
Journal of

Clinical Medicine

Article

A Retrospective Study of the Diagnostic Accuracy of
In Vivo Reflectance Confocal Microscopy for Basal
Cell Carcinoma Diagnosis and Subtyping

Mihai Lupu 1 , Iris Maria Popa 2, Vlad Mihai Voiculescu 1,3, Daniel Boda 4,
Constantin Caruntu 4,5,*, Sabina Zurac 5,* and Calin Giurcaneanu 1,3

1 Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest,
Romania; lupu.g.mihai@gmail.com (M.L.); voiculescuvlad@yahoo.com (V.M.V.);
calin.giurcaneanu@gmail.com (C.G.)

2 Department of Plastic and Reconstructive Surgery, “Bagdasar-Arseni” Clinical Emergency Hospital,
041915 Bucharest, Romania; irismpopa@gmail.com

3 Department of Dermatology, “Elias” University Emergency Hospital, 011461 Bucharest, Romania
4 Department of Dermatology, “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic

Diseases, 011233 Bucharest, Romania; daniel.boda@yahoo.com
5 Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest,

Romania
* Correspondence: costin.caruntu@gmail.com (C.C.); sabina_zurac@yahoo.com (S.Z);

Tel.: +40-7450-869-78 (C.C)

Received: 11 March 2019; Accepted: 2 April 2019; Published: 3 April 2019
����������
�������

Abstract: Current national and European guidelines recommend distinct management approaches
for basal cell carcinoma (BCC) based on tumor location, size, and histopathological subtype. In vivo
reflectance confocal microscopy (RCM) is a non-invasive skin imaging technique which may change
the diagnostic pathway for BCC patients. This study aimed to determine the sensitivity and specificity
of RCM for BCC diagnosis, assess the predictive values of several confocal criteria in correctly
classifying BCC subtypes, and evaluate the intraobserver reliability of RCM diagnosis for BCC.
We conducted a retrospective study in two tertiary care centers in Bucharest, Romania. We included
adults with clinically and dermoscopic suspect BCCs who underwent RCM and histopathological
examination of excision specimens. For RCM examinations, we used the VivaScope 1500 and
histopathology of the surgical excision specimen was the reference standard. Of the 123 cases
included in the analysis, BCC was confirmed in 104 and excluded in 19 cases. RCM showed both high
sensitivity (97.1%, 95% CI (91.80, 99.40)) and specificity (78.95%, 95% CI (54.43, 93.95)) for detecting
BCC. Several RCM criteria were highly predictive for BCC subtypes: cords connected to the epidermis
for superficial BCC, big tumor islands, peritumoral collagen bundles and increased vascularization for
nodular BCC, and hyporefractile silhouettes for aggressive BCC. Excellent intraobserver agreement
(κ = 0.909, p < 0.001) was observed. This data suggests that RCM could be used for preoperative
diagnosis and BCC subtype classification in patients with suspected BCCs seen in tertiary care centers.

Keywords: Carcinoma; basal cell; dermoscopy; microscopy; confocal; retrospective studies;
skin neoplasms

1. Introduction

Basal cell carcinoma (BCC) is the most prevalent skin cancer worldwide. In Europe, BCC incidence
has been constantly rising by approximately 5% annually over recent decades [1], causing a major
burden on healthcare systems [2,3]. Adding to this, an abrupt increase in BCC incidence in the young
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population is reported [4–6]. Although BCC mortality is low (0.0028% to 0.55%) [7], these tumors are
locally invasive and can induce significant morbidity owing to their frequent development on the head
and neck.

Current national and European guidelines [8,9] advise distinct therapeutic approaches of BCC
based on tumor location, size, and histopathological subtype. With the increasing number of efficient
non-surgical treatment options for superficial BCC (sBCC) [10], the histopathological subtype becomes
of special interest in choosing the most appropriate management course [11–14]. Guidelines also
recommend BCC diagnosis confirmation and histological subtyping through a punch biopsy [15,16].
However, a punch biopsy fails to diagnose an aggressive BCC subtype in one out of six tumors [17].
Therefore, histopathological examination of the entire tumor specimen remains the most accurate
approach of establishing BCC histopathological subtype [18–20].

