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Abstract: Background: Ex vivo fluorescent confocal microscopy (FCM) is a novel and effective
method for a fast-automatized histological tissue examination. In contrast, conventional diagnostic
methods are primarily based on the skills of the histopathologist. In this study, we investigated the
potential of convolutional neural networks (CNNs) for automatized classification of oral squamous
cell carcinoma via ex vivo FCM imaging for the first time. Material and Methods: Tissue samples
from 20 patients were collected, scanned with an ex vivo confocal microscope immediately after
resection, and investigated histopathologically. A CNN architecture (MobileNet) was trained and
tested for accuracy. Results: The model achieved a sensitivity of 0.47 and specificity of 0.96 in the
automated classification of cancerous tissue in our study. Conclusion: In this preliminary work, we
trained a CNN model on a limited number of ex vivo FCM images and obtained promising results
in the automated classification of cancerous tissue. Further studies using large sample sizes are
warranted to introduce this technology into clinics.

Keywords: confocal microscopy; deep learning; CNN; OSCC; SCC; intraoperative microscopy; AI;
ex vivo FCM

1. Introduction

According to global cancer statistics, oropharyngeal cancer is amongst the leading
causes of cancer deaths worldwide, particularly in men. Incidence rates vary depending on
the presence of risk factors, such as tobacco, alcohol, or chewing of betelnuts combined with
poor oral hygiene and limited access to medical facilities. In Europe, head and neck cancers
represent 4% of all malignancies. The most common entity among them is oral squamous
cell carcinoma (OSCC), which can be found in more than 90% of patients with head and
neck cancer [1]. Despite the advances in medical diagnostics and broad access to medical
facilities, patients with OSCC still have a low 5-year survival rate of around 60% [2].

Therefore, improvements in diagnostic tools involving prevention, early detection,
and intraoperative control of resection margins have a valuable role in improving life
quality and extending the overall survival rate of OSCC patients.
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The routine histopathological examination includes a conventional investigation of
hematoxylin and eosin (H&E) stained specimens utilizing light microscopy. The increasing
application of digitalization in histopathology has led to growing interest in machine
learning, in particular deep learning and image processing techniques, for a fast and
automatized histopathological investigation.

Ex vivo fluorescent confocal microscopy (FCM) is a novel technology successfully
applied for tissue visualization in cellular resolution on the breast, prostate, brain, thyroid,
esophagus, stomach, colon, lung, lymph node, cervix, and larynx [3–6]. Furthermore,
our working group recently provided a number of works showing high agreement of
confocal images with histopathological sections [7]. Chair-side, bed-side, or intraoperative
application is one interesting field of application for this technology. An automated ap-
proach could be a major improvement, as it provides a surgeon (with no histopathological
background) necessary decision-supportive information fast and effectively. Moreover,
deep learning models may help to reduce interobserver biases in the evaluation of tabular
data and images [8].

Deep learning utilizing convolutional neural networks (CNNs) is a useful state-of-the-
art technique in processing and analysis of a large number of medical images [9]. Numerous
studies have already proved the efficiency of computational histopathology applications
for automated tissue classification, segmentation, and outcome prediction [10–23]. These
investigations provided vast new opportunities to improve the workflow and precision in
cancer diagnosis, particularly in primary screening, to aid surgical pathologists and even
surgeons.

There are several challenges in the application of deep learning models on pathological
slides or confocal scans. For a so-called “supervised learning”, a digital image of at least
20× magnification has to be divided into hundreds to thousands of smaller parts. Each
of them has to be annotated manually or semi-manually, which can be extremely time-
consuming. The classifier is then applied to each tile to generate the final classification
as a sum of all smaller tiles. Alternatively, a weakly supervised learning approach can be
applied as the deep learning classifier. A significantly higher number of cases/images is
required in this case. There are a number of successful works for both learning models, for
example, with a small number of cases (11 images with stomach carcinomas) [24] or with a
large dataset with more than 44,000 histological images [23].

Convolutional neural networks (CNNs) are popular machine-learning architectures
to process multiple arrays that include the feature information, for example, obtained from
images. CNNs often include several layers, such as convolutional and pooling layers,
before reaching the fully connected layers and the output layer. While passing architecture,
images are abstracted into a feature map from which the information gets processed by the
convolutional neurons.

Here, we propose a deep learning model on a limited number of OSCC images
obtained with an ex vivo fluorescent confocal microscope and hypothesize that machine
learning could be successfully applied to identify relevant structures for cancer diagnosis.

2. Materials and Methods
2.1. Patient Cohort

From January 2020 to May 2021, a single-center observational cohort study was per-
formed and, prior to investigations, reviewed and accepted by the ethics committee for clin-
ical studies of the Heidelberg University (registry number S-665-2019). The study included
(1) patients who gave written informed consent (or their parents if a patient was younger
than 18 years); (2) participants were diagnosed as having an OSCC; and (3) resection of the
tumor was indicated. The exclusion criteria were: (1) benign pathology of oral mucosa;
and (2) scars, previous surgery, or other treatments. Twenty patients with histologically
proven OSCC were selected, and a total of 20 specimens were identified, removed, and
described clinically and histopathologically (tumor location, histological grading).
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2.2. Tissue Processing and Ex Vivo FCM

Immediately after resection, the carcinoma excisions were prepared according to the
protocol: rinsed in isotonic saline solution, immersed for 20 s in 1 mM acridine orange
solution, and rinsed again for approