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Abstract: Genetic and phenotypic heterogeneity contribute to the generation of diverse tumor
cell populations, thus enhancing cancer aggressiveness and therapy resistance. Compared to
genetic heterogeneity, a consequence of mutational events, phenotypic heterogeneity arises from
dynamic, reversible cell state transitions in response to varying intracellular/extracellular signals.
Such phenotypic plasticity enables rapid adaptive responses to various stressful conditions and
can have a strong impact on cancer progression. Herein, we have reviewed relevant literature
on mechanisms associated with dynamic phenotypic changes and cellular plasticity, such as
epithelial–mesenchymal transition (EMT) and cancer stemness, which have been reported to
facilitate cancer metastasis. We also discuss how non-cell-autonomous mechanisms such as cell–cell
communication can lead to an emergent population-level response in tumors. The molecular
mechanisms underlying the complexity of tumor systems are crucial for comprehending cancer
progression, and may provide new avenues for designing therapeutic strategies.
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1. Introduction

Genetic and phenotypic tumor heterogeneity can act as a major bottleneck for the clinical
management of cancers [1]. Genetic heterogeneity has been a long-standing focus in cancer progression
research [2]. However, non-genetic factors such as phenotypic plasticity [3–5] and collective effects
resulting from cell–cell communication [6–9] have gained recent attention for their proposed roles
in tumor aggressiveness. Two major interconnected axes of phenotypic plasticity that have been
extensively studied across multiple carcinomas are the epithelial–mesenchymal transition (EMT) and
cancer stem cell (CSC) plasticity [10–14]. Initially, EMT was hypothesized to be an irreversible event
similar to oncogenic transformation and was referred as “epithelial–mesenchymal transformation” [15].
However, during the last decade many studies have demonstrated beyond doubt its dynamic
reversible nature in cancer. “Epithelial–mesenchymal plasticity” (EMP) has recently become commonly
used terminology, encompassing bidirectional transitions among epithelial (E), mesenchymal (M),
and one or more hybrid E/M phenotypes [16]. EMP is a “motor of cellular plasticity” [17], as it
accompanies cell changes in immune response [18,19], tumor-initiation potential [8,20–22], metabolic
reprogramming [23,24], senescence [25], cell proliferation [26,27], and drug resistance [14,28]. Similarly,
the “cancer stem cell (CSC) model” initially portrayed CSCs as a small, fixed population which emerge
from tissue-specific stem cells at the apex of hierarchical cellular differentiation in tumors. However,
recent findings have demonstated the transitionary nature of CSC populations and their different
origins from differentiated cell types [29,30]. Thus, EMP and stemness can give rise to dynamic
phenotypic heterogeneity in tumors by virtue of their reversibility and plasticity.
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Various technological advancements and interdisciplinary cross-fertilization of ideas have led us
through these paradigm shifts and emphasized the importance of unraveling the operating principles of
cell state transitions along the axes of EMP and/or CSCs. Herein, we have reviewed how investigations at
a single-cell level through reporter cell lines, real-time imaging, flow/mass cytometry, high-throughput
dynamic measurements—integrated iteratively with mechanism-based mathematical modeling and
data-based statistical modeling—have revealed unprecedented insights into the emergent dynamics of
cancer progression, at both an intracellular and cell population level.

2. Dynamics of EMT

EMT is a nonlinear and reversible trans-differentiation process of an epithelial cell into a
mesenchymal phenotype, encompassing changes in multiple phenotypic characteristics such as
apico-basal polarity, cell–cell adhesion, cytoskeleton remodeling, cell–matrix adhesion, and cell
migration and invasion [31,32]. EMT-inducing transcription factors include ZEB1/2, SNAI1/2,
and TWIST, among others. The loss of epithelial molecules such as E-cadherin and the gain of
mesenchymal markers such as vimentin and alpha smooth muscle actin (αSMA) represent typical
molecular features of EMT [16]. Furthermore, EMT is critical for embryonic development and wound
healing, and is involved in pathological conditions such as cancer [16,33]. In cancer progression, EMT has
been associated with metastasis, drug-resistance, immune evasion, and reduced patient survival/poor
prognosis [14,17,34]. While the dynamics of EMT and its reverse mesenchymal-to-epithelial transition
(MET) have been studied in developmental contexts for a long time [16,35], they have only recently
received attention in the field of cancer [36–40].