The preoperative assessment of BCC histological subtypes through non-invasive techniques may
reduce the number of painful invasive diagnostic procedures, lower the delay between diagnosis and
treatment, and lower the burden on healthcare systems through reducing administrative workloads
and financial costs [21,22]. Several recent studies have tried to correlate dermoscopic criteria to certain
BCC subtypes [23,24], without consistent results.

High resolution non-invasive skin imaging may change the diagnostic pathway in the case of
BCC patients [25,26]. In vivo reflectance confocal microscopy (RCM) is a novel, non-invasive imaging
technique capable of producing horizontal optical sections of the skin [27]. RCM enables examination
of the entire lesion, while confocal resolution and morphologic features are similar to histology [28].
This non-invasive imaging technique has been proven useful not only in the evaluation and follow-up
of melanocytic [29,30] and non-melanocytic lesions [31–37], but also in the diagnosis of inflammatory
skin diseases [38–48]. However, one fundamental risk of techniques such as RCM is that they rely on
morphology-based analysis, thus being subject to interpretation bias. Previous studies addressing this
subject exist [49,50], however, there is still a need for more research performed in accordance with the
Standards of Reporting of Diagnostic Accuracy (STARD) [51].

The primary objective of this study was to determine the agreement between RCM and
histopathology in correctly detecting BCC presence. The secondary objectives were to assess the
accuracy of predefined confocal criteria in correctly classifying BCC histopathological subtypes and
evaluate the intraobserver reliability of preoperative, non-invasive BCC diagnosis through RCM.

2. Materials and Methods

A retrospective multicenter study was performed at the following 2 sites: the Dermatology
Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania and
the Department of Dermatology at Medas Medical Center, Bucharest, Romania. Patient data was
collected retrospectively by searching the electronic archives of the participating centers for patients
registered between 1 May 2017 and 31 October 2018.

We included consecutively identified patients older than 18 years with a clinical and dermoscopic
suspicion of previously untreated BCC, whose medical records included medical history, clinical,
dermoscopic, and RCM images as well as a histopathologic report of the excisional biopsy of the
lesion. We excluded patients with missing or incomplete data, patients with lesions that were
reported to be recurrences, previously treated lesions, or lesions extending to mucosal surfaces.
Immunocompromised patients were not excluded from the study. The study was conducted in
accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics Committee
of the “Carol Davila” University of Medicine and Pharmacy Bucharest (Project Number 185, approved
on 26.12.2018). All participants gave written informed consent as part of their investigation and
treatment procedures, at the time of their registration.

In both centers, RCM examination was conducted using the same commercially available confocal
microscope (VivaScope 1500®; Caliber ID, Henrietta, NY, USA.; MAVIG GmbH, München, Germany).
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RCM imaging at the Medas Medical Center was performed by ML and by CC at the “Prof. N. Paulescu”
National Institute of Diabetes, Nutrition, and Metabolic Diseases.

The VivaScope 1500 uses an 830 nm laser diode, reaching a maximum output power of 20 mW at
the skin level, allowing for skin imaging without causing injury to investigated tissues. A dermoscopic
image captured using the VivaCam serves as a surface map to guide confocal imaging. Five level cubes
(30 µm increments, vertically), including the corneal, granular/spinous, dermal-epidermal junction,
and papillary dermis, are acquired in the center of the lesion. Each level is a mosaic with a minimum
surface of 4 × 4 mm and a maximum of 8 × 8 mm. Individual stacks (4.5 µm increments, vertically)
are also acquired in one or more areas of interest, up to a depth of 200 to 250 µm. Individual images of
cellular and tissular architecture are also obtained. Only patients with lesions investigated following
this RCM imaging protocol were included in the study. Verification that the RCM image set respects
protocol was done through an inspection of the log file generated for each confocal examination.

