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Abstract: Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid cancers and
informative biomarkers are critical for risk stratification and treatment guidance. About half of
PTCs harbor BRAFV600E and 10%–15% have RAS mutations. In the current study, we trained a deep
learning convolutional neural network (CNN) model (Google Inception v3) on histopathology images
obtained from The Cancer Genome Atlas (TCGA) to classify PTCs into BRAFV600E or RAS mutations.
We aimed to answer whether CNNs can predict driver gene mutations using images as the only input.
The performance of our method is comparable to that of recent publications of other cancer types
using TCGA tumor slides with area under the curve (AUC) of 0.878–0.951. Our model was tested on
separate tissue samples from the same cohort. On the independent testing subset, the accuracy rate
using the cutoff of truth rate 0.8 was 95.2% for BRAF and RAS mutation class prediction. Moreover,
we showed that the image-based classification correlates well with mRNA-derived expression pattern
(Spearman correlation, rho = 0.63, p = 0.002 on validation data and rho = 0.79, p = 2 × 10−5 on
final testing data). The current study demonstrates the potential of deep learning approaches for
histopathologically classifying cancer based on driver mutations. This information could be of value
assisting clinical decisions involving PTCs.

Keywords: Papillary thyroid carcinoma; histopathology; BRAFV600E; RAS; deep learning;
convolutional neural network

1. Introduction

Thyroid cancer is the most common form of endocrine malignancy. The incidence of thyroid
cancer has increased 3-fold over the past 30 years [1], and it is estimated by the National Institutes
of Health that in 2018 more than 53,000 new cases of thyroid cancer and more than 2000 deaths
from these diseases occurred in the United States. Papillary thyroid carcinoma (PTC) is the most
common subtype, comprising approximately 80% of thyroid cancers. Current treatment includes
surgery, thyroid hormone, and radioactive iodine (RAI). More informative biomarkers, whether
molecular or morphological, are critical in the clinical decision-making of PTC [2]. Moreover, since the
prognosis of PTCs is generally good with a 5-year survival rate of over 95% [3], it is important to spare
patients from overtreatment by distinguishing between indolent and clinically aggressive tumors.
For example, a recent publication reported that assessment of BRAFV600E assist risk stratification of
solitary intrathyroid PTC with size between 1 to 4 cm [4], and for thyroid microcarcinoma, it has also
been shown that BRAF analysis might help to identify tumors that have negligible clinical risk [5].
On the other hand, for patients who develop advanced disease, such as metastatic RAI-refractory
disease, treatment options are limited. Targeted therapy might provide some possibilities [6–8] and
undoubtedly, the identification of relevant mutations is the key.
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PTC is a MAPK-driven cancer that has two mutually exclusive drivers: BRAFV600E and mutated
RAS with distinct downstream signaling events [9]. The BRAFV600E mutation is the most common
genetic alteration in PTC, occurring in approximately half of all patients and RAS point mutations,
which includes several specific sites (codons 12, 13, and 61) of N-RAS, H-RAS, or K-RAS genes, were
found in 10% to 15% of PTC [10]. Tumors driven by BRAFV600E do not respond to the negative feedback
from ERK to RAF, resulting in high MAPK-signaling [11]. In contrast, tumors driven by RAS signal via
RAF dimers that respond to ERK feedback result in lower MAPK-signaling. This differential signaling
results in profound phenotypic differences. Importantly, the presence of BRAFV600E not only correlates
with aggressive tumor behaviors [12] but also is associated with decreased ability of tumors to take up
RAI [13], leading to a worse prognosis in population studies [14,15].

It has been shown that there exists a strong association between BRAFV600E and RAS mutation
status and histopathology. Tumors harboring BRAFV600E mutation characterize classical papillary
pattern and tall cell variation while tumors with RAS mutations characterize follicular variant, which
possesses the follicular growth pattern and architecture typical of follicular tumors [9]. Correlating
morphological patterns with molecular characters using deep learning demonstrates substantial
promise [9,16,17]. Given the phenotypic messages present in histopathology usually reflect the
collective effects of molecular processes and cellular behaviors, it is possible that BRAFV600E and RAS
mutations can be distinguishable through histopathological presentations. To test the hypothesis, in
the current proof-of-concept study we trained a deep learning convolutional neural network (CNN)
model (Google Inception v3) on histopathology images obtained from The Cancer Genome Atlas
(TCGA) to classify PTCs into BRAFV600E or RAS mutations.

2. Results

2.1. A CNN Framework for Differentiating Mutations of PTC from Histological Images

The goal of this study was to develop a deep-learning model to accurately classify the most
common two mutations in PTCs: BRAFV600E and RAS based on Hematoxylin and eosin (H&E) tissue
slide images, which were publicly available from TCGA portal. The sample selection, allocation, and
analysis strategies were depicted in Figure 1A. We first examined these two mutations in this cohort
and 235 and 52 samples with BRAFV600E and RAS mutations, respectively, were identified. One sample
(TCGA-EM-A4FV) was detected to have both mutations and was excluded. Additionally, as shown in
Figure 1B, we also categorized histopathological subgroups and mRNA expression patterns of these
two groups to further determine whether the results of our prediction would correlate with traditional
pathological classification or mRNA expression. As shown in Supplementary Table S1A, classical
PTCs dominated the pathological category of BRAFV600E cases (assigned classical: 76.5%, follicular
variant:5.1%, and tall variant:11.5%). For RAS mutations, there were 49 samples where pathological
reviews were still available. Out of these samples, 29 were assigned as FCV and 20 were assigned
as classical PTC, respectively. To compile the list for model construction, all 51 samples with RAS
mutation were included and 52 samples with BRAFV600E were selected randomly (Figure 1A). We
then split the cohort into training (60%), validation (20%), and final testing (20%) sets. The network
was trained, validated, and finally tested using 512 × 512-pixel tiles obtained from nonoverlapping
patches. The sampling and image tile augmentation procedures are described in detail in the Methods
section. The final model with the best accuracy in validation subset was obtained on iteration 195,000
(Supplementary Figure S1). This model resulted in an AUC of 0.878 on a validation dataset and 0.951
on a final testing dataset (Figure 2A).
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Figure 1. Study cohort. (A) Sample selection, allocation, and analysis strategy. Formalin-fixed,
paraffin-embedded (FFPE) slides Hematoxylin and eosin (H&E) stained images were downloaded from
GDC repository. Samples with RAS or BRAFV600E mutations were allocated into training, validation,
and testing sets with ratios of 0.6, 0.2, and 0.2, respectively. On average there were 25 patches selected
per slide. The Inception V3 framework was applied on the training set for 20,000 iterations. The model
with the highest accuracy in validation set was chosen as the final model. Classifications were run on
an independent testing set and the results were aggregated per slide. (B) The oncoprint depicting the
molecular characteristics and histological subtypes of samples used in this study.

2.2. Deep-Learning Models Successfully Discriminate of BRAFV600E and RAS Mutation of Papillary Thyroid
Carcinomas from Histological Images

Receiver Operating Characteristic (ROC) curve analysis (Figure 2A) showed that BRAFV600E and
RAS mutation are predictable using our deep-learning approach. AUC values for the best model were
0.878 for validation and 0.951 for final testing subsets. We included the prediction of an image only if
the probability of either BRAF or RAS class was at least 80%; and reported the prediction of a tumor
only if at least 80% image tiles derived from the slide agreed with it. With the 80% exclusion rule, 76%
of validation tumors and 95% of final testing tumors had correct predictions, while 5% of validation
and 5% of testing tumors had incorrect calls, and 19% of validation tumors could not be predicted.
We also evaluated the performance if all tumors and images were used without any exclusion, the
accuracy increased to 85% in validation data and remained at 95% in the final testing data.
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Interestingly, it seemed that the prediction performed better for predicting RAS than for BRAF.
For the validation subset, the accuracy rate of successful prediction using the cutoff of true rate 0.8
was 63.6% and 90% for the BRAF group and RAS group, respectively. In the final testing subset, the
accuracy of prediction using the cutoff of true rate 0.8 was 90.9% for the BRAF group and 100% for the
RAS group. The confusion matrices in Supplementary Table S2A detail the discrepancies between the
different classifications.