EMT and MET have been canonically thought of as “all-or-none” responses, typically because
only a few markers were used as a readout at the start and end points of the transition, with
little attention to the dynamics and intermediate states. Recently, advanced live-cell imaging [41,42],
transcriptomic profiling at multiple timepoints during EMT and/or MET [43,44], flow cytometry [45–47],
high-throughput single-cell RNA-seq [48–50], morphological quantification [51,52], and mass cytometry
analysis [53], coupled with mechanism-based mathematical modeling of EMT networks [54], have
been used to reveal insights into the dynamics and intermediate states of EMT/MET. While these new
sophisticated experimental tools and measurements allow the dynamics of EMT/MET to be tracked in
multiple cells using a cohort of markers, mathematical models offer a framework in which to elucidate
the mechanisms underlying these dynamics and generate hypotheses that can be experimentally
tested. Thus, mathematical models can help to interpret experimental data, unveil complex dynamic
patterns, predict cellular responses, and eventually contribute to the design of further expeirments [55].
Remarkably, mathematical models have decongested the understanding of EMT by predicting the
existence of stable intermediate EMT or hybrid epithelial/mesenchymal (E/M) states [56–58]. Cells
in these hybrid E/M phenotypes have been identified in cell lines in vitro and in vivo in primary
tumors, circulating tumor cells, and metastases across multiple cancers [46,59–62]. These hybrid E/M
phenotypes may be maintained by “phenotypic stability factors” such as NUMB, OVOL2, GRHL2,
and NRF2 [57,63–65], a combination of EMT- and MET-inducing signals such as TGF-β and all-trans
retinoic acid (ATRA) [66,67], or via cell–cell communication through mechanisms such as Notch–Jagged
signaling [68]. Strong evidence for the functional implications of these hybrid E/M phenotype(s) has
been reported in both preclinical and clinical settings [46,69]. Examples include (a) their role in tumor
formation in mice [20,60], (b) mediating collective cell migration and invasion through aggregates or
clusters of circulating tumor cells (CTCs) [70], and (c) the correlation of hybrid E/M signatures with
poor patient prognosis in many cancers [71].

Further, these mathematical models have also predicted the co-existence of multiple phenotypes in
an otherwise genetically identical population [56]. Such non-genetic heterogeneity has been observed
in multiple cell lines, wherein cells harboring both epithelial and mesenchymal signatures were
found to co-exist alongside populations predominantly expressing either epithelial or mesenchymal
markers [45,46,72]. The relative frequency of these phenotypes can vary depending on the genetic
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background and other factors, such as the micro-envrionmental milieu or markers used for
identification [47,73–75]. Nonetheless, the co-existence of different cell subpopulations may enable
cooperation among them during metastatic progression [8,9,76,77]. For instance, in vitro and in vivo
mixing of more epithelial (PC-3/Mc) and more mesenchymal (PC-3/S) subpopulations of prostate
cancer cells was reported to enhance local invasive potential and metastastic colonization of the
former [8]. Other studies have documented the influence of paracrine signals from EMT-like cells on
non-metastatic cell populations via activation of Hedgehog/GLI signaling to facilitate metastasis [9].
While the exact molecular mechanisms and emergent outcomes of such co-operation are yet to be
experimentally determined, these processes are reminiscent of survival strategies observed in diverse
ecological systems, such as quorum sensing in bacterial colonies, division of labor, and bet-hedging [78].

Intriguingly, the co-existence of these distinct phenotypes can be explained by the presence of
multiple “attractors” or stable states in the multi-dimensional landscape of epithelial–mesenchymal
plasticity. An attractor represents a stable cell phenotype which cells starting with varying levels of
molecules can converge towards, depending on the crosstalk among different nodes of an interaction
network. The concept of attractors is borrowed from a Waddington’s landscape which depicts how
a stem cell progresses from an undifferentiated state to a differentiated one [79]. In this framework,
a stem cell—represented by a ball—rolls down the rugged landscape and eventually enters one of the
valleys at the foot of the hill (Figure 1a). These valleys are the attaractors of a system [80]. Systems
with more than one attractor are called “multistable” and have been experimentally observed in
other biological contexts as well, such as during development, where one progenitor cell can give
rise to two or more differentiated cell fates [81]. These attractors are governed by the complex,
interlinked EMT regulatory networks operating at multiple levels—transcriptional, translational,
post-translational, and epigenetic [80,82] (Figure 1a). The presence of these attractors raises the
possibility that isogenic cells can respond differently to the same dose and duration of identical
EMT-inducing stimuli. This cell-to-cell variability can arise due to multiple factors including cell cycle
stage, stochasticity/fluctuations in biochemical reaction rates, concentrations of various molecular
species, etc. [83]. Indeed, NMuMG mammary epithelial cells exposed to specific durations and
concentrations of TGF-β were observed to respond largely in a bimodal manner—one subpopulation
readily lost E-cadherin expression while the other remained epithelial; a similar trend was observed
consistently across a larger panel of cell lines [47]. Notably, this bimodality existed only at intermediate
concentrations or durations of TGF-β treatment; all cells maintained an E-cadherinhigh state at very
low concentrations, and all of them switched to E-cadherinlow at very high concentrations (Figure 1b).
Such dose-/time-dependent bimodality indicates that isogenic cells can attain more than one phenotype
under the same experimental conditions. The phenotype attained by an individual cell depends
on its genetic and epigenetic background, which determines how “poised” a cell is to alter its
biophysical and/or biochemical traits in response to varying extents of stimuli capable of eliciting an
EMT response [32].