Prior to the study, ML was trained in RCM use and interpretation during a one week confocal laser
scanning microscopy course organized by MAVIG GmbH (distributor of the VivaScope® device) at the
University of Modena and Reggio Emilia in Italy. ML had more than three years of RCM experience
prior to the start of the study. CC had more than nine years RCM experience.

Based on previous findings [49,50], a set of 14 confocal imaging criteria was formulated:
keratinocyte atypia, epidermal streaming, ulceration, cords connected to the epidermis, small tumor
islands (diameter <300 µm), large tumor islands (diameter >300 µm), hyporefractile silhouettes,
peripheral palisading, clefting, increased vascularization, “onion-like” structures (corresponding to
milia-like cysts), peritumoral collagen bundles, inflammation represented by bright dots and plump
bright cells (corresponding to lymphocytes and melanophages), and dendritic cells inside tumor
islands (corresponding to melanocytes).

Imaging, at the time of patient evaluation, was not conducted in a blinded fashion as patient
history and clinical examination had to be conducted as part of the standard clinical care. However,
the database of static RCM images was analyzed in a blinded fashion by ML immediately after
completion and locking, and four weeks after, to document the presence or absence of BCC and of the
aforementioned criteria.

All lesions included in the study were surgically treated with margins between 3 to 5 mm.
Histopathologic confirmation of BCC presence and subtype, and excision margins inspection using
hematoxylin and eosin stained bread-loafed sections was defined as the reference standard. The
reporting of histopathological findings was performed by experienced pathologists. During assessment
of the reference standard, the pathologist was masked to the findings of the RCM examination, but not
to the clinical description of the lesions and patients’ clinical history.

We recorded the following characteristics of participants and tumors and summarized them with
descriptive statistics: age, gender, tumor topographic location, and tumor histopathological subtype.
A distinction was made between superficial, nodular, and aggressive (micronodular, infiltrative, and
basosquamous) BCC growth patterns. For the purposes of this study sclerodermiform/morpheaform
BCC was considered equivalent to infiltrative BCC. In the case of mixed-type histopathological
diagnosis, defined as two or more growth patterns, the most aggressive component was taken into
account for analysis.

The primary objective was the agreement between the index test (RCM) and reference standard
(histopathology of the excision specimen) in correctly determining BCC presence. The secondary
outcomes were estimating the accuracy of predefined confocal criteria in correctly classifying BCC
subtypes and determining the intraobserver agreement of preoperative BCC diagnosis through RCM.

One rater (ML) reviewed all RCM images of de-identified cases twice, at a four-week interval.
The rater was blinded to clinical and dermoscopic images, histopathological report, and to his
previous interpretation. Between evaluations, RCM case numbers were shuffled and recoded by
an online software-based algorithm (available at https://www.graphpad.com/quickcalcs/) to prevent

https://www.graphpad.com/quickcalcs/
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identification. Evaluation data were recorded in a standardized manner to BCC presence (yes or no)
and presence of the 14 selected criteria (yes or no).

Lesions in which subsequent surgical excision was not performed (reasons were recorded) were
excluded. According to Shinkins et al. [52], the ideal approach to including and analyzing inconclusive
valid test results (n = 8) is to treat them as if in a clinical scenario. We have, therefore, considered
these inconclusive valid results as RCM positive cases, and included the cases which had received
the reference standard (n = 2) in the analysis. The numbers of true and false positives and negatives
were recorded. We established the sensitivity, specificity, positive, and negative likelihood ratios,
and positive and negative predictive values for BCC diagnosis by RCM using 2 × 2 contingency
tables analysis. To calculate the overall diagnostic accuracy, the following formula was used: Overall
diagnostic accuracy = sensitivity × prevalence + specificity × (1 − prevalence) [53,54]. We used
binomial logistic regression to determine the odds ratio (OR) of the predefined confocal criteria for
each individual BCC histological subtype. Confidence intervals were 95% and a p value of <0.05 was
considered significant. Intraobserver agreement was defined as the degree to which the assessment
of selected RCM images is identic for repeated measurements by the same person on different
occasions [55]. Cohen’s kappa was used to describe intraobserver agreement. Statistical analysis
was performed using SPSS version 22.0 (IBM, New York, USA).

