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Abstract: With this Editorial, we introduce the Special Issue “Adipose-Derived Stem Cells and Their
Extracellular Microvesicles (ExMVs) for Tissue Engineering and Regenerative Medicine Applications”
to the scientific community. In this issue, we focus on regenerative medicine, stem cells, and their
clinical application.
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Recently, stem cell-based therapies have been widely applied in the equine veterinary field [1].
For more than a decade, the transplantation of autologous mesenchymal stem cells (MSCs) has been
investigated in multiple experimental and clinical animal trials worldwide [2]. MSCs have been shown
to have positive effects in the treatment of musculoskeletal, neurodegenerative, metabolic, and immune
diseases [3]. The clinical application of MSCs has raised hope for a more effective treatment of tendon
and articular diseases, which are the most common musculoskeletal disorders in horses [4]. The unique
properties of MSCs, i.e., multipotency, proliferative, and clonogenic potential and paracrine action,
make them an innovative tool for improved repair or even potential regeneration of damaged tissue [3].
During the last 20 years, several research groups have investigated various aspects of MSC biology in
the context of their clinical usefulness. MSCs can be isolated from multiple tissue sources, but most
attention has been paid to cells isolated from bone marrow (BM-MSCs), adipose tissue (AT-MSCs/ASCs),
Wharton’s jelly (WJMSCs) [5], and, more recently, blood [6]. The source selection of the stem cells
depends on both ease of access and of harvesting, the need for local or general anesthesia, and,
finally, yield and quality of the isolated cells. Further research by molecular biologists has focused on
cytophysiological aspects of MSCs: their metabolic activity, presence of particular surface antigens,
gene expression profile, and proteomics. Adult MSCs from diverse sources behave in predictable
ways, which offer promise in terms of their clinical applications [7]. Early publications showed the
beneficial effects of autologous ASCs and BMSCs transplantation on tendinopathies of the equine
superficial digital flexor tendon [8,9]. For example, it was shown that autologous ASCs enhance
perfusion and neovascularization of healing experimental tendon lesions in horses [10]. Recently,
other studies have delivered clinical evidence that autologous MSCs applied by intralesional injection,
intravenously, and, more recently, intraarterially, can be an effective therapeutic approach in the
treatment of tendinopathies when compared with conventional treatments, e.g., anti-inflammatory
drugs [11–14]. However, the effect of a single intralesional treatment with autologous MSCs has proved
to be limited in an equine experimental model of tendinopathy [15]. Several studies have investigated
the effects of MSCs combined with platelet rich plasma (PRP) or other blood-based substrates to improve
the clinical outcome and prolong therapeutic effects [16,17]. After years of MSC research, there remain
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discrepancies between promising experimental in vitro and in vivo results and evidence-based safety
as well as clinical effectivity of such therapies. Multiple factors affect MSCs properties, including their
niche, which may reduce their therapeutic potential [18–21]. Current molecular studies have revealed
that the regenerative potential of MSCs strongly depends on the age and metabolic condition of a patient,
including insulin resistance [22,23]. Time and temperature of MSC shipment as well as application
technique are crucial for its viability [24]. However, specific data regarding these factors is lacking
in the literature. The development of a “passport” for stem cells that describes their physiological
condition prior to their clinical application is crucial to standardize the procedure. This document should
include information regarding the source of the MSCs as well as phenotype, proliferative potential,
apoptotic genes expression, clonogenic potential, multipotency, as well as the time and temperature of
shipment and storage before clinical application of the cells. The description of these factors should be
a minimum requirement before cell transplantation.

