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Abstract: Dietary inclusion of fish and fish supplements as a means to improve cancer prognosis
and prevent tumour growth is largely controversial. Long chain omega-3 polyunsaturated fatty
acids (LCn-3 PUFA), eicosapentaenoic acid and docosahexaenoic acid, may modulate the production
of inflammatory eicosanoids, thereby influencing local inflammatory status, which is important in
cancer development. Although in vitro studies have demonstrated inhibition of tumour cell growth
and proliferation by LCn-3 PUFA, results from human studies have been mainly inconsistent. Genes
involved in the desaturation of fatty acids, as well as the genes encoding enzymes responsible for
eicosanoid production, are known to be implicated in tumour development. This review discusses the
current evidence for an interaction between genetic polymorphisms and dietary LCn-3 PUFA in the
risk for breast, prostate and colorectal cancers, in regards to inflammation and eicosanoid synthesis.
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1. Introduction

Cancer is a multifactorial, widely spread, variable and largely non-communicable disease,
affecting populations in all parts of the world. Currently, some of the most significant cancers
throughout the Western world include breast, colorectal and prostate cancers [1]. The role of nutrition
in cancer risk and development is becoming increasingly recognised, particularly in regards to dietary
intake of fresh fruit and vegetables, meat and meat products, and fish or fish oils, which may be
related to their effects on inflammatory processes [2–6]. Intake of animal sources of fat, saturated and
trans-unsaturated fatty acids are associated with all-cause mortality and death due to colorectal, breast
and prostate cancers. On the other hand, plant based oils and fish oils are associated with a decrease in
the risk and death due to the aforementioned cancers [7–9].

The predominant omega-6 (n-6) and omega-3 (n-3) fatty acids (FA) in the typical Western diet
are linoleic acid (LA) (18:2n-6) and alpha-linolenic acid (ALA) (18:3n-3), respectively, known as the
essential fatty acids. Through elongation and desaturation, these FA are converted to longer and
more desaturated FAs via the n-6 and n-3 pathways (Figure 1). However, the conversion of LA and
ALA to longer-chain FAs is limited by the enzymatic capacity of the desaturases, as well as dietary
levels of LA and ALA, which compete for the same enzymes. For example, the conversion of ALA to
eicosapentaenoic acid (EPA) (20:5n-3) ranges from between 0.2% and 21% [10].
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Figure 1. Synthesis of polyunsaturated fatty acids through the n-3 and n-6 pathways. Polyunsaturated
fatty acid elongation from ALA and LA begins with desaturation by the D6D enzyme. Subsequent
elongation and desaturation by the corresponding enzymes (orange) generates longer chain PUFA
such as AA and EPA. n-3 and n-6 PUFA compete for the D6D, E5, D5D and E2 enzymes [11–15]. D5D:
Delta 5 desaturase; D6D: Delta 6 desaturase; E: Elongase.*: Rate limiting step.

Long chain (LC) polyunsaturated fatty acids (PUFA) play a significant role in inflammatory
processes, as they act as precursors for inflammatory mediators called eicosanoids. Eicosanoids are
potent signaling molecules synthesized during inflammation and include leukotrienes, thromboxanes
and prostaglandins [16]. A diverse set of enzymes are responsible for the synthesis of eicosanoids
from PUFA, some of which are outlined in Figure 2. Cyclooxygenases catalyse the formation of
series 2 and series 3 prostaglandins and thromboxanes, while lipoxygenases synthesise lipoxins and
leukotrienes, which are further metabolized by glutathione transferases [16]. Additionally, dietary
EPA and docosahexaenoic acid (DHA) are precursors for mainly anti-inflammatory eicosanoids, while
arachidonic acid (AA) (20:4n-6) is a precursor for mainly pro-inflammatory compounds and is in
competition with EPA for eicosanoid production. Furthermore, the ratio of AA to EPA/DHA in cell
membranes is thought to be informative in regards to inflammatory status. In fact, studies clearly show
lower levels of circulating pro-inflammatory compounds such as cytokines and adhesion molecules
with higher levels of membrane-bound and free EPA and DHA [17–20].

Figure 2. Effects of eicosanoids derived from AA and EPA/DHA. Cyclooxygenases and lipoxygenases
act on AA, EPA and DHA to synthesise a range of different eicosanoids during an inflammatory
response. AA-derived eicosanoids often generate pro-inflammatory compounds that enhance tumour
growth, while EPA/DHA-derived eicosanoids often have anti-inflammatory properties and inhibit
tumour growth [21,22]. FA: fatty acids; AA: arachidonic acid; EPA: eicosapentanoic acid; DHA:
docosahexanoic acid.
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Inflammation is a key event in the development of tumours and is known to promote tumour
growth, angiogenesis and metastasis [23]. For example, the metabolism of AA to pro-inflammatory
eicosanoids is characteristic of some colorectal and breast cancer cells [24–26]. Therefore, dietary LCn-3
PUFA intake is of great interest in the prevention and treatment of these cancers and as agents in
reducing inflammation, although the topic remains largely controversial [9,27–29]. Discrepancies in
both observational and experimental data may arise from multiple sources including: heterogeneity
of cancers; confounding in epidemiological data; environmental contaminants, particularly from
LCn-3 PUFA-rich marine sources; accuracy of dietary intake data; bioavailability; and/or genetic
variation [9,12,30–33]. One challenging aspect in cancer epidemiology is that any factor reducing
cancer risk will usually promote life-expectancy, which in itself is a risk for cancer [34].

It has come to light that efficiency of conversion of LA and ALA to LC PUFA is partially
determined by the genotype of the fatty acid desaturase (FADS) family of genes, which code for the
delta-5 and delta-6 desaturases that catalyse the rate limiting steps of the n-3 and n-6 pathways,
which may therefore impact downstream eicosanoid production [9,14,35–38]. Interestingly, single
nucleotide polymorphisms (SNPs) found in other genes, for example cytochrome c oxidase (COX) and
arachidonate lipoxygenase (ALOX), may also influence levels of eicosanoids produced from EPA and
AA [26,39]. COX and ALOX genes code for the cyclooxygenase and lipoxygenase enzymes, respectively,
and are responsible for generating a range of eicosanoid mediators [16] (Figure 2). Consequently, both
levels of dietary fatty acids and variation at the FADS, COX and ALOX loci may impact inflammatory
processes and carcinogenesis.

There is increasing evidence to support the view that LCn-3 PUFA, specifically EPA and DHA,
inhibit the growth of colorectal, breast and prostate cancer cell lines [27,40–42] and inhibit tumour
growth in animal models [43–45]. Current evidence in humans is less clear and epidemiological data
is largely inconsistent [9,27,28]. As inflammation is a predominant hallmark in many cancers, the
relationship between inflammation and dietary LCn-3 PUFA is of high interest. Furthermore, the
impact of genetic polymorphisms on the production of eicosanoids is important to consider. In this
review, we discuss the interaction between LCn-3 PUFA and genotype, related to eicosanoid production,
which may have an impact on the development and progression of cancers. The genes or family of
genes under consideration include the FADS genes involved in the desaturation of LCn-3 PUFA [46],
the glutathione S-transferase (GST) family of genes involved in oxidative stress and inflammation [47],
and the ALOX and COX genes that generate pro- and anti-inflammatory mediators [48].

2. Methods

Articles utilised in this review were selected using the PubMed and Google Scholar databases. Key
words used in the searches included: eicosanoid/s; polymorphism/s; cancer; dietary; polyunsaturated
fatty acid; omega-3. One of these words must have also been present: prostate OR breast OR
colorectal OR colon OR rectal AND FADS/fatty acid desaturase OR COX/cyclooxygenase OR
ALOX/lipoxygenase OR GST/glutathione transferase. Included articles focused on human studies
only. Exclusion criteria were: review articles; articles in any language other than English; articles older
than 1990; articles focused on another disease other than breast, prostate or colorectal cancer; and
articles lacking data on diet specific to PUFA or fish. Following searches of combinations of the above
keywords, a total number of 417 articles were found. The titles of these 417 articles were read and
after applying the exclusion criteria, 56 articles were selected for the next stage. Adjusting to the same
exclusion criteria left a total number of 10 studies, which are summarised in Table 1.
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Table 1. Polymorphisms associated with LCn-3 PUFA intake and cancer risk.

