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Abstract: Arrhythmogenic right ventricular cardiomyopathy (ARVC) can lead to sudden cardiac
death and life-threatening heart failure. Due to its high fatality rate and limited therapies, the
pathogenesis and diagnosis biomarker of ARVC needs to be explored urgently. This study aimed
to explore the lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network in ARVC.
The mRNA and lncRNA expression datasets obtained from the Gene Expression Omnibus (GEO)
database were used to analyze differentially expressed mRNA (DEM) and lncRNA (DElnc) between
ARVC and non-failing controls. Differentially expressed miRNAs (DEmiRs) were obtained from the
previous profiling work. Using starBase to predict targets of DEmiRs and intersecting with DEM
and DElnc, a ceRNA network of lncRNA-miRNA-mRNA was constructed. The DEM and DElnc
were validated by real-time quantitative PCR in human heart tissue. Protein–protein interaction
network and weighted gene co-expression network analyses were used to identify hub genes. A
logistic regression model for ARVC diagnostic prediction was established with the hub genes and
their ceRNA pairs in the network. A total of 448 DEMs (282 upregulated and 166 downregulated)
were identified, mainly enriched in extracellular matrix and fibrosis-related GO terms and KEGG
pathways, such as extracellular matrix organization and collagen fibril organization. Four mRNAs
and two lncRNAs, including COL1A1, COL5A1, FBN1, BGN, XIST, and LINC00173 identified through
the ceRNA network, were validated by real-time quantitative PCR in human heart tissue and used to
construct a logistic regression model. Good ARVC diagnostic prediction performance for the model
was shown in both the training set and the validation set. The potential lncRNA-miRNA-mRNA
regulatory network and logistic regression model established in our study may provide promising
diagnostic methods for ARVC.

Keywords: arrhythmogenic right ventricular cardiomyopathy; lncRNA-miRNA-mRNA network;
ceRNA; diagnostic prediction model

1. Introduction

Arrhythmogenic right ventricular cardiomyopathy (ARVC) (OMIM identifier #609040),
discovered in the 1970s, is a hereditary cardiomyopathy that can lead to sudden cardiac
death and life-threatening heart failure [1]. It is mainly characterized by local or global
enlargement of the right ventricle, a fibrofatty infiltration of the right ventricle which
replaces the myocardium and ventricular late potential [2]. Due to the large variability in the
clinical manifestations of ARVC, its incomplete penetrance among relatives, and variable
gene mutations (more than 25 have been described), the early diagnosis and identification of
ARVC is very difficult [1,3,4]. At present, the classical diagnostic methods of ARVC include
electrocardiogram, imaging examinations, and pathological diagnosis. Electrocardiograms
and imaging examinations can only provide indirect evidence. Pathological examination,
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as the gold standard, can confirm a diagnosis, but most of the tissues are obtained from
end-stage patients [2,3]. Moreover, our group previously proposed the clinical classification
of ARVC according to the clinical phenotype and found several biomarkers of ARVC that
are more conducive to accurate diagnosis and further treatment [5–7]. However, all these
methods depend on clinical phenotypes and criteria, which are variable. Therefore, the
exploration of the genetic diagnosis method for ARVC is clinically significant.

The competing endogenous RNA (ceRNA), including but not limited to mRNA, long
non-coding RNA (lncRNA), and micro-RNA (miRNA), represent a novel gene regulatory
model [8]. In brief, miRNA can target mRNA, causing mRNA degradation or inhibiting
its translation, and lncRNA can bind miRNA to act as a sponge [9]. Therefore, lncRNA
and mRNA competitively bind miRNA to regulate gene expression. This provides a new
perspective for researchers to study the transcriptome and helps to explain some biological
phenomena in a more comprehensive and in-depth way. miRNA is a non-coding RNA
composed of about 22 nucleotides, and lncRNA is a non-coding RNA with a length greater
than 200 nucleotides [9]. Increasing evidence suggests that miRNA and lncRNA are both
essential in cardiovascular diseases, including ARVC [10–12]. To date, there have been
five miRNA profiling studies in ARVC-based human samples: two in plasma, two in right
ventricular myocardial tissue, and one in pericardial fluid [13–17]. Several circulating
miRNAs, including miR-320a, miR-144-3p, miR-145-5p, miR-185-5p, and miR-494, were
identified in the two microarray analyses in plasma and are potential diagnostic biomarkers
for ARVC [14,15]. Tissue-based miRNA profiling of ARVC identified several miRNAs that
are associated with the Wnt/β-catenin pathway and Hippo pathway, including miR-21-
5p, miR-135b, miR-122-5p, miR-142-3p, miR-182-5p, miR-183-5p, miR-133a-3p, and miR-
133b [13,16]. For lncRNA and mRNA profiling studies in ARVC, for example, a previous study
used right ventricular and left ventricular myocardium of non-failing hearts and ARVC hearts,
comparing them to explore the key mRNA and lncRNA for ARVC pathogenesis [18]. However,
no systemic and detailed analysis of the lncRNA-miRNA-mRNA regulatory network has
been conducted to improve the diagnostic method of ARVC.