In addition, the image-based classification seemed to correlate well with mRNA-derived expression
pattern. The correlations between the probability of accurate prediction per tile image and BRS
(BRAF-RAS score) were significant in both validation (Figure 2B: Spearman correlation rho = 0.63,
p = 0.002) and final testing subsets (Figure 2C: Spearman correlation rho = 0.79, p < 0.001).
Representative histopathological images with activation maps of BRAFV600E and RAS mutation
are depicted in Figure 3.
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Figure 2. Deep-learning models successfully discriminated BRAFV600E and RAS mutation of papillary
thyroid carcinomas from histological images. (A) Receiver Operating Characteristic (ROC) curves
showed that area under curve (AUC) values for the best model were 0.878 for validation and 0.951 for
final testing subsets. (B&C) The correlations between the probability of accurate prediction per tile image
and BRS (BRAF-RAS score) were significant in both (B) validation (Spearman correlation rho = 0.63,
p = 0.002) and (C) final testing subsets (Spearman correlation rho = 0.79, p < 0.001).
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and RAS mutations. (A) BRAFV600E mutated, Classical Histological Type, (B) BRAFV600E mutated,
Follicular Variant Type, (C) RAS mutated, Classical Histological Type, (D) RAS mutated, Follicular
Variant Type.

2.3. BRAF Mutations Other Than BRAFV600E Were Classified as RAS-Mutated while BRAF Fusions Were
Classified as BRAFV600E Group, Respectively

Five tumors with BRAF mutations other than BRAFV600E were predicted as being from the RAS
mutation group by our classifier. Consistently, these tumors exhibited RAS-like behavior according
to BRS score, which were derived from mRNA expression profiles (Figure 4A). This is in line with
previous observations that BRAF K601E occurs in follicular variant tumors that are mostly RAS-like
PTCs [18]. On the other hand, the BRAF fusions were predicted as BRAFV600E. Three of the six BRAF
fusions, including fusion with MACF1, FAM114A2, and MKRN1, were 100% predicted as BRAFV600E

and SND1_BRAF, AP3B1_BRAF, and AGK_BRAF were predicted as BRAFV600E with the probability of
87%, 79.2%, and 70%, respectively. These 6 cases of BRAF fusion were also categorized as BRAF-like
according to the BRS score. The confusion matrices in Supplementary Table S2B detail the discrepancies
between the different classifications.

2.4. Analyses from Histological Images Correlate with Molecular Expression for Tumors without BRAFV600E

and RAS Mutations

Although the current study mainly focused on differentiating BRAFv600E and RAS mutation, we
were wondering how cases without either of these two mutations would be classified. Among these
samples, mRNA expression profiles were available in 101 cases with 38 were BRAF-like and 63 were
RAS-like according to the BRS score. Thirty cases (8 BRAF-like and 22 RAS-like) were randomly
selected and tested with the best-performing model. Interestingly, as shown in Figure 4B, even though
there were no mutations of either BRAF or RAS per se, mRNA-based BRS scores correlated well with
the information derived from histopathology: 6 of 8 BRAF-like tumors (BRS < 0) were assigned to the
BRAFv600E group and 19 of 22 RAS-like tumors (BRS > 0) were classified as RAS mutated. The confusion
matrices in Supplementary Table S2C detail the discrepancies between the different classifications.
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3. Discussion

The ability to promptly and accurately predict the gene mutations from histopathology images
could be of great value regarding risk stratification and treatment guidance for cancer patients. Previous
work has shown associations between clinically important mutations and specific patterns of lung
adenocarcinoma [17]. Also, Chiang et al. [19] recently demonstrated the relationship between a defining
mutation and the unique morphology of a breast cancer subtype. While phenotypic associations of
somatic mutations are not routinely used for predicting oncogenic drivers in PTC, this study reported
promising predicative capabilities of a deep convolutional neural network, which could potentially
help classify BRAFV600E and RAS mutations in PTCs from histopathology images. The performance of
our method is comparable to that of recent publications of other cancer types (lung, breast, bladder)
using TCGA tumor slides [20] with an AUC of 0.878 for validation and 0.951 for final testing subsets.