3. Results

3.1. Participants

An electronic database search and chart review from the two participating centers identified
184 potentially eligible BCC cases. After evaluating each case for inclusion and exclusion criteria,
we excluded three cases due to the poor quality of RCM images. Out of the 181 eligible BCC cases,
58 had not received the index test or the reference standard, hence they were excluded. The two
inconclusive RCM cases with histopathological analysis were treated as test positives, leaving a total
number of 123 lesions from 87 patients for further analysis (Figure 1).
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Eighty-seven patients (36 males and 51 females) with a mean age of 68.1 ± 12.17 years and median
disease duration of 2 years were included in the study. Most lesions were of the nodular subtype,
with 11 aggressive BCCs (aBCCs) represented (7 infiltrative BCCs, 3 basosquamous BCCs, and one
micronodular BCC), which is consistent with the natural incidence of BCC subtypes. The distribution
of the 104 BCCs in terms of subtype and the histopathological diagnoses for the remaining 19 lesions
are summarized in Table 1.

Table 1. Characteristics of patients and imaged lesions.

BCC 1 Subtype N (%)

Superficial BCC 24 (23.1)
Nodular BCC 69 (66.3)

Aggressive BCC 11 (10.6)
Total = 104

Non-BCC Lesions N (%)

Bowen’s disease 3 (2.4)
Seborrheic keratosis 3 (2.4)

Actinic keratosis 4 (3.3)
Keratoacanthoma 2 (1.6)

Lichen planus-like keratosis 2 (1.6)
Tubular apocrine adenoma 1 (0.8)

Moderately differentiated SCC 2 1 (0.8)
Poorly differentiated SCC 1 (0.8)

Poroid hidradenoma 1 (0.8)
Chronic radiation dermatitis 1 (0.8)

Total = 19

BCC 1, basal cell carcinoma; SCC 2, squamous cell carcinoma.

Most lesions were located in the head and neck area (n = 72), followed by the trunk (n = 30),
lower extremities (n = 10), upper extremities (n = 8), and abdomen (n = 3). The number of BCCs in
our study (n = 104) is sufficient to confidently calculate sensitivity and specificity with a maximum
error of estimation of 6% and 14.1%, respectively, with a confidence interval of 1-alpha = 0.95 (95%).
The average time between RCM examination and surgical treatment was 50.99 days.

3.2. Test Results

3.2.1. Basal Cell Carcinoma Diagnosis by Preoperative Reflectance Confocal Microscopy

In our sample of 123 lesions, RCM detected BCC presence with a sensitivity of 97.1%
(95% CI 91.80, 99.40) and a specificity of 78.95% (95% CI 54.43, 93.95) at a disease prevalence of 84.55%.
The positive likelihood ratio was 4.61 (95% CI 1.93, 11.03) while the negative likelihood ratio was 0.04
(95% CI 0.01, 0.11). Positive and negative predictive values were 96.19% (95% CI 91.35, 98.37) and
83.33% (95% CI 61.55, 93.98), respectively. The overall accuracy of preoperative RCM for detection of
BCC was 94.31% (95% CI 88.63, 97.68).

If only conclusive RCM analysis results were included in the analysis (n = 121), RCM sensitivity
was unchanged at 97.1% (95% CI 91.80, 99.40), but specificity was higher at 88.2% (95% CI 63.56, 98.54),
as was disease prevalence (85.95%). The positive likelihood ratio was 8.25 (95% CI 2.24, 30) while the
negative likelihood ratio was 0.03 (95% CI 0.01, 0.1). Positive and negative predictive values were 98.1%
(95% CI 93.21, 99.46) and 83.3% (95% CI 61.79, 93.92), respectively. The overall accuracy of preoperative
RCM for detection of BCC in this case was only slightly higher, at 95.87% (95% CI 90.62, 98.64).