In this study, we analyzed the differentially expressed mRNAs, lncRNAs, and miRNAs
in ARVC samples compared with the non-failing group, trying to elucidate the potential
lncRNA-miRNA-mRNA ceRNA regulatory network of ARVC and identify its diagnostic role.

2. Materials and Methods
2.1. Dataset Filtering

Expression profiles including mRNA, miRNA, and lncRNA were searched in the
GEO database using the keyword “ARVC OR AC” first. Only the datasets whose samples
were collected from heart tissue were adopted. Due to the scarcity of ARVC samples,
only 3 expression profiles (GSE107475, GSE107156, GSE29819) could be used in this study,
which included both mRNA and lncRNA expression data. For miRNA expression data,
papers about “miRNA and ARVC” were searched in PubMed; 2 related articles whose
samples were from heart tissue were obtained [13,16]. Through evaluating the type of
high-throughput technology, one recently published paper was adopted for the miRNA
dataset [16]. The GSE107475 and GSE107156 datasets consisted of 9 heart samples from
ARVC patients and 5 samples from non-failure hearts as controls, respectively, which were
detected by the GPL16791 Illumina HiSeq 2500 platform. The GSE29819 datasets consisted
of 6 right ventricular samples of ARVC patients and 6 right ventricular samples of non-
failure control hearts, which were detected by the GPL570 [HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array platform. Considering that ARVC mainly involves
the right ventricle, only cardiac tissue samples obtained from the right ventricle were
included in the current study.

2.2. Differential Gene Expression Analysis

Differentially expressed mRNA (DEM) and differentially expressed lncRNA (DElnc)
were analyzed in GSE107475 and GSE107156 by limma R package. p-value < 0.05 and
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|log2FC| > 1 were considered as the differentially expressed criteria. For mRNA and
lncRNA separation, the human genome reference sequence (Homo_sapiens. GRCh38.104.
gtf) was obtained from Ensembl genome browser 104 (https://uswest.ensembl.org/index.
html (accessed on 1 November 2021)) to extract “gene_id”, “gene_name”, and “gene_biotype”.
If the biotype is “protein_coding”, the term is considered to be mRNA. If the biotype is
“lncRNA”, the term is considered to be lncRNA. The volcano plots and the heatmaps were
used to visualize DEMs and DElncs by ggpubr R package and ComplexHeatmap R package.
Differentially expressed miRNAs (DEmiRs) were obtained from the study which used the
cut-offs of log2FC > 1 and <−1, respectively, and adjusted p-value < 0.05.

2.3. GO and KEGG Pathway Enrichment Analyses

Gene ontology (GO) analysis, which includes biological process, cellular component
and molecular function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis were performed by using clusterProfiler R package to determine the
biological functions of the DEMs [19]. GO enrichment terms with p-value < 0.05 and
q-value < 0.05 were considered as statistically significant. Cut-offs of KEGG enrichment
terms were p-value < 0.05 and q-value < 0.05.

2.4. Protein–Protein Interaction Network Construction

The proteins association network of DEMs was constructed by STRING (http://www.
string-db.org (accessed on 15 November 2021)). Cytoscape (v3.7.2) was used to visualize
the network. Molecular Complex Detection (MCODE) (version 1.6.1), a plugin of Cytoscape
was chosen to identify modules in the network. The modules with MCODE score ≥4.0
and nodes ≥6 were considered to be significant. Genes in all the significant modules were
regarded as the hub genes.