Multistability, or the presence of multiple attractors, can also drive non-genetic heterogeneity
during chemotherapeutic responses and lead to resistance, a feature associated with EMT [28].
For instance, the treatment of a clonal cell population with apoptosis-inducing stimulus TRAIL
(TNF-related apoptosis-inducing ligand) for the same duration and dose was shown to negatively
affect viability only in a fraction of cells, while the rest survived [84]. This heterogeneity was attributed
to a high variance in protein levels for a common set of apoptotic regulators. Such variability may
contribute to treatment failure and provide a long-standing reservoir of cells that can gain drug
resistance by virtue of newly acquired genetic alterations [85,86]. With this increased appreciation of
the complexity associated with EMT/MET processes, we should practice caution in defining the exact
parameters that should be referred to as EMT/MET (or various shades of these transitions) in vitro and
in vivo to minimize further ambiguity.
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Figure 1. Non-genetic heterogeneity and hysteresis during epithelial–mesenchymal transition (EMT). 
(a) Representation of a Waddington’s landscape with attractors of different EMT states. (b) Epithelial 
cells (left panel) from an isogenic population may respond differently to the same dose of EMT-
inducing signals such as TGF-β (middle panel), while all of them may undergo a complete EMT at a 
higher dose of the signal (right panel). (c) Asymmetry in the “forward reaction” and “backward 
reaction”, i.e., the concentration of the EMT-inducing signal at which all cells switch from being 
epithelial to mesenchymal (downward blue arrow) is not the same as the one at which all cells switch 
in the other direction (upward red arrow). 

The presence of multiple attractors in a given system allows another interesting dynamic 
property: cells exhibiting a particular phenotype (E, M, or hybrid E/M) can transition spontaneously 
to another phenotype under the influence of “intrinsic noise” or “extrinsic noise” in biological 
systems [87]. Such “spontaneous switching” between E and M states was recently demonstrated in 
mouse prostate cancer cells: the cell population was first sorted based on EpCAM and vimentin levels 
through fluorescence-activated cell sorting, and then cultured independently. Cells of each of the 
three sub-populations (EpCAM+ Vim−, EpCAM+ Vim+, and EpCAM− Vim+), when cultured 
independently, were able to switch to the other two subpopulations [75]. Similar observations were 
made in a PMC42-LA breast cancer cell line where EpCAM levels were used to segregate cells as 
epithelial (EpCAM+) or mesenchymal (EpCAM−) [73]. These subpopulations underwent phenotypic 
transitions and reverted to the phenotypic distribution seen in the parental population. The authors 
demonstrated that these transitions were not driven by chromosomal instability, thus emphasizing a 
non-genetic mechanism underlying these phenotypic transitions. In vivo evidence for “spontaneous 
induction” of EMT was also reported recently in MMTV-PyMT mice [88]. However, the 
quantification of transition rates among different phenotypes has yet to be done rigorously. 
Mathematical models can play a crucial role in identifying the underlying context-dependent cues 
that can give rise to various EMT population distributions [89]. Future studies integrating 
experimental and theoretical approaches, similar to the attempts made for CSC dynamics, may pave 
the path to a holistic comprehension of these processes [12].  

3. Hysteresis/Cellular Memory Effects during EMT Dynamics 

Another hallmark of multistable systems is the possibility of cellular memory or hysteresis 
(Figure 1c). As discussed earlier, isogenic cells exposed to the same strength and duration of a signal 
may respond differently because they are placed in different attractors. Therefore, the response of a 
cell not only depends on the stimuli received in real time, but also on the history of input stimuli 
encountered previously that may have driven them to occupy specific attractors [90]. This property 
is typically described as “cellular memory”. One of the first reports connecting multistability to 
cellular memory in mammalian systems exposed HL60 cells to increasing concentrations of DMSO 
for 7 days to differentiate them into neutrophils (forward reaction), and subsequently these fully 
differentiated neutrophils were resuspended in decreasing concentrations of DMSO for the same 
duration (backward reaction). Interestingly, the fraction of cells expressing CD11b—the surface 
marker for neutrophils—was different in the two trajectories for the same concentration of DMSO 
treatment. This asymmetry in response was attributed to underlying multistability: because every 
cell had multiple possible attractors—CD11bhi and CD11blo—their likelihood of acquiring one 

