor 6
PERK Protein kinase-like ER kinase
eIF2α Eukaryotic translation initiation factor 2α
ATF4 Activating transcription factor 4
CREB cAMP-response element-binding
bZIP Basic-region leucine zipper
SMCs Smooth muscle cells
VEGF Vascular endothelial cell growth factor
PDGF Platelet-derived growth factor
bFGF Basic fibroblast growth factor
CNN1 Calponin h1
COL4A1 Collagen alpha 1
VPCs Vascular progenitor cells
TG2 Transglutaminase 2
TLR Toll-like receptors
ROS Reactive oxygen species
RAAS Renin-angiotensin-aldosterone system
HBP Hexosamine biosynthetic pathway
Gfat1 Glutamine: fructose-6-phosphate amidotransferase 1
mTOR Mechanistic target of rapamycin
FKBP11 FK506-binding protein 11
NOX4 NADPH oxidase 4
Sig-1R Sigma-1receptor
HFpEF Heart failure with preserved ejection fraction
HFmrEF Heart failure with mildly reduced ejection fraction
HFrEF Heart failure with reduced ejection fraction
LVEF Left ventricular ejection fraction
BNP Brain natriuretic peptide
FOXO1 Forkhead box protein O1
STUB1 STIP1 homology and U-Box-containing protein 1
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