J. Clin. Med. 2019, 8, 449 6 of 14

3.2.2. Evaluation of RCM Criteria According to BCC Subtype

In superficial BCCs (sBCCs), RCM examination revealed the presence of cords connected to the
epidermis (13/24) with peripheral palisading (19/24) (Figure 2).
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Figure 2. Superficial basal cell carcinoma. (A) Dermoscopy showing multiple, brown globules and dots,
and leaf-like peripheral structures. (B) reflectance confocal microscopy (RCM) revealed the presence
of sharply demarcated cords connected to the epidermis (white arrows), dark peritumoral clefting
(red arrowheads), and peripheral palisading (white arrowhead), corresponding to the basaloid cords
and aggregates seen on histopathology (hematoxylin and eosin (H&E) stain, magnification 4×) (C).

Moreover, dendritic structures inside tumor islands and cords (14/24) were frequently seen.
For nodular BCCs (nBCCs), big tumor islands (52/69) associated with peripheral palisading (42/69),
clefting (34/69), and hypervascularization (52/69) were characteristic findings (Figure 3).
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Figure 3. Nodular basal cell carcinoma. (A) Dermoscopy image of a pigmented nodular basal cell
carcinoma (nBCC) with blue-gray ovoid nests, brown globules, and arborizing vessels. (B) RCM
revealed large, well defined tumor islands (TI), peritumoral clefting (red arrows), and clumped
melanophages (green rectangle). (C) Histopathology showed large basaloid islands with palisading and
stromal retraction in the dermis (H&E stain, magnification 4×). (D) Dermoscopy of hypopigmented
nBCC with ulceration and arborizing vessels. (E) RCM showed large tumor islands (TI) with peripheral
palisading and clefting (white arrows). (F) Histopathologic correlates of the structures seen through
RCM (H&E stain, magnification 40×).
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Aggressive BCCs were typified by the presence of hyporefractile silhouettes (7/11), peripheral
palisading (7/11), and clefting (7/11) (Figure 4).
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Figure 4. Infiltrative basal cell carcinoma. (A) Dermoscopy showing a hypopigmented lesion with
structureless red shiny areas, chrysalis pattern, short fine telangiectasia, and erosion. (B) RCM showed
multiple hyporefractile silhouettes, which appear as imprints (white arrows) outlined by bundles of
bright collagen (red asterisks). (C) Histopathology shows tumor islands and strands that resemble the
hyporefractile silhouettes observed through RCM (BerEP4 stain, magnification 4×).

Keratinocyte atypia, epidermal streaming, ulceration, and inflammation were observed with
comparable frequencies in all tumor subtypes. The analytic descriptive results of the confocal image
analysis are summarized in Table 2.

Table 2. Frequencies of confocal criteria in different histologic basal cell carcinoma subtypes.

Confocal Criterion, N (%)
BCC 1 Histologic Subtype

Nodular
(N = 69)

Superficial
(N = 24)

Aggressive
(N = 11)

Keratinocyte atypia 49 (71) 17 (70.8) 10 (90.9)
Epidermal streaming 21 (30.4) 9 (37.5) 5 (45.5)

Ulceration 24 (34.8) 5 (20.8) 4 (36.4)
Cords connected to the epidermis 3 (4.3) 13 (54.2) 2 (18.2)

Small tumor islands 25 (36.2) 3 (12.5) 6 (54.5)
Big tumor islands 52 (75.4) 8 (33.3) 4 (36.4)

Hyporefractile silhouettes 21 (30.4) 1 (4.2) 7 (63.6)
Peripheral palisading 42 (60.9) 19 (79.2) 7 (63.6)

Clefting 34 (49.3) 11 (45.8) 7 (63.6)
Increased vascularization 52 (75.4) 8 (33.3) 4 (36.4)

Onion-like structures 22 (31.9) 3 (12.5) 5 (45.5)
Peritumoral collagen bundles 32 (46.4) 0 (0) 4 (36.4)

Inflammation 58 (84.1) 19 (79.2) 9 (81.8)
Dendritic structures inside tumor islands 35 (50.7) 14 (58.3) 4 (36.4)

BCC 1, basal cell carcinoma.