Autologous MSCs transplantation will never be a true “off the shelf” therapy because it requires
time for cell isolation, additional laboratory work, and, most importantly, a minimum of 10 days of
propagation in vitro to obtain the number of MSCs estimated to be adequate for clinical application [25].
MSCs were previously thought to be immune privileged and considerable attention has been paid
towards allogenic therapies in equids and other mammals [26,27]. The perspective of immediate
application of MSCs was attractive to the veterinary community because it allowed for patient
treatment without loss of time or risk of disease progression. Lack of MHC II in MSCs was proved in
multiple studies; thus, MSCs are considered safe in cases of allogeneic administration [28]. However,
there have been several reports of adverse clinical events in equine models [29,30]. Modification of
culture condition, a 48-hour depletion culture period of fetal bovine serum (FBS), greatly eliminates
the risk of adverse effects [30]. Another option may be ex vivo adaptation of MSCs in autologous
serum-supplemented medium prior to application [31]. The strategy to apply allogeneic MSCs is
attractive from a clinical perspective; however, a proper cell culture method is required to eliminate
potential risk.

Stem cells therapies in equine veterinary practice have been mostly applied for the treatment
of disorders of the musculoskeletal system [2,32]. However, recent data has shown that MSCs are
potentially effective in the treatment of other diseases in equids including insulin resistance (IR) [33,34].
Several studies have shown that both obesity and IR negatively affect multipotency of MSCs through
impairment of autophagy, a process which allows stem cells to remove dysfunctional organelles and
regenerate [35–38]. It has been shown that ASCs derived from IR horses are characterized by elevated
oxidative stress and aged phenotype which may disqualify them for clinical application [37]. Therefore,
it is necessary to rejuvenate impaired autologous MSCs prior to clinical application. Several chemicals
with antioxidative and anti-aging properties have been proposed as rejuvenating agents; these include
5-azacytidine (demethylation agent) and resveratrol (polyphenol). It has been shown that a combination
of these substances successfully reverses the aged nature of ASCs derived from IR horses [39–41].
This phenomenon may contribute to the development of a new branch in veterinary pharmacotherapy,
i.e., stem cell pharmacology. In the near future, pre-treatment of MSCs with pharmacological substances
will likely become a common procedure for the modulation of cytophysiological properties of stem
cells before their clinical application.

Initially, the hypothesis behind MSC therapy suggested that viable cells integrate in the tissue
defect to replace it. Although it could be shown experimentally that high numbers of MSCs remained
in and near equine experimental tendon lesions after local application [42], the percentage of cells
injected significantly decreased shortly after application depending on the cell type [43]. Accordingly,
the secretome of MSCs and the mechanisms by which it affects damaged tissues has been under
intense investigation recently [44,45]. Several research groups showed that MSCs secrete a wide
range of growth factors, chemokines, and cytokines, which are either released into intercellular space
or transported in extracellular membrane-derived microvesicles (ExMVs) to neighboring cells [46].
Recently, it was shown that ExMVs cargo also contains miRNAs, which indirectly or directly modulate



J. Clin. Med. 2019, 8, 675 3 of 6

gene expression in recipient cells of damaged tissue [47]. Evidence suggests that the secretomes of
MSCs constantly promote regeneration of damaged tissue by various mechanisms, including inhibition
of apoptosis, promotion of cell survival, and, most importantly from a clinical perspective, exertion
of immunomodulatory effects [48]. Moreover, the secretomes of MSCs promote neurogenesis and
angiogenesis, which may be fundamental in the course of the regenerative process because “there is
no regeneration without vascularization” [49]. Thus, future research in equine regenerative medicine
should focus on the regeneration of damaged tissue by the application of MSCs secretomes or their
elements because, unlike allogenic MSCs, they are not expected to cause any side effects. On the basis
of recent findings, one might speculate that the application of MSCs secretomes might become a useful
therapeutic tool in equine regenerative medicine in the near future.

Stem cells have brought new hope for veterinary regenerative medicine and are becoming
an increasingly promising clinical tool. However, many questions remain unanswered, including the
justifiability of allogenic stem cell application or the clinical utility of MSCs isolated from individuals
diagnosed with certain disorders. There are strong requirements justifiable for further consolidation
grants to elaborate exact protocols for the molecular and physiological characteristics of MSCs prior to
MSCs-based experimental and clinical animal trials as well as, ultimately, routine clinical application.
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