2.5. Weighted Gene Co-Expression Network Analysis (WGCNA)

To perform WGCNA, 3829 genes in differential expression analysis with p < 0.05 were
selected. First, the adjacency matrix was calculated for the selected genes, and then converted
to a topological overlap matrix to reduce noise and false correlation. The gene modules were
identified according to the topological overlap matrix by the dynamic shearing method. After
that, the eigenvector value of each module was calculated in turn, then cluster analysis on
the modules was performed, and the closer modules were merged into a new module. Key
modules were identified by setting the soft thresholding power of 9, cut height of 0.25, and
minimal module size of 30. Absolute values of gene significance (GS) > 0.6 and module
membership (MM) > 0.9 were considered to define the hub genes in key modules.

2.6. lncRNA-miRNA-mRNA Network Construction

DEMs, DElncs, and DEmiRs were used to construct lncRNA-miRNA-mRNA net-
work. First, we obtained miRNA-mRNA and miRNA-lncRNA pairs by predicting DEmiR
targets. StarBase (https://rnasysu.com/encori/ (accessed on 15 November 2021)) was
used to predict targeted mRNA and lncRNA [20,21]. In starBase, CLIP-Data ≥ 3 and
programNum ≥ 2 were selected to obtain refined results with high stringency. Second,
the predicted mRNA and lncRNA were intersected with DEMs and DElncs. Considering
that the interacting miRNA and mRNA expression are negatively correlated, up-regulated
DEMs were intersected with the predicted mRNA of down-regulated DEmiRs, and the
down-regulated DEMs were intersected with the predicted mRNA of up-regulated DEmiRs.
Finally, DEmiR-DEM and DEmiR-DElnc pairs were put into Cytoscape to construct and
visualize the network.

2.7. Logistic Regression Model

Logistic regression is a generalized linear regression analysis model that can predict
the probability of disease occurrence based on risk factors, so it can be used to construct a
diagnostic prediction model. Here, we used the disease group and the healthy group as

https://uswest.ensembl.org/index.html
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the binary dependent variable, and the gene expression as the continuous independent
variable. Through logistic regression analysis, the weights of key mRNA and lncRNA were
obtained, which can be used to predict ARVC disease diagnosis. The glm function in the
stats R package and the crPlots function in the car R package were used to construct the
logistic regression model. A training set (n = 14, 9 ARVC and 5 controls) and a validation
set (n = 12, 6 ARVC and 6 controls) were used to establish and testify this model and their
ROC curves were plotted by pROC R package.

2.8. Real-Time Quantitative PCR (qPCR)

For the qPCR assay, total mRNA was extracted from human right ventricular heart
tissue of ARVC patients or donors using TRIzol reagent (Invitrogen, Waltham, MA, USA).
The informed consent for research use of donor and explanted ARVC hearts was obtained
before harvesting donor hearts and heart transplantation. The total mRNA was quantified
using a Nanodrop 2000 (Thermo Fisher Scientific, Madison, WI, USA) and 1000 ng RNA was
reverse-transcribed into cDNA using PrimeScript RT Master Mix (Takara, RR036A, Tokyo,
Japan). SYBR Green PCR Master Mix (Applied Biosystems, Waltham, MA, USA) was used to
quantify the PCR products by Vii7 Real-Time PCR System (Applied Biosystems, Waltham,
MA, USA). The primers used in the experiment are provided in Supplementary Table S2.

2.9. Dual-Luciferase Reporter Assay

Dual-luciferase reporter was obtained using a Dual-luciferase reporter assay system
kit (Promega, Madison, WI, USA). Briefly, AC16 cells (a human ventricular cardiomyocyte
cell line) were co-transfected with human key gene promoter reporter plasmid (pGL3-
NDRG2-Luc) plus the Renilla luciferase reporter plasmid (pRL-TK) with Lipofectamine
2000 (Invitrogen, Camarillo, CA, USA) following the manufacturer’s instructions. The
reporter luciferase activities were determined as the results of reporter activities divided
by Renilla activities and normalized. All the transfection experiments were performed in
triplicate and repeated at least three times independently.