3.2.3. Logistic Regression Analysis for RCM Criteria in BCC Subtyping

We used both univariate and multivariate logistic regression to model the influence of RCM
criteria on BCC subtype classification (odds ratios in Table 3 correspond to each BCC subtype).
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Table 3. Multivariate reflectance confocal microscopy criteria predictors for nodular, superficial, and
aggressive subtypes of basal cell carcinoma.

p Value OR 1 95% CI 2 for OR

Nodular

Collagen surrounding tumor islands 0.014 11.454 1.636–80.188
Increased vascularization 0.04 4.359 1.071–17.730

Cords connected to the epidermis 0.008 0.096 0.017–0.543

Superficial

Cords connected to the epidermis 0.017 6.794 1.399–32.991

Aggressive

Hyporefractile silhouettes 0.01 16.92 1.915–149.499
Big tumor islands 0.048 0.227 0.052–0.988

OR 1, Odds Ratio; CI 2, Confidence Interval.

In univariate analysis, nBCC was almost six times more likely (OR = 5.863, 95% CI (2.415, 14.236),
p < 0.01) if big tumor islands had been observed, and more than six times more likely if peritumoral
collagen bundles were present (OR = 6.703, 95% CI (2.136, 21.036), p = 0.01). Superficial BCC was
almost 14 times more likely if cords connected to the epidermis had been observed (OR = 13.636,
95% CI (4.247, 43.784), p < 0.001). The presence of hyporefractile silhouettes was associated with
five-fold higher odds for aBCC (OR = 5.648, 95% CI (1.511, 21.105), p = 0.01).

We entered all 14 RCM criteria in a multivariate logistic regression analysis with backward
elimination according to likelihood ratios and a classification cutoff of 0.5. Three separate models were
created, one for each BCC subtype. The nBCC model correctly classified 66.3% of cases before including
regression criteria and 81.7% after adding predictors, gaining a substantial increase in percentage
accuracy in classification (PAC). Nodular BCC was more likely in the presence of peritumoral collagen
bundles (OR = 11.454, 95% CI (1.636, 80.188), p = 0.014), increased vascularization (OR = 4.359, 95% CI
(1.071, 17.730), p = 0.04), and if cords connected to the epidermis were absent (10.41 times lower
odds; p = 0.008). For sBCC, the constant model correctly classified 77.9% of cases and 87.5% with
the predictors added. Superficial BCC was the most common diagnosis if cords connected to the
epidermis were observed (6.794-fold higher odds; p = 0.017). For aBCC, the change in PAC after
adding the RCM criteria was smaller (1%). Aggressive BCC was most common in the presence of
hyporefractile silhouettes (OR = 16.92, 95% CI (1.915, 149.499), p = 0.01) and the absence of big tumor
islands (4.4-fold lower odds; p = 0.048).

Even though big tumor islands and peritumoral collagen bundles were strongly associated with
nBCC in the univariate analysis, this effect was diminished by the influence of other variables in the
multivariate statistical model. In aBCC, hyporefractile silhouettes remained a potent predictor in the
univariate, but even more so in the multivariate model.

3.2.4. Intraobserver Agreement

The intraobserver agreement for BCC presence calculated from the cross-tabulation was 97.56%.
Cohen’s kappa was run to determine the intraobserver agreement between the two evaluations.
The analysis showed that there was excellent agreement between the two evaluations, κ = 0.909
(95% CI 0.807, 1), p < 0.001.