Figure 1. Non-genetic heterogeneity and hysteresis during epithelial–mesenchymal transition (EMT).
(a) Representation of a Waddington’s landscape with attractors of different EMT states. (b) Epithelial
cells (left panel) from an isogenic population may respond differently to the same dose of EMT-inducing
signals such as TGF-β (middle panel), while all of them may undergo a complete EMT at a higher
dose of the signal (right panel). (c) Asymmetry in the “forward reaction” and “backward reaction”,
i.e., the concentration of the EMT-inducing signal at which all cells switch from being epithelial to
mesenchymal (downward blue arrow) is not the same as the one at which all cells switch in the other
direction (upward red arrow).

The presence of multiple attractors in a given system allows another interesting dynamic property:
Cells exhibiting a particular phenotype (E, M, or hybrid E/M) can transition spontaneously to another
phenotype under the influence of “intrinsic noise” or “extrinsic noise” in biological systems [87].
Such “spontaneous switching” between E and M states was recently demonstrated in mouse prostate
cancer cells: The cell population was first sorted based on EpCAM and vimentin levels through
fluorescence-activated cell sorting, and then cultured independently. Cells of each of the three
sub-populations (EpCAM+ Vim−, EpCAM+ Vim+, and EpCAM− Vim+), when cultured independently,
were able to switch to the other two subpopulations [75]. Similar observations were made in a
PMC42-LA breast cancer cell line where EpCAM levels were used to segregate cells as epithelial
(EpCAM+) or mesenchymal (EpCAM−) [73]. These subpopulations underwent phenotypic transitions
and reverted to the phenotypic distribution seen in the parental population. The authors demonstrated
that these transitions were not driven by chromosomal instability, thus emphasizing a non-genetic
mechanism underlying these phenotypic transitions. In vivo evidence for “spontaneous induction” of
EMT was also reported recently in MMTV-PyMT mice [88]. However, the quantification of transition
rates among different phenotypes has yet to be done rigorously. Mathematical models can play a
crucial role in identifying the underlying context-dependent cues that can give rise to various EMT
population distributions [89]. Future studies integrating experimental and theoretical approaches,
similar to the attempts made for CSC dynamics, may pave the path to a holistic comprehension of
these processes [12].

3. Hysteresis/Cellular Memory Effects during EMT Dynamics

Another hallmark of multistable systems is the possibility of cellular memory or hysteresis
(Figure 1c). As discussed earlier, isogenic cells exposed to the same strength and duration of a signal
may respond differently because they are placed in different attractors. Therefore, the response of
a cell not only depends on the stimuli received in real time, but also on the history of input stimuli
encountered previously that may have driven them to occupy specific attractors [90]. This property
is typically described as “cellular memory”. One of the first reports connecting multistability to
cellular memory in mammalian systems exposed HL60 cells to increasing concentrations of DMSO
for 7 days to differentiate them into neutrophils (forward reaction), and subsequently these fully
differentiated neutrophils were resuspended in decreasing concentrations of DMSO for the same
duration (backward reaction). Interestingly, the fraction of cells expressing CD11b—the surface marker
for neutrophils—was different in the two trajectories for the same concentration of DMSO treatment.
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This asymmetry in response was attributed to underlying multistability: Because every cell had
multiple possible attractors—CD11bhi and CD11blo—their likelihood of acquiring one phenotype or
the other depended not only on the DMSO received instantaneously, but also on all DMSO treatments
received in the past [90]. Similar observations were recently made in cells undergoing EMT and their
reverse MET [47,53]. HCC827 lung cancer cells treated with increasing concentrations of TGF-β to
induce EMT (forward reaction) followed by progressively decreasing concentrations of TGF-β to induce
MET (backward reaction) exhibited assymmetric transition trajectories, as measured by 28 markers at a
single-cell level. Furthermore, some cells did not revert to the epithelial phenotype even when TGF-β
was completely withdrawn, indicating cellular memory [53]. The irreversibility of EMT has also been
reported elsewhere [91–93], most likely due to “extreme” EMT induction. Nonetheless, the mechanisms
of such irreversibility have yet to be identified comprehensively. However, preliminary evidence
suggests that epigenetic treatments may help disrupt such irreversibility and permit the to reversion of
cells to an epithelial phenotype [94,95], as many canonical epithelial genes such as E-cadherin can be
epigenetically silenced during EMT progression [96,97].