2.10. Statistics

All values are presented as mean ± SEM. Two-group comparisons were performed with
an unpaired, 2-tailed Student’s t-test. A value of p < 0.05 was considered statistically significant.

3. Results
3.1. Differentially Expressed mRNAs, lncRNAs, and miRNAs in ARVC

Through comprehensive search and screening, a total of 27 ARVCs and 17 healthy
controls were included in this study (Table 1). GSE107475 and GSE107156 were combined
and separated into an mRNA and an lncRNA dataset. Then we carried out normalization
to reduce technical errors between samples from the mRNA expression dataset (Supple-
mentary Figure S1A,B) and the lncRNA expression dataset (Supplementary Figure S1D,E).
After normalization, principal component analysis was performed; the two groups of
samples have a good degree of discrimination in both the mRNA dataset (Supplementary
Figure S1C) and the lncRNA dataset (Supplementary Figure S1F). By differential gene
expression analysis, 448 DEMs between ARVC samples and the control samples, including
282 up-regulated genes and 166 down-regulated genes, were identified from the mRNA
dataset (Figure 1A,B). A total of 139 DElncs between ARVC samples and the control sam-
ples, including 79 up-regulated lncRNAs and 60 down-regulated lncRNAs, were identified
in the lncRNA dataset (Figure 1C,D). Twenty-one DEmiRs between ARVC samples and
the control samples, comprising 8 up-regulated miRNAs and 13 down-regulated miRNAs
were obtained from the previous study [16] (Supplementary Table S1).
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Table 1. Summary of the expression datasets involved in our study.

Study RNA
Types Sample Types Total

Number Control-RV ARVC-RV Others Platform GSE
Number

Jia Li et al.
(2020) [22]

mRNA myocardial tissue 5 5 0 none

GPL16791

GSE107156
mRNA myocardial tissue 9 0 9 none GSE107475
lncRNA myocardial tissue 5 5 0 none GSE107156
lncRNA myocardial tissue 9 0 9 none GSE107475

Gaertner A et al.
(2012) [18] mRNA myocardial tissue 38 6 6

6 ARVC-LV,
7 DCM-LV, 7
DCM-RV, 6

NF-LV

GPL570 GSE29819

Maria Bueno
Marinas et al.

(2020) [16]
miRNA myocardial tissue 18 6 12 none NA NA
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Figure 1. Differentially expressed mRNAs (DEMs) and lncRNAs (DElnc) between ARVC and non-
failing control. (A,B) Volcano plot of DEMs (A) and heatmap of top 50 DEMs (B) from GSE107475
and GSE107156. (166 genes down-regulated, 282 genes up-regulated). (C,D) Volcano plot of DElncs
(C) and heatmap of top 50 DElncs (D) from GSE107475 and GSE107156. (60 lncRNAs down-regulated,
79 lncRNAs up-regulated). FC, Fold change.
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3.2. Functional Enrichment Analysis of the DEMs

To explore the functional enrichment of the 448 DEMs, GO enrichment analysis and
KEGG pathway enrichment analysis were performed. The top 20 GO terms including
biological process, cellular component, molecular function, and KEGG pathways are shown
in Figure 2. Biological process GO terms are most enriched in extracellular matrix and
fibrosis-related terms such as extracellular matrix organization and collagen fibril organiza-
tion (Figure 2A). Meanwhile, the collagen-containing extracellular matrix ranks first as the
most significant in cellular component GO terms (Figure 2B), and the extracellular matrix
structural constituent ranks first in molecular function GO terms (Figure 2C). According to
KEGG analysis, DEMs are most related to protein digestion and absorption, AGE−RAGE
signaling pathway in diabetic complications and ECM−receptor interaction (Figure 2D).
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Figure 2. Functional enrichment analysis of DEMs. Gene Ontology (GO) (A–C), including biological
process (A), cellular component (B), molecular function (C), and Kyoto Encyclopedia of Genes and
Genomes (KEGG) (D), enrichment analysis of all the DEMs. The top 20 significant terms are shown.