Reference n Subjects/methods
Exposure

Measurement
(PC; CC,

CS)

Intervention
(RCT) Cancer type Gene/s Locus Effect

Al-Hilal et al., 2013 [14] 367 6-month RCT/M + F,
45–70 year

EPA + DHA; 0.45,
0.9 or 1.9 g/day FADS1 + FADS2 rs174537

ÓD5D activity associated with T variant
allele; ÒD5D activity in TG, TT with

increasing doses; no association for D6D

Fradet et al., 2009 [12] Control 478; case 466 CC/M, mean age
65 year FFQ Prostate COX2 rs4648310

G allele correlated with aggressive PCa
when n-3 FA intake was low,
and low risk with high intake

Gago-Dominguez et al.,
2004 [49] Control 670; case 258 CC/F, 45–74 year SQ FFQ Breast GSTM1, GSTT1, GSTP1 multiple

Lower activity genotypes associated with
higher BCa protection with
Ò intake of marine n-3 FA

Habermann et al.,
2013 [11] Control 912; case 712 CC/M + F, 30–79 year CARDIA

questionnaire Rectal ALOX12 rs11571339 G allele associated withÓrectal cancer risk
in those with low n-3 PUFA intake (NS)

Habermann et al.,
2013 [11] Control 1900; case 1543 CC/M + F, 30–79 year CARDIA

questionnaire Colon ALOX15 rs11568131 AA genotype have Órisk of colon cancer
withÒ intakes of n-3 PUFA (NS)

Habermann et al.,
2013 [11] Control 1900; case 1543 CC/M + F, 30–79 year CARDIA

questionnaire Colon COX1 rs10306110
Low EPA/DHA intake associated with

higher colon cancer risk in
variant allele carriers only

Hedelin et al., 2006 [50] Control 1130; case1499 CC/M, 35–79 year FFQ Prostate COX2 rs5275 C allele at locus rs5275 correlated with
Órisk of PCa with high intake of fatty fish

Hester et al., 2014 [13] 30 CS/Caucasian F,
21–65 year Serum FA FADS1 rs174537 T variant correlated with lower AA; GG

genotype associated with ÒLTB4 + 5-HETE

Hog et al., 2013 [37] 122 3 year PC/M,
35–59 year

Blood
serum FADS1, FADS2 + FADS3

rs174537 (FADS1);
rs174575, rs2727270
(FADS2), rs1000778

(FADS3)

rs174537GG had ÒAA, AA/DGLA, DPA,
LDL, oxLDL + ÓETA. Rs17453 hadÓAA,

AA/DGLA, EPA, DPA,
EPA/ALA + urinary PGF2a

Poole et al., 2007 [51] Control 626; case 716 CC/M + F, 30–74 year FFQ Colorectal COX1 Phe17Leu
ModestÓrisk of CRC for carriers of P17

with higher fish intake; L17 carriers have
Órisk of CRC with lower intake

Poole et al., 2010 [52] Control 582; case 483 CC/M + F, 30–74 year FFQ Colorectal PGES rs7873087 Carriers of T allele have Órisk of
CRC with Òfish intake

Poole et al., 2010 [52] Control 582; case 483 CC/M + F, 30–74 year FFQ Colorectal EP4 Val294Ile Carriers of Ile variant showed correlation
between Òfish intake and ÒCRC risk