Although the classifier was trained with the input of mutation-stratified images, intriguingly,
the derived image-based classification correlated well with mRNA-derived expression pattern (BRS
scores) as well. One plausible explanation is that these driver mutations dictate the downstream
signaling cascades: both mRNA expression profiles and histopathological architectures simply reflect
the integrative pictures of these molecular events. Interestingly, it seemed that the prediction of our
CNN models performed better for classifying RAS than for BRAF. This is consistent with the findings
from the recent TCGA landmark paper of PTCs [9]. The authors concluded that RL-PTCs and BVL-PTCs
are fundamentally different in their genomic, epigenomic, and proteomic profile. Importantly, they also
suggested that BRAFV600E PTC should not be considered a homogeneous group in clinical studies [9].

This study has important limitations. First, this was not based on whole-slide automated image
segmentation, and the selection of ROIs within each slide required expert guidance. Future studies
will explore more advanced methods for automatic selection of regions and for incorporating a
higher proportion of each slide in training and prediction. Moreover, as a proof of concept, we only
focused on the two major mutations of PTCs: BRAFV600E and RAS, which estimated to account for
around two thirds of the PTC cases. The value of clinical application is somewhat limited without
a multi-classifier. Further efforts on genomic alterations other than these two mutations are needed
for a more comprehensive mapping between the intriguing connection between molecular and
morphological events. Last but not least, in future study the concept of intra-tumoral heterogeneity
might need to be taken into consideration. Despite these caveats, we believed that it would still be
important to demonstrate that deep convolutional neural networks can potentially be used to assist in
molecular pathology and provide useful clinical insights.
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4. Methods

4.1. Sample Selection and Image Processing

To test whether CNNs can be trained to predict gene mutations using images as the only input,
whole slide image, genomics and clinical data for matched patient samples were downloaded from the
TCGA website (https://gdc.cancer.gov/). The images were downloaded in the native image format,
Aperio SVS files, in which they had been scanned. An SVS file stores an image in multiple resolutions,
including the highest resolution the image data was captured; for example, in an image that is acquired
at a 40×magnification, each pixel is 0.25 × 0.25 microns.

There were 235 and 52 samples with BRAFV600E and RAS mutations, respectively. One sample
(TCGA-EM-A4FV) was detected to have both mutations and was excluded. The distribution of
histological classification of all samples with BRAFV600E and RAS were listed in Supplementary
Table S1A. All 51 samples with RAS mutation were included. On the other hand, 52 samples with
were selected randomly from 234 cases with BRAFV600E mutation (Figure 1A). Patient demographic
characteristics of the study cohort were listed in Supplementary Table S1B. Patients were randomly
assigned to nonoverlapping training (60%), validation (20%), and final testing (20%) sets that were
used to train models and evaluate their performance (Figure 1A). Although there was more than
one slide for each patient, we chose only one diagnostic, H&E-stained, formalin-fixed, paraffin-
embedded (FFPE) sections for our analysis. All selected slides were reviewed and representative
regions containing primarily tumor nuclei were manually identified for each slide to avoid images
containing tissue-processing artifacts, including bubbles, tissue folds, and chromatic aberration due
to inadequate staining. A single 2048 × 2048-pixel svs image was cropped and re-sized to down to
512 × 512-pixel jpg images (HPF: resolution 0.5 µm/pixel). On average, there were 25 patch images per
slide. In the end, there were 1525 patches for training, 525 for validation, and also 525 patch tiles for
final testing.

4.2. Network Architecture and Training Procedures

Our imaging classification model was based on modified inception v3 architecture. Inception v3 is a
deep convolution neural network model, consisting of multiple convolution layers, filter layers, pooling
layers, activation layers, one fully connected layer, and a final softmax output layer. The model was
modified to allow two-label output classification (DeepPath, https://github.com/ncoudray/DeepPATH).