For a better understanding of the most important biological function of the DEMs,
the PPI network was constructed, and two key modules were identified (Figure 3A,B).
The genes in the one module include COL3A1, MMP2, FBN1, FN1, COL5A1, BGN, SPARC,
FMOD, ELN, THY1, IGF1, TGFB3, TGFB2, POSTN, COL5A2, COL16A1, COL12A1, COL11A1,
ADAMTS2, COL1A1, COL1A2, COL14A1, COL8A1, which are associated with the extra-
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cellular matrix organization and collagen metabolic process (Figure 3C); the genes in the
other module include NRXN2, GRIN2B, SCN1A, SHANK1, SHISA8, GRIA1, CNR1, GRIA2,
GRIK5, which are related with the ionotropic glutamate receptor signaling pathway and
regulation of cation channel activity (Figure 3D).
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Figure 3. The protein–protein interaction (PPI) network of the DEMs. (A,B) Top modules identified
through MCODE in Cytoscape software (v3.7.2). The size of the circle is positively correlated with the
MCODE score and red represent the highest MCODE score while blue represent the lowest MCODE
score. (C,D) GO enrichment analysis of the hub genes of the PPI network in (A) (C) and (B) (D).
logFC, log2 fold change.

3.3. Weighted Gene Co-Expression Network Analysis

To further identify hub genes most associated with ARVC, we performed WGCNA
between ARVC and control samples. We selected 3829 genes with p < 0.05 from the differential
expression analysis to cover enough genes for WGCNA. According to the principle of a scale-
free network, the weighted value of the correlation coefficient was calculated and the best beta
value was 9 (Supplementary Figure S2A,B). A total of 11 modules were identified, including
10 meaningful modules and one grey module with non-clustering DEMs (Figure 4A). Correla-
tions and adjacency relations of modules were calculated, which show good discrimination of
the modules by WGCNA (Figure 4B,C). To identify the most important module, we calculated
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the correlation between the modules and the disease phenotypes. The brown module and
the yellow module are the most positively correlated modules with ARVC, meanwhile, the
turquoise module is the most negative one (Figure 4D). There are 1550, 548, and 398 genes in
the turquoise, brown, and yellow modules, respectively. The top genes of the three modules
were selected according to the gene significance and module membership value (Figure 4E–G).
Then we took the intersection of the hub gene obtained by PPI and WGCNA; finally, 11 hub
genes including SCN1A, FBN1, COL14A1, COL12A1, COL16A1, COL1A1, COL5A1, NRXN2,
COL8A1, ADAMTS2, and BGN were identified (Figure 4H–J).
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Figure 4. Identification of crucial modules and hub genes associated with ARVC by WGCNA.
(A) Dendrogram of the DEMs clustered according to the topological overlap matrix. (B) Network
heatmap of randomly selected genes in each module. (C) Eigengene adjacency heatmap of the
10 modules. (D) Heatmap showing the relationship between module eigengenes and clinical condi-
tions. The correlation coefficient and p-value are shown in the grid. Red means a positive correlation,
and blue indicates a negative correlation. (E–G) Correlation plots of module membership and gene
significance of genes in the turquoise (E), brown (F), and yellow module (G). (H–J) Selected genes
in WGCNA modules, including turquoise (H), brown (I), yellow (J) module, were intersected with
selected genes in PPI network to identified hub genes, shown in Venn plots.
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3.4. The Potential lncRNA-miRNA-mRNA Regulatory Network

Previous studies showed miRNAs play important roles in ARVC disease progres-
sion and meanwhile the ceRNA mechanism is crucial in various cardiovascular diseases.
Therefore, we used starBase and lncRNABase to predict the downstream target mRNAs
and lncRNAs of DEmiRs, then constructed an lncRNA-miRNA-mRNA ceRNA network
of the intersection between predicted targets and differentially expressed genes. First, an
miRNA-mRNA network, including 12 down-regulated miRNAs targeting 17 up-regulated
mRNAs and eight up-regulated miRNAs targeting 55 down-regulated mRNAs was estab-
lished (Figure 5A). Then, miRNA and lncRNA pairs were added and the ceRNA network
of lncRNA-miRNA-mRNA was obtained (Figure 5B).
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represents down-regulation. (B) The potential ceRNA network of lncRNA-miRNA-mRNA in ARVC.

There are three lncRNAs in the network that are XIST, LINC00173, and FAM201A. No-
tably, XIST is the most important lncRNA of the three, which regulates all the
10 miRNAs in the network. However, the other two lncRNAs only interact with one
miRNA. To further understand the biological significance of the ceRNA network, we
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performed GO and KEGG enrichment analyses of the differentially expressed genes in
the ceRNA network, which mainly enriched in the extracellular matrix organization and
PI3K−Akt signaling pathway (Figure 6). Considering both the ceRNA network and the
hub genes analyzed by PPI and WGCNA, four mRNAs (FBN1, COL1A1, COL5A1, BGN)
and two lncRNAs (XIST, LINC00173) were identified, and we speculated that the six nodes
were potential biomarkers associated with ARVC.
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3.5. Logistic Regression Model for Prediction of ARVC

In order to confirm the diagnostic role of the above biomarkers in ARVC, we con-
structed logistic models in GSE107475, GSE107156, and GSE29819 datasets based on these
four mRNAs (FBN1, COL1A1, COL5A1, BGN) and two lncRNAs (XIST, LINC00173). First,
these RNA identified through the ceRNA network were validated by real-time quantitative
PCR in human heart tissue; all of them are up-regulated in ARVC-RV (Figure 7A–F). And
miRNA-mRNA regulation identified by bioinformatics was validated by dual luciferase
reporter assay in AC16 cells (Figure 7G–K). The component residual plot confirms the linear
correlation between the dependent variables and independent variables, indicating that the
logistic regression model is suitable for the datasets (Figure 8A,B). Due to the sample size
not being large enough to apply five-fold cross-validation, we utilized one training set and
one validation set to assess the reliability of the established model. The AUC value of the
module in the training set is 0.921, which shows that the diagnosis prediction model is very
effective (Figure 8C). Moreover, the AUC value in the external validation set is 0.806 and
there is no difference between the two datasets (p = 0.443) (Figure 8C). In conclusion, the
logistic regression model established based on the four mRNAs and the two lncRNAs could
effectively distinguish whether the sample type is ARVC or not, and XIST, LINC00173,
FBN1, COL1A1, COL5A1, and BGN were potential targets for ARVC study.
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lncRNA are validated by real-time quantitative PCR in the right ventricular (RV) of human ARVC 
(ARVC-RV) and non-failing donor heart (N-RV). (A–D) mRNAs including COL1A1, COL5A1, BGN, 
and FBN1 identified from the ceRNA network are up-regulated in ARVC-RV; relative mRNA fold 
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Figure 7. Verification of key gene expression and miRNA-mRNA regulation. (A–F) Hub mRNA and
lncRNA are validated by real-time quantitative PCR in the right ventricular (RV) of human ARVC
(ARVC-RV) and non-failing donor heart (N-RV). (A–D) mRNAs including COL1A1, COL5A1, BGN,
and FBN1 identified from the ceRNA network are up-regulated in ARVC-RV; relative mRNA fold
changes are normalized by ACTB (n = 6 per group). (E,F) lncRNAs, including XIST and LINC00173
identified from the ceRNA network, are up-regulated in ARVC-RV; relative lncRNA fold changes
are normalized by ACTB (n = 6 per group). (G–K) Dual-luciferase reporter assay in AC16 cells to
validate miRNA-mRNA regulation identified by bioinformatics (n = 3 per group). Data are presented
as the mean ±SEM, 2-tailed Student t-test used, * means p < 0.05.
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opathy such as DCM, so as to discover the unique transcriptomic characteristics of ARVC. 
In order to improve the sensitivity of diagnosis, we did not use the transcriptome data of 
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plot of four mRNA (FBN1, COL1A1, COL5A1, BGN) (A) and two lncRNA (XIST, LINC00173) (B) in
the established model. Linear correlation between independent variables and dependent variables
indicated that it is suitable to adopt logistic regression. (C) The ROC curve of the diagnostic prediction
performance of the established model in the training dataset and the test dataset. AUC, the area
under the curve.