Porenta et al., 2013 [53] 108 6-month RCT/CRC at
risk M + F

2 day FR +
24 h recall

Healthy People
2010 diet or

Mediterranean
diet

Colon FADS cluster

rs174556 and rs174561
in FADS1, rs383445 in

FADS2 and rs174537 of
the FADS1/2

intragenic region

Wild-type alleles associated with lower AA
in colonic mucosa in persons on

Mediterranean Diet

PC: Prospective cohort; CC: Case-control; CS: Cross-sectional; RCT: Randomized controlled trial; M: Males; F: Females; EPA: Eicosapentaenoic acid; DHA: Docosahexaenoic acid;
D5D: Delta-5 desaturase; D6D: Delta-6 desaturase; FA: Fatty acid; LTB: Leukotriene B4; 5-HETE: 5-hydroxyeicosatetraenoic acid; CRC: Colorectal cancer; FR: Food recall; AA:
Arachidonic acid; DGLA: Di-homo gamma linolenic acid; DPA: Docosapentaenoic acid; LDL: Low density lipoprotein; oxLDL: oxidized LDL; ETA: Eicosantetraenoic acid; ALA:
Alpha-linolenic acid; PGF2a: Prostaglandin F2a; PUFA: Polyunsaturated fatty acid; NS: Non-significant; SQ: Semi-quantitative; FFQ: Food frequency questionnaire; BCa: Breast cancer;
PCa: Prostate cancer.
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3. The Role of Genetic Variation in Fatty Acid Desaturation

The FADS gene cluster is located on a highly polymorphic region of chromosome 11 and
includes FADS1 and FADS2, which encode delta 5 desaturase (D5D) and delta 6 desaturase (D6D),
respectively [9]. These polymorphisms create a diverse set of haplotypes. The first demonstration
of a relationship between FADS genotype and membrane-bound FAs was shown by Schaefer et al.
(2006) [54] in serum phospholipids. Further evidence came from a study on infants, in which Danish
infants carrying the FADS minor allele for locus rs1535 had a higher DHA level than those with the
wild-type allele [55]. In contrast, those carrying the minor alleles of rs174448 (C) and rs174575 (G)
had decreased DHA levels relative to wild-type [55]. Similarly, carriers of the T allele at rs174537
(in strong linkage disequilibrium with rs174546 and rs3834458) had lower levels of AA than the carriers
of the G allele [37]. Additional examples have been presented by Al-Hilal et al. (2013) in which the
minor allele of SNPs rs174537, rs174561 and rs3834458 correlate with higher amounts of ALA and
lower levels of EPA, docosapentaenoic acid (DPA) and DHA, as well as lower activity of both D5D and
D6D [14].

Of particular interest to the interplay with dietary LCn-3 PUFA, a 6-month intervention of an
EPA/DHA supplement in individuals carrying a T allele at locus rs174537 showed rising activity
of D5D with an increasing supplement dose [14]. Additionally, polymorphisms at FADS locus
rs174546 correlated with serum triacylglycerides at baseline and 6 weeks following EPA/DHA
supplementation [56]. At locus rs174537, the presence of a T-allele correlated with lower levels
of AA, consistent with a similar study [37], and those carrying the GG genotype had higher levels
of eicosanoids leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) [13]. LTB4 and
5-HETE are pro-inflammatory compounds synthesized from AA by the leukotriene synthase and
5-LOX enzymes, respectively [39]. Therefore, it is possible that levels of circulating eicosanoids may be
modulated by the interplay of diet and genotype. If these individuals are at particular risk for cancer,
it would be advisable to increase the intake of LCn-3 PUFA.

Studies on colonic mucosal fatty acid compositions have revealed a diet-genotype effect. Lower
concentrations of AA were observed in subjects carrying major alleles within the FADS gene cluster
(rs174556 and rs174561 in FADS1, rs383445 in FADS2 and rs174537 of the FADS1/2 intragenic region)
when consuming a Mediterranean diet compared to a Healthy Eating diet, due to increases in AA
levels within the Healthy Eating group [53]. The Mediterranean diet has been extensively studied with
regards to its effect on cancers. This diet is traditionally high in fat, but low in LCn-6 PUFA and trans
fatty acids, and is typically high in olive oil, fresh fruit and vegetables [57,58]. The Mediterranean diet
used in an intervention by Porenta et al. (2013) [53] was also high in fish and flaxseed. Additional
studies are required to confirm these results, as diets were not strictly controlled and sample size
was relatively small. A summary of the interaction between LCn-3 PUFA on prostate, breast and
colorectal cancers as modified by FADS genotype, is provided in Table 1, alongside additionally
discussed genotypes.

4. Genetic Polymorphisms Modulate Leukotriene Synthesis in Cancer

4.1. Lipoxygenases

Leukotrienes are eicosanoid inflammatory mediators produced by the oxidation of AA, and
are implicated in inflammation and cancer [59]. Leukotriene synthesis begins with the formation of
hydroperoxyeicosatetranoic acid (5-HPETE) and hydroperoxyeicosapentaenoic acid (5-HPEPE) from
AA and EPA, respectively, by the lipoxygenases [16]. Although not statistically significant, a lower
risk for colon cancer was demonstrated in wild-type homozygous individuals at locus rs11568131 of
ALOX15 when consuming high amounts of fish, an association that was absent in those carrying the
variant allele [11]. Carriers of a G minor allele at locus rs11571339 of the ALOX12 gene showed a lower
risk for rectal cancer in those with low n-3 PUFA intake compared to higher intakes [11]. However,
G allele carriers with high intakes showed no increased risk compared to the homozygous major allele
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reference group. Despite also demonstrating no statistical significance, this finding is particularly
interesting, as a lower LCn-3 PUFA intake would generate fewer anti-inflammatory compounds than a
higher intake. Furthermore, G allele carriers with lower intakes of LA and total PUFA showed a similar
pattern. Studies investigating the differences in activity of 12-lipoxygenase due to this polymorphism
could help to explain these findings.

A recent meta-analysis found that polymorphisms in the ALOX12 gene at the Gln261Arg locus
may influence cancer risk in Asian populations but not in Caucasians [60]. Furthermore, carriers
of the variant in homozygous or heterozygous form had an increased risk for breast cancer, also
demonstrating differences across ethnic populations [61]. The same polymorphism also showed an
association with risk of colorectal adenomas [62]. To our knowledge, the interplay of this polymorphism
with EPA/DHA intake has not been previously explored and is worthy of further investigation.

4.2. Glutathione S-Transferases

The glutathione S-transferase (GST) enzymes implicated in various types of cancer are important
for the detoxification of environmental pollutants and chemical carcinogens, and modulate signaling
of pathways associated with cell proliferation, cell differentiation and apoptosis [47]. In addition, GSTs
are involved in the synthesis of leukotrienes from 5-HPETE. Finally, GSTs are also important for the
detoxification of reactive oxygen species [63] and may help protect against DNA damage [64].

Raised levels of anti-oxidants can help activate GST genes and this in turn may help to reduce
the increased levels of DNA damage that are associated with prostate cancer [36,64]. GST phenotype
(e.g., GSTT1 null genotype) is associated with risk of prostate cancer in Caucasians but this does not
hold true for other races [47]. Unfortunately, no evidence appears to be available with respect to the
modification of this effect by fatty acids in prostate cancer. However, van Hemelrijck et al. (2012) [65]
identified an association between prostate cancer and the intake of heterocyclic aromatic amines
(HCAs) that was modified by the genotype of HCA-metabolizing enzymes (e.g., MnSOD rs4880 and
GPX4 rs713041). HCAs are mutagenic and are generated by cooking meat at high temperatures [66].
Meat is a common source of animal fat and the effect of some monounsaturated fatty acids
(e.g., palmitic and stearic acids) as well as n-6 PUFA (e.g., AA) on prostate cancer may be confounded
by the presence of HCAs. For this reason, we propose that while the genotype of HCA-metabolizing
enzymes may appear to interact with type of fatty acid intake and prostate cancer risk, in fact it is the
presence of HCAs that is interacting with genotype to influence disease risk.