3.2.5. Adverse Events for Index Test and Reference Standard

There were no adverse events after performing RCM. Adverse reactions after surgical excision
included five patients with post-operative wound infections. All cases were successfully treated with
oral antibiotics, without the need of hospitalization. There were no serious adverse reactions.
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4. Discussion

Previous studies assessing RCM for BCC diagnosis report varying sensitivity and specificity
values ranging from 85%–97% and 89%–99%, respectively [56]. Our results confirm the high sensitivity
(97.1%) and specificity (78.95%) of RCM for diagnosing BCC.

There is considerable dermoscopic pattern variability among different BCC histologic subtypes
and, recently, dermoscopy has been shown to accurately discriminate between superficial BCC and all
other histopathologic subtypes in approximately 80% of cases, based on a series of criteria [24], meaning
that the remaining 20% of tumors that do not fit these criteria require histopathologic examination for
subtyping. However, this study included only histopathologically proven BCCs, thus the validity of
the criteria for differentiating BCC from other diseases was not assessed. Furthermore, differences in
the incidence and frequency of various BCC subtypes among different populations should be taken
into account [57].

Reflectance confocal microscopic criteria associated with BCC have been previously described by
several authors, with tumor islands and cords being considered as this tumor’s trademark [50,58–66].

Our study reveals significant differences in the confocal patterns among BCC subtypes, confirming
that RCM provides additional morphologic information and suggesting that RCM enhances the
preoperative diagnosis of BCC as well as its subtype classification. This aspect is particularly
important in clinical practice since the therapeutic approach of BCC is largely determined by its
histopathological subtype.

Our findings confirm previous reported data on RCM findings in BCC and associates specific
criteria with different BCC subtypes. First and foremost, tumor cords connected to the epidermis
strongly and significantly predicted sBCC, thus supporting previous data [49]. Epidermal streaming is
described as one of the most important RCM criterion for the diagnosis of BCC [50,67], however, in our
study, epidermal streaming was found in only 37.7% of sBCCs and was not statistically significant
in predicting histotype. This result is in accordance with a previous study [49], which reports a
50% frequency of epidermal streaming in sBCC and 50% increased odds of sBCC, although without
statistical significance. This may be connected to, as the authors have observed, the increased degree
of subjectivity that comes into play when assessing this parameter. Nodular BCC was typified
by the presence of big tumor islands and peritumoral collagen bundles, confirming the findings
of Longo et al. [49]. Although increased vascularization was detected in all tumoral subtypes in
our dataset, in multivariate analysis, this parameter was a predictor only for nBCC. In Nori et al.’s
study [50], increased vascularization had a sensitivity of 83.9% and 95.7% and a specificity of 53.6%
and 53.6% for nodular and superficial BCC, respectively. A cord connected to the epidermis was,
in our study, a negative predictor for nBCC, their absence resulting in 10-times lower odds for this
subtype. Previous results also show 93% lower odds for nBCC in the presence of cords connected to
the epidermis [49]. Aggressive BCC was characterized by the presence of hyporefractile silhouettes
(63.6%), while others have found these structures in 77.3% of infiltrative BCCs [49]. Furthermore,
aBCC was the most common diagnosis in the absence of big tumor islands, a finding corroborated by
others [49]. However, due to the particular appearance of hyporefractile silhouettes, their recognition
might require substantial experience with confocal microscopy. Histopathologically, these structures
correspond to non-pigmented tumor islands. While previous studies [49] report a high frequency
(95.5%) of collagen fibers surrounding tumor islands in infiltrative BCCs, although without statistical
significance, in our study, this criterion was present in only 36.4% of aBCCs and was not a statistically
significant predictor.