4. Discussion

Although there has been a more comprehensive understanding of the pathology,
genomics, and diagnostic methods of ARVC in the past two decades, the pathogenesis
of ARVC is still unclear [23]. In the research of ARVC, genetic research is particularly
prominent. At least 25 gene mutations have been found to be related to ARVC, such as DSP,
PKP2, and DSG2 which are encoding related proteins that compose desmosomes, and DES
which encodes the desmin intermediate filament protein [7,24]. Due to the large number of
mutated genes, the genetic heterogeneity between individuals is significant. Diagnosis by
relying solely on mutated genes has high specificity but low sensitivity. Therefore, such a
method is not yet reliable in clinical practice. From the perspective of transcriptomics, next-
generation sequencing has expanded the disease beyond the classic desmosomal genes.
In addition to comparing ARVC with non-failing donor hearts to identify differentially
expressed genes, the researchers also compared ARVC with other cardiomyopathy such
as DCM, so as to discover the unique transcriptomic characteristics of ARVC. In order
to improve the sensitivity of diagnosis, we did not use the transcriptome data of DCM
patients for analysis, but compared the mRNA, lncRNA, and miRNA of ARVC and non-
failing donor heart to explore new diagnostic biomarkers. The researchers compared the
ACM samples of different pathogenic variants, and there are differences between these
groups [25]. However, due to the insufficient number of bulk RNA-seq samples and limited
genetic information that we currently have, we are currently unable to perform accurately
subgroup analysis, but fortunately from the existing gene mutation data, samples of these
data sets are not single gene mutation, they are all mixed, and have certain comparability.
Through GO enrichment analysis, we found that these differentially expressed mRNAs
are mainly enriched in terms such as extracellular matrix organization, collagen fibril
organization, response to transforming growth factor beta, and SMAD protein signal
transduction. Myocardial fibrofatty replacement is one of the main characteristics of ARVC.
Fibrosis is a common feature of most cardiomyopathies, leading to systolic and diastolic
dysfunction and an increased risk of ventricular arrhythmias [26]. Camilla Schinner et al.
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using gene set enrichment analyses revealed an upregulation of genes associated with
TGF-β signaling in both 9-week-old DSG2 mutant mice as well as patients with ACM [27].
Notably, TGFβ3, one of the hub genes identified by us, which belong to the term “response
to transforming growth factor beta”, is a non-desmosomal gene recognized in ARVC and its
mutation is associated with ARVC pathogenesis [28]. Smad2/3 plays a signal transduction
role in the downstream of TGF-β. TGF-β induces the expression of α-smooth muscle
actin in cardiac fibroblasts, promotes the transformation of fibroblasts into myofibroblasts,
and stimulates myofibroblasts to secrete extracellular matrix such as collagen [29]. Based
on the above evidence, we speculate that the TGF-β/SMAD signaling pathway plays an
important role in the process of ARVC fibrosis. Targeted intervention for this pathway in
the future may reduce the degree of fibrosis of ARVC. Meanwhile, in addition to the classic
involvement of the right ventricle, arrhythmogenic cardiomyopathy can also affect the left
ventricle, resulting in pathological manifestations of fibrous fat replacing myocardial cells.
Therefore, anti-fibrotic therapy is beneficial for both. Further research is needed on the left
ventricular ceRNA regulatory network in ACM [30].