Compared to EMT, molecular mechanisms mediating MET are relatively less characterized [98].
GRHL2—a transcription factor that activates CDH1 (E-cadherin) and CLDN4 (Claudin-4)—and
OVOL1/2 can repress EMT-associated transcription factors and drive MET [99–101]. However,
the overexpression of OVOL2, GRHL2, or E-cadherin may not always be sufficient to drive complete
MET [95,102–104]. These observations reinforce the aspect that cells may navigate through different
paths in the multi-dimensional landscape of EMP to undergo EMT or MET in a context-dependent
manner; thus, the dynamics of EMT and MET need not be always symmetrical.

The bidirectional communication between computational and experimental approaches has been
pivotal in gaining new insights into the dynamics of carcinoma EMT and MET. These insights
have been suggestive of potential therapeutic strategies, particularly for reducing metastatic
aggressiveness that exhibits a greater dependency on cellular plasticity than genetic mutations [105].
Firstly, driving tumor cells into a “locked” or “irreversible” mesenchymal state may compromise
their ability to colonize distant organs, as observed in previous reports [8,20,46,106]. Secondly,
mutually inhibitory feedback loops have been identified as regulators of multiple facets of cellular
plasticity in cancer progression—EMT/MET [17,107], mesenchymal–amoeboid transition (MAT),
and amoeboid–mesenchymal transition (AMT) [108], matrix-detached and matrix-attached states [109],
and metabolic switching between oxidative phosphorylation and glycolysis [110]. Congruently,
such feedback loops have also been observed to mediate various cell-fate decisions during embryonic
development [111]. Disruption of such feedback loops may reduce cellular plasticity and curb
metastatic potential in vivo [47]. Finally, the mechanisms responsible for maintaining the hybrid E/M
phenotype(s)—considered more aggressive and metastatic in contrast to “extremely epithelial” or
“extremely mesenchymal” ones [20,112]—can be targeted to reduce metastasis. These hybrid E/M cells
exhibit higher tumor-initiating or cancer-stem-cell-like (CSC-like) properties than extremely epithelial
or extremely mesenchymal populations [13,20], a notion supported by accumulating clinical evidence
wherein co-expression of epithelial and mesenchymal markers tends to be associated with a poor
patient survival across cancer types [71].

While an iterative interplay between mathematical models and experimental data has unraveled
key design principles of the dynamics of cellular plasticity and heterogeneity during EMT/MET,
many open questions remain. For instance, it remains to be identified how many hybrid E/M
phenotypes exist and what the similarities and differences in their functional attributes are. While
mathematical models of different regulatory networks have a common prediction that EMT/MET
is not a binary process, different numbers of hybrid E/M states with varying molecular signatures
have been predicted [113–115]. Which combination of molecular markers is most appropriate to
experimentally identify these hybrid E/M phenotype(s) needs to be commonly agreed upon [71].
A robust identification of such markers could help affirm/falsify the predictions from these models,
and fuel this interdisciplinary approach to classification of the ‘”common organizing principles”
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underlying the “myriad phenotypic complexities” [116] associated with various aspects of tumor
progression, including metastasis.

4. Phenotypic Interconversions of Cancer Stem Cell Populations

Cancer stem cells (CSCs) are cells with self-renewal capacity that lead tumor initiation and give
rise to the differentiated cells which constitute phenotypically heterogeneous tumors [29,117,118].
The notion of their existence has been around for over a century, but it gained more attention
when the first CSC-specific markers were identified in hematological and solid tumors [119–121].
These populations have been reported to originate from normal stem cells, progenitor cells and
differentiated cells that undergo a dedifferentiation process during malignant transformation (Figure 2a).
Several markers have been described to define CSC populations in different cancer types; for instance,
CD24−/low/CD44high markers delineate a common CSC population for breast cancer, colorectal cancer,
ovarian cancer, liver cancer, and others [122]. Interestingly, this population is characterized as the
mesenchymal-like CSC population in breast cancer [123]. ALDH (aldehyde dehydrogenase) activity
is another pan-CSC marker which can be employed for dissecting epithelial-like or E/M-hybrid-like
CSCs [123], suggesting the existence of different CSC subsets within the same tumor depending on
their EMT state. Indeed, CSCs can also exist in a quiescent or highly proliferative state, as has been
reported since early seminal studies [124].
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Figure 2. Origins and dynamics of cancer stem cells (CSCs). (a) CSCs can originate from normal
cells during malignant transformation, induced by oncogenic events. Separately, additional genotoxic
insults on malignant cells can lead to a dedifferentiation process of differentiated tumor cells into
CSCs. Black and white cells are differentiated cells and colored cells are CSCs. (b) EMT/MET generates
stem cell properties in cancer cells; however, extreme EMT can cause a loss of stemness potential.
Therefore, cell plasticity and reversibility are important features in reversion to hybrid E/M states.
(c) Microenvironmental signals can induce stemness in non-CSCs, e.g., cytokines such as IL-6 or TGF-β.
In addition, tumor cells can hijack the niche of normal stem cells, inducing dedifferentiation and
stemness in cancer cells. (d) Tumor cell populations tend to maintain their inherent proportion of CSCs.
Differentiated phenotypes and lineages in tumours, either luminal and basal, can switch to CSCs when
these are depleted or diminished due to experimental approaches or anticancer treatments.

The CSC phenotype is a dynamic state rather than a fixed population, as confirmed by lineage
tracing in breast cancer models [125] and in human colorectal xenotransplants [30], wherein a
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continuous turnover of CSCs has been observed. Other in vitro models have also shown that CSCs
can arise from non-CSCs [12,126,127]; for instance, cells undergoing EMT can convert from non-CSCs
to CSCs [22] (Figure 2b). A recent study using lineage tracing and RNA-seq demonstrated that
EMT occurs continuously during early tumorigenesis in individual clones [128], thus enabling CSC
properties. EMT implies a transdifferentiation from an epithelial to a mesenchymal phenotype;
therefore, it is not surprising that cells first dedifferentiate—increasing stemness—prior to their
entry into the mesenchymal-like state. Thus, consistent with in silico predictions from mechanistic
mathematical models [21], stemness has been observed to peak in the hybrid E/M state(s) rather
than terminal epithelial or mesenchymal states [20,46]. Interestingly, in breast cancer, non-CSC
to CSC conversions have been observed to occur more often in the basal-like subtype than in the
luminal-like subtypes. This difference is due to the maintenance of bivalent or “poised” chromatin
marks on the ZEB1promoter—an important EMT inducer—able to quickly respond to environmental
signals [129]. Indeed, such poised marks have also been demonstrated for crucial cell-fate regulators in
the differentiation of embryonic stem cells [130].

Dynamic reversible processes such as EMT can mediate interconversion among CSCs and
non-CSCs. Besides EMT, cancer cells can also take alternate routes to acquire CSC properties, which
include undergoing a dedifferentiation process by oncogenic transformation [127,131], acquisition of
new mutations [132,133], reversible senescence [134], and in response to inflammatory signals from the
microenvironment [11] (Figure 2a–c). In colorectal differentiated tumor cells, NF-κB signaling has been
shown to activate the Wnt pathway to induce dedifferentiation, re-expression of Lgr5, gain of stem
cell properties, and increased tumor initiation ability [135]. In addition, cancer cells can outcompete
resident stem cells and occupy their supportive niches to acquire stem cell properties [11,136,137].
Interestingly, the depletion of Lgr5+ cells ceases tumor growth of CRC, yet tumor growth is restored by
the spontaneous reappearance of Lgr5+ cells in a dedifferentiation event in the primary tumor but
not in the metastatic liver site, suggesting the absence of a CSC-supportive niche in the liver [30,138].
Overall, these studies indicate that the CSC state is a dynamic and plastic condition coordinated by
tumor intrinsic and extrinsic processes.

Phenotypic plasticity can explain the continuous appearance of CSCs reported in clonal evolution
studies [125,139]. In fact, not all cancer types follow the hierarchical CSC model, as reported in
melanoma and pancreatic studies by the lack of clonal expansion [139–142]. This observation can
be a consequence of highly plastic tumors that continuously interconvert CSC states in equilibrium.
In pancreatic cancer, CD133+ tumor-initiating cells are transiently and continouously generated, since
their presence is required for tumor generation [139]. Therefore, the CSC phenotype—transient or
sustained—seems to be crucial for tumor and metastasis initiation.