In contrast, a clear association has been shown between the polymorphic GST genes, breast cancer
and marine FA intake [49]. Women carrying variants resulting in higher activity of the GST enzymes
show a correlation with marine n-3 PUFA intake and risk of breast cancer, in which lower intake
demonstrates a higher risk compared to those with higher intakes of the same genotypes. These
associations were found in Chinese and Singaporean women [49].

5. Prostaglandin Synthesis

Cyclooxygenase enzymes, also known as prostaglandin endoperoxide synthases, catalyse the
rate-limited formation of inflammatory prostaglandins. Two isozymes (COX1 and COX2) exist, both
of which are associated with injury and inflammation and demonstrate different tissue expression
patterns [12]. Increased expression of COX2 leads to hyperproliferation of colon epithelial cells, a
process which was decreased following the presence of EPA [67]. Furthermore, the inhibitory effects
of non-steroidal anti-inflammatory drugs (NSAIDs) associated with colorectal cancer are thought to
relate to their inhibitory activity at both COX1 and COX2 [68].

In vitro studies have shown inhibitory actions of LCn-3 PUFA on prostate cancer cell growth. In
different prostate cancer cell models, namely LNCaP and PacMetUT1, DHA appeared to sensitise
the cells by attenuating the NF-κB survival pathway that promotes cancer cell survival, resulting in
decreased cancer cell survival [69]. On the other hand, NF-κB does not appear to be involved in the
induction of COX2 expression in the prostate cancer cells, PC3, treated with DHA and EPA [70]. In
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regards to human studies, five of sixteen SNPs found within the COX2 region were tested in a Swedish
population with and without prostate cancer, identifying a relationship between two SNPs and the
presence of prostate cancer [50,71]. Subsequently, the same authors demonstrated that the presence
of a C allele at locus rs5275 was significantly associated with a decreased risk of prostate cancer in
men with a high intake of fatty fish [50]. Similarly, Fradet et al. (2009) [12] assessed diet alongside nine
COX2 SNPs in men diagnosed with aggressive prostate cancer and found that LCn-3 PUFA intake was
strongly associated with a decreased risk of aggressive prostate cancer. This effect was modified by
the rs4648310 SNP, such that the increased risk of aggressive prostate cancer associated with a low
intake of n-3 PUFA in those with the G allele (odds ratio = 5.49) could be reversed by increasing n-3
PUFA intake [12]. Therefore, it is reasonable to say that carriers of a G allele at the rs4648310 locus
could benefit from increasing LCn-3 PUFA intake.

COX1 SNPs at the rs10306110 locus may modulate colon cancer risk. Habermann et al. (2013) [11]
demonstrated an association between low LCn-3 PUFA intake and the variant allele, with an odds
ratio of 1.56 and 1.62 for EPA and DHA, respectively. Total and monounsaturated fatty acid intake
was associated with the variant allele at rs10306122 of PTGS1, the gene encoding COX1, and increased
rectal cancer risk, although marine LC PUFA showed no effect [11].

The P17L polymorphism, leading to sequence changes within the signal peptide of COX1, was
associated with risk of colorectal adenomas, in which higher fish intake in those homozygous for
phenylalanine at position 17 had a modestly lower risk of adenomas with increasing fish intake [51].
Interestingly, those carrying at least one leucine at position 17 had a decreased risk of adenomas when
consuming less fish per week [51]. Importantly, these individuals demonstrated a higher risk for
colorectal cancer with increasing fish intake. This is a highly interesting finding which highlights the
occurrence of inconsistencies in studies of cancer and LCn-3 PUFA and the importance of designing
and performing studies that will provide clarity in this regard.

The same authors [51] then analysed the risk of colorectal adenomas between those in an assumed
low risk group (high fish intake + NSAID use) and an assumed high risk group (low fish intake + no
NSAID use) and variable intermediate groups, to assess the dual implications of both NSAID use
and fish intake in the relationship between P17L polymorphisms and adenoma risk. PP homozygotes
benefited from including more than 2 servings of fish per week as well as regular use of NSAIDs.
However, those with PL and LL genotypes showed no statistically significant associations [51]. These
findings are unexpected and it is necessary to replicate these investigations in larger studies with more
detail on type of fish in the diet, as well as other dietary information.