Combining DElnc and DEmiR with DEM, we constructed an lncRNA-miRNA-mRNA
regulatory network in this study, and finally a total of four mRNAs (FBN1, COL1A1,
COL5A1, BGN) and two lncRNAs (XIST, LINC00173) were identified. Through logistic
regression analysis, these genes showed high sensitivity and specificity for the diagnostic
prediction of ARVC. It further shows the potential role of the ceRNA network in the
diagnosis of ARVC. These genes are essential for cardiovascular disease but have not been
studied in ARVC. Among these mRNAs and lncRNAs, FBN1 (fibrillin-1) mutations are
more common in patients with aortic dissection in Marfan syndrome [31]. Fibrillin-1 is
one of the important components of the extracellular matrix. When there are frameshift
mutations or missense mutations of its coding gene, misfolding of fibrillin-1 will cause
structural disorder of the extracellular matrix [32]. A multi-level transcriptomics (mRNA,
lncRNA, miRNA) sequencing of left ventricular samples from patients with end-stage
heart failure identified COL1A1 as a biomarker for the prognosis of heart failure, and it
was also verified at the plasma level [33]. COL5A1, encoding type V collagen, although
it does not account for a large proportion of fibrous scars formed after heart injury, plays
an important role in regulating the size of fibrous scars [34]. Experiments in mice show
that knocking out Col5a1 increases the scar area after myocardial infarction [34]. Biglycan
(BGN) is a key member of the leucine-rich small proteoglycan family and an important
part of the extracellular matrix. A previous work analyzed a variety of human solid tumor
transcriptome data, in which BGN was identified as a potential diagnostic and prognostic
biomarker [35]. XIST is related to X chromosome silencing [36]. Bettina Heidecker et al.
showed that the expression of XIST is elevated in patients with new-onset heart failure [37].
LINC00173 promotes the proliferation and migration of vascular endothelial cells, which
is related to the angiogenesis and tumorigenesis of lung squamous cell carcinoma [38].
Although we validated the above results at the RNA level, we still lack protein-level
validation. In the future, we can verify the trend of mRNA changes at the protein level. The
above genes play a crucial role in cardiovascular disease, demonstrating their importance.
Secondly, these genes are mainly associated with extracellular matrix and fibrosis, further
demonstrating the importance of the ARVC fibrosis mechanism.

In our work, although the miRNAs were not used to construct a diagnostic prediction
model, they are key nodes connecting mRNAs and lncRNAs in the ceRNA network. In
the network, hsa-miR-21-5p, hsa-miR-144-3p, hsa-miR-29b-3p, and hsa-miR-10b-5p are
up-regulated miRNAs; hsa-miR-320a, hsa-miR-494-3p, hsa-let-7b-5p, hsa-miR-149-5p, hsa-
miR-122-5p, and hsa-miR-182-5p are down-regulated miRNAs. Among these miRNAs,
miR-21-5p is also found to up-regulate in ARVC right ventricular tissue in another data
set [13]. Conversely, miRNA profiling in the pericardial fluid of ARVC and healthy controls
identified miR-21-5p down-regulated [17]. We speculate that the possible reason is that
miR-21 has cell expression specificity. In addition, miR-320a, miR-144-3p, and miR-494 are
differentially expressed in plasma of ARVC patients [14,15]. Cardiac mesenchymal stromal
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cells were shown to be the main source of fat cells in ARVC [39]. Johannes Rainer et al.
profiled coding and non-coding transcriptome in human cardiac stromal cells from ARVC
patients and healthy controls, and they identified miR-29b-3p significantly up-regulated,
which potential contributes to the pathogenesis and phenotype maintenance of ARVC [40].
miRNAs in both tissue and plasma are closely related to ARVC, further underlining the
importance of the ceRNA network in ARVC. However, the functions of some miRNA that
we identified have not been clarified in ARVC, and we found in our ceRNA network that
there are some common regulatory genes between them such as DDAH1, EPHA4, COL1A1,
and ENC1.

These previous studies supported the practical application of this lncRNA-miRNA-
mRNA regulatory network for diagnosis of ARVC. However, there are still some limitations
in our study. First, we have not adopted any miRNA in the network to construct the
diagnostic prediction model. The main reason is that there is currently no sequencing data
for both miRNA, lncRNA, and mRNA of matching samples from patients. Second, there
is a lack of other experimental validation of the differentially expressed RNAs in human
samples or animal models. Third, fibrosis is so important in ARVC that other signals are
covered in kinds of bioinformatic screening methods, and the understanding of ARVC
pathogenesis in this study may be limited. Further investigation will be needed to explore
the ceRNA mechanism in ARVC.

5. Conclusions

In conclusion, we used ARVC transcriptome data to screen and construct an lncRNA-
miRNA-mRNA ceRNA network through bioinformatics methods. XIST, LINC00173, FBN1,
COL1A1, COL5A1, and BGN were identified as key molecules in the network, which
have potential diagnostic value and may be therapeutic targets for ARVC. For these key
molecules, more research is needed to further clarify their role and clinical value in the
pathogenesis of ARVC.
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