5. Dynamic Equilibrium within Cancer Cell Populations

Some studies have demonstrated a dynamic equilibrium between CSC and non-CSC populations
(Figure 2d) [143,144]. Similarly to complex systems, tumors can maintain a phenotypic equilibrium for
functional redundancy and feedback control [145]. A pioneering study demonstrated how a mixed
population of CD44high and CD44low cells sorted from HME (normal human mammary epithelial cells)
restored the parental stem-cell-like population. CD44high cells were observed to undergo differentiation
while the CD44low population transitioned into the stem-cell-like CD44high phenotype, implying the
existence of homeostatic control at population level. An alternate explanation could be different growth
rates among stem-cell-like and differentiated cells; further investigation is required to deconvolute
these different hypotheses [127]. Another landmark study combined the use of mathematical models
and experimental approaches to characterize the equilibria of CSC and non-CSC populations [12].
Two breast cancer cell cell lines (SUM149 and SUM159) used in this study comprised different
distributons in terms of luminal-like (L), basal-like (B), and stem cell-like (S) subpopulations. When
these three subpopulations were segregated and cultured separately, all subpopulations returned to
the original equilibrium of the parental cell line (SUM149 or SUM159, respectively), reminiscent of
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observations made in PMC42-LA systems [73]. Thus, de novo CSCs emerged independent of the
starting point—L or B cells. These findings were later explained using a mathematical model proposing
that phenotypic distributions in a given population (cell line) can be maintained due to stochastic
cell-state transitions [12]. Another study using these cell lines showed how the aberrant regulation of
cell fate determinants such as Slug can alter the balance of interconversion between luminal and basal
cell populations [126]. Therefore, a perturbation in key regulatory genes can alter the relative stability
of various possible attractors, and consequently generate different phenotypic distributions [146,147].

The population dynamics of cancer cells can also be influenced by extrinsic input fluctuations
from microenvironmental signals. For instance, Zeb1 is epigenetically controlled, with bivalent
histone marks allowing quick responses to TGF-β signals, impacting the dynamic equilibrium among
CD44low-non-CSCs and CD44high-CSCs [129]. Thus, epigenetic marks can directly govern cell state
transitions by affecting the transcriptional accesbility of genes involved in cellular plasticity [148].
TGF-β signaling also participates in maintenance of the equilibrium of non-CSC and CD133+ CSCs,
as reported in breast and colon cancer cells in vitro [144]. It is of note that TGF-β signaling also
modulates the dynamic heterogeneity in embryonic stem cells by altering the balance of Nodal and
BMP pathways [149]. In breast and prostate cancer, inflammatory cytokines such as IL-6, which
are also involved in EMT [150], establish a dynamic balance of CSCs and non-CSCs. IL-6 secretion
maintains the balance of newly generated CSCs and the CSC differentiation to non-CSCs [131].
In agreement with these studies, stochastic simulations estimated the rates of interconversion between
epithelial-proliferative and mesenchymal-quiescence states in breast CSCs. Similarly, disrupting
the inflammatory feedback loop signals of IL-6, Stat3, and NF-κB has been predicted to serve as a
therapeutic intervention able to eliminate both types of CSCs [151]. This model prediction has yet to
be experimentally tested.

6. Non-Cell Autonomous Effects of the EMT Process and CSC Identity

Tumors have been postulated to display collective behavior and can be viewed as a community of
social cells [78,152]. Indeed, swarm-like behavior has been proposed to facilitate optimal utility of
tissue space and induce motility beyond a threshold of tumor population density [153]. This collective
behavior could be the result of the synchronized EMT evident in migrating individual mesenchymal cells
documented in developmental and cancer models [35,88,154]. Synchronized EMT in cell populations
can be observed in embryonic cells that ingress and form the mesoderm in the invagination and
epiboly steps of gastrulation. The origins of this spatiotemporal synchrony are often assigned to the
“organizer” group of cells, such as the Nieuwkoop center and Spemann organizer, which demarcate the
onset of EMT in Xenopus embryos [155]. The signal gradients emanating from these node organizers,
Wnt/β-catenin, and Nodal/TGF-β dictate the space and time of EMT during gastrulation [155,156].
In cancer, such structures have not yet been determined, as EMT is not likely to be restricted to
a particular time or space; instead, it can occur spontaneously during different stages of disease
progression and depending on microenvironmental changes.

The current observations of EMT in cancer have been mainly based on detecting morphologically
visible invasive cells at tumor margins. Recent evidence suggests continuous EMT in the early stages
of tumor development in different clones [128], even in preneoplastic stages [157]. Tumor marginal
invasion has been captured by intravital microscopy (IVM), showing the occurrence of spontaneous
EMT in individual cells of MMTV-PyMT breast tumors [88,158]. Another intravital imaging study
implicated TGF-β in coordinating the local switch from attached groups of cells to cells displaying
individual motility [159]. Overall, EMT might be synchronized at a population level in cancer.

Interestingly, E-cadherin has been reported to function as a sensor of cell population density,
providing a mechanism by which cell populations may reach phenotypic equilibria through EMT in
tissues. Mechanistically, E-cadherin can sense low cell densities and increase the availability of growth
receptors, thus favoring downstream EGFR/ERK signaling and β-catenin stabilization to stimulate
growth [160–162]. Computational studies have modeled “anti-social” behavior of E-cadherin-negative
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cells, typical of EMT-like cells, and predicted that their presence could disrupt existing population
dynamics, depending on external environmental factors such as calcium levels [160]. This instance
is a good example of “secrete-and-sense cells”, by which an EMT event could alter homeostasis and
influence the entire population.