Polymorphisms within the gene for prostaglandin E2 synthase-1 (PGES) also correlate with colorectal
adenoma risk. PGES catalyses the formation of PGE2, a pro-inflammatory prostaglandin associated
with increased cell proliferation [72,73]. Individuals carrying a T allele at rs7873087 had a lower risk for
colorectal adenomas with increasing fish intake, whereas those homozygous for the A allele showed no
significant association with fish intake [52]. Additional relationships were observed for polymorphisms
within the 15-hydroxyprostaglandin dehydrogenase gene and the EP4 receptor gene, which code for proteins
responsible for the breakdown of PGE2 and the corresponding PGE2 receptor, respectively. These
studies highlight the importance of inter individual differences in genes involved in the prostaglandin
synthesis pathways from AA and EPA, and their complex association with colorectal cancer and fish
intake. This relationship warrants further investigation.

Limitations in these studies include recall bias in the FFQ and diet diaries, which are commonly
used in large studies such as cohorts or case-control designs due to lack of affordable and better
alternatives. Furthermore, ethnicity must be adjusted for in studies, as ethnicity may influence
the relationship between dietary n-3 PUFA, cancer risk and genotype, as highlighted earlier [60,61].
Additional factors potentially influencing the outcome of the studies reviewed herein, include the
stage of the disease, as LCn-3 PUFA may interact differently with genotypes as the physiology of
the tumour changes, and fish contaminants. Dioxins may increase cancer risk, which could generate
substantial confounding [33]. In addition, it is important to note that this review highlights the current
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knowledge of the interplay between genes involved in eicosanoid synthesis only, and that there are a
range of other genes that are likely to contribute to the relationship between cancer risk and LCn-3
PUFA intake, such as polymorphisms in DNA repair- and apoptosis-related genes [74].

6. Conclusions

The effects of LCn-3 PUFA on prostate, breast and colorectal cancer modified by genotype are
presented in Table 1. It is clear that both dietary intake and polymorphisms of the FADS genes
contribute to the concentrations of membrane-bound fatty acids such as EPA, DHA and AA. Although
genetic variation within the FADS genes have not been directly associated with cancer, the effects
on desaturase activity may influence the production of eicosanoids further downstream. Dietary
LCn-3 PUFA (EPA, DPA and DHA) are inversely associated with aggressive prostate cancer [12] and
prostate cancer risk. This protective effect can be modified by genotype including rs5275 [50] and
rs4648310 [12] in COX2. On the other hand, the loss of expression of FADS2, in response to a mutation
in FAD2, is associated with a more aggressive breast cancer tumour and reduced survival [9,75]. Breast
cancer risk may also be modulated by dietary LCn-3 PUFA and activity of the GST enzymes [49].
Interestingly, an association between ALOX12 polymorphisms and breast cancer, which was modified
by ethnicity [60,61] could be further explored in regards to the relationship with LCn-3 PUFA intake.
In regards to colon and rectal cancers, certain individuals may benefit largely from including LCn-3
PUFA in their diets while others do not, as demonstrated by polymorphisms in ALOX12, ALOX15
and PGES genes [11,52]. Furthermore, there exists a positive association between increased risk of
colorectal cancers and increased fish intake in some genotypes of the COX1 gene, a relationship worthy
of further investigation.

Compelling evidence from in vivo and in vitro studies has been presented on the inhibition of
cancer progression. Here, evidence has been presented on the genotypic modification of response to
LCn-3 PUFA and it is clear that we are on the brink of offering personalised nutritional advice with
respect to these FAs. Such advice would ensure that people are correctly informed with respect to the
types and amounts of LCn-3 PUFA they should consume in order to meet their specific requirements.
In addition, further study could decipher the significance of the role of n-3 PUFA in cancer and
inflammation, for example whether altered PUFA metabolism is a driver or a passenger in cancer [76].
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