Keratinocyte atypia and inflammation were present in the majority of tumors of all subtypes,
while ulceration, onion-like structures, and dendritic structures inside tumor islands were less
frequently seen, results also confirmed by previous findings [49,66]. Nori et al. [50] found the
sensitivity of pleomorphic epidermis (keratinocyte atypia) for sBCC and nBCC to be 56.5% and
65.5%, while specificity was 63.8% for both subtypes.
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In our study, the intraobserver agreement was assessed based on static de-identified RCM images.
We report an intraobserver agreement for BCC presence of 97.56%, thus confirming previous findings
of the reliability of RCM in correctly and consistently diagnosing BCC [56,68]. However, we believe
this simple method of assessing agreement is flawed because it does not take into account chance
agreement [69]. Therefore, Cohen’s kappa was run, showing excellent agreement (κ = 0.909, 95% CI
(0.807, 1), p < 0.001). We consider this to be one of the strengths of our study, along with the adherence
to the STARD guidelines [51]. Using predefined RCM criteria and the same generation VivaScope 1500
device at both participating centers helped prevent heterogeneity of the results.

Limitations of our study include the retrospective design, which is subject to recall and observer
bias. These have been addressed by the use of de-identified RCM images and the shuffling of images
between evaluations. The use of static RCM images brings external validity issues into discussion,
as there are significant differences between diagnosing and subtyping BCCs using blinded static
images and real-time RCM combined with clinical information and dermoscopy [70]. We believe that
in a real clinical scenario, where real-time RCM is typically used as an adjunct imaging tool to patient
history, clinical examination, and dermoscopy, diagnostic accuracy measures of this complementary
approach could be even higher. However, this assumption needs to be corroborated through further,
preferably prospective, studies. Secondly, our study included a limited number of patients and our
findings need to be confirmed prospectively to more precisely determine the sensitivity and specificity
of these diagnostic criteria. Thirdly, our sample did not include any melanomas, one of the biggest
differential diagnostic concerns of clinicians evaluating skin tumors, making this another limitation.
Two of the biggest challenges RCM users face in accurately discriminating between BCC subtypes
are the relative lack of studies reporting the reliability of subtype-specific confocal criteria and the
limited depth of imaging of the RCM device (approximately 200–250 µm). The latter is already being
addressed by several ongoing studies [71,72].

The use of RCM to avoid skin biopsy in selected cases could lead to a significant cost reduction
if we consider that RCM requires one user and one confocal imaging device, while a skin biopsy
necessitates a minimum of four persons: dermatologist, nurse, histopathology laboratory technician,
and pathologist. However, prospective cost-effectiveness studies of RCM versus skin biopsy should be
conducted in order to determine if there is a financial advantage to be gained. Previous diagnostic
RCM studies have focused on sensitivity and specificity for diagnosing BCC and its histopathological
subtypes, however, other aspects, such as time between diagnosis and treatment, should also be
considered. The average time period between RCM and surgery in our study was 50.99 days, although
this was due mostly to patient related factors. In our experience, RCM imaging only takes about 10 to
15 min per lesion, therefore optimizing patient flow from presentation to the operating room. Thus,
one of the main advantages using RCM is on the spot diagnosis and treatment of BCCs compared to
painful procedures, such as skin biopsies, with all the delays this implies. In the future, RCM could
potentially replace the skin biopsy before Mohs micrographic surgery procedures, saving time, funds,
and an avoidable and painful procedure. Moreover, by using the more flexible hand-held VivaScope
3000 (VivaScope 3000; Caliber ID, Henrietta, NY, USA.), clinically suspicious lesions can be evaluated
even faster. Moreover, selected cases of sBCC patients could potentially benefit from completely
non-invasive management [73].

5. Conclusions

In conclusion, our study shows that RCM is reliable in correctly diagnosing BCC and identifies
specific confocal criteria associated with BCC subtypes. If accurate subtyping is achieved, RCM could
play a key role in BCC management, therefore additional prospective studies are required to investigate
whether the combination of dermoscopy and RCM would help increase the accuracy of preoperative
BCC subtype classification.
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