7. Spatiotemporal Dynamics of EMT and CSCs

Cellular phenotypes displaying varying levels of EMT and/or CSCs have been witnessed in vitro
and in vivo; one recent focus has been the identification of their spatial localizations within a tumor.
One of the first reports on spatial heterogeneity in EMT proved a higher nuclear localization of
β-catenin at the invasive edge of primary colorectal carcinomas, while a more cytoplasmic and
membranous staining was evident in central tumor areas [163]. Concurrently, membranous E-cadherin
was largely retained in central tumor areas but lost at the invasive edge [164,165]. More recently,
subsets of CSCs (CD44+/CD24− and ALDH+) with varying EMT status (mesenchymal and hybrid
E/M, respectively) have been described in breast cancers [123,166], with the mesenchymal subset
located at the invasive edge and the hybrid E/M subset located in the tumor interior. This spatial
distribution can be attributed to gradients of EMT-inducing signals and cell-to-cell communication in
tumors [167]. In both aforementioned cases, the mesenchymal subpopulation at the invasive edge of
primary tumors has been reported to be quiescent, while the central tumor subpopulation tends to be
proliferative [123,163], consistent with the “go-or-grow” (i.e., migrating cells have low proliferation
rates) paradigm, as witnessed in in vitro analysis of EMT and cell cycle regulators [26,168]. Single-cell
transcriptomic analysis of primary head and neck tumors has further strengthened the finding of
prominent mesenchymal features at the invasive edge [48]. Thus, a primary tumor may contain
spatially distributed cells with varying extents of EMT [68,167].

Spatiotemporal patterns of EMT and non-EMT cells have been observed in vitro as well. EMT-like
cells can induce EMT across the population by paracrine and/or juxtacrine signaling and generate an
equilibrium of EMT-induced and non-EMT cells in tumor cell clusters [47,68]. The processes by which
a cell population reaches these equilibria in a spatiotemporal manner require further investigation,
and this is another example where mathematical modeling could reveal the underlying mechanisms.

This spectrum of heterogeneity has also been observed beyond the primary tumor in disseminated
circulating tumor cells (CTCs) from patients across cancer types [59,69,169,170]. CTCs can migrate
either as individual cells or in units of two or more cell clusters [169]. Various spatiotemporal patterns
in EMT phenotypes may influence frequencies and size distributions of CTC clusters [171], which are
considered the primary harbingers of metastasis [172]; thus, an understanding of their characteristics,
such as size distribution, frequency, ability to traverse capillaries [173], and molecular profiles of
their tumor and/or stromal cell populations [174], holds promise in highlighting new therapeutic
vulnerabilities. Connecting these traits of CTC clusters to spatiotemporal dynamics of EMT in a
primary tumor has yet to be undertaken comprehensively. Since these CTC clusters can contain
various non-cancerous cells such as platelets and fibroblasts, their presence may have many functional
consequences in accelerating metastasis; for instance, macrophages may facilitate transendothelial
migration and neutrophils may drive cell cycle progression during circulation [175,176]. Thus, future
efforts should focus on the mechanistic underpinnings of various modes of cell-to-cell communication,
coordination, and cooperation among tumors and stromal cells during the various steps of the
metastasis–invasion cascade.

8. Conclusions

Dynamic cell plasticity increases the phenotypic heterogeneity of tumors and thus tumor versatility
at the population level. This phenomenon increases the complexity of the mechanisms underlying
carcinogenesis, metastasis, and its treatment. The study of non-static systems is technically challenging,
but the emergence of new techniques able to study single cell phenotypes and cell state transitions
through reporter cell lines, real-time imaging in combination with mathematical modeling, and big
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data analysis sheds light on the existence of dynamic behaviors. Future studies need to focus on
decoding the molecular mechanisms responsible for such emergent behaviors at cellular and population
levels. An individual renegade cell has long been considered to be the unit of cancer progression.
However, with accumulating evidence about collective phenomena at a tissue level, such as engineering
of the primary tumor and/or metastatic niche [136,177], collective migration [175], and metabolic
synergy [178], we must focus on non-cell autonomous mechanisms of cellular plasticity in the tumor
microenvironment [179]. In addition, new studies should attempt to elucidate the nonlinear dynamics
of cell-to-cell communication and co-operation in tumor progression. Such an integrative and dynamic
understanding will steer us towards outsmarting cancer through innovative approaches such as
blocking cellular plasticity bidirectionally and designing adaptive therapies that take into account the
evolution of resistance [180].
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