For BRAFV600E vs RAS mutation classification, we trained the entire network model preloaded with
imagenet weights using high-power field (HPF) images in the training set. RMSprop optimizer with
initial learning rate 0.1 and a decay factor of 0.16 was used. We implemented an image augmentation
approach to convert each patch in the training set into four instances: original, 180◦ rotation, horizontal,
and vertical flips. A total of 6180 training images were used in mini-batches of size 64.

The training jobs were run for 200,000 iterations. We evaluated its classification performance on
validation dataset every 5000 iterations. As shown in Supplementary Figure S1, the model with the
best accuracy performance in the validation data during the first 200,000 iteration was chosen as the
final model. The final testing dataset was used to independently evaluate the non-biased performance.

4.3. Validation and Testing Procedures

The final softmax layer of our CNN model calculates the probability of BRAFV600E or RAS
mutations of every input image tile. We excluded image predictions if neither the probabilities of
BRAFV600E nor RAS mutations were greater than 80%. For every tumor tested, a percRAS score was
defined as the percentage of images predicted as RAS mutation class. We predicted a tumor as RAS
mutated if the percRAS score was greater than 0.8; and predicted a tumor as BRAF mutated if the
percRAS score was less than 0.2. The mutation class would not be predicted if the percRAS score was
between 0.2 and 0.8.

https://gdc.cancer.gov/
https://github.com/ncoudray/DeepPATH
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4.4. Performance Evaluation

Metrics for Performance Evaluation of Algorithms

The performance of our CNN model was evaluated by the receiver operating characteristic (ROC)
curves. Higher area under the ROC curve (AUC) represents better prediction performance. We
also used confusion matrices to summarize the comparison between real mutation statuses and the
predicted BRAFV600E/RAS classes. The significance p value of the prediction accuracy was estimated
by the Fisher’s exact test.

4.5. Hardware and Software

Prediction models were trained using TensorFlow (v1.3.0) on a server equipped with Intel(R)
Core(TM) i7-7700 CPU@3.60 GHz CPUs, 48 GB RAM, and a NVIDIA GeForce GTX 1070, 8GB RAM
graphics card. Image data were extracted from Aperio svs whole-slide image formats. Data processing,
model training, and evaluation was done in a Python 3.6 environment.

4.6. BRS Scores

BRS scores were used to quantify the extent to which the gene expression profile of a given tumor
resembles either the BRAFV600E or RAS mutant profiles as BRAF-like (BVL) or RAS-like (RL) and
obtained from the landmark research of TCGA [9]. Briefly, 391 samples with both exome and RNA
sequencing data were compared to derive a 71- gene signature. Correlations with this signature were
used to derive a continuous measure (−1 to +1), with BVL- PTCs being negative and RAS-like (RL)
PTCs. This signature showed strong separation of the BRAFV600E and RAS mutant tumors.

4.7. Prediction on Additional PTC Tumor Images

We applied our final model on tissue images from six tumors with BRAF fusions, five tumors with
non-V600E BRAF mutations, one tumor with double BRAFV600E and KRAS mutations, and 30 tumors
without BRAF or RAS mutations. Spearman correlation between tumor BRS scores and prediction
percRAS values were estimated. We also used a confusion matrix to compare the predicted classes
with the expression pattern (BRAF-like or RAS-like) of the tumors.

4.8. Ethical Statement

The slide images and the corresponding cancer information were de-identified and retrieved from
the Genomic Data Commons portal (https://gdc-portal.nci.nih.gov) public repositories and are in whole
or part based upon data generated by the TCGA Research Network (http://cancergenome.nih.gov/).
The data used were publicly available without restriction, authentication, or authorization necessary.

5. Conclusions

To summarize, the current study demonstrates the potential of deep learning approaches for
histopathologically classifying cancer based on driver mutations. This information could be of value in
assisting clinical decisions involving PTCs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/8/10/1675/s1.
Table S1: Demographic characteristics and histological types of the PTC data, Table S2: Confusion matrices of
prediction results, Figure S1: Error rates and AUC of models on training, validation, and testing data during the
first 20,000 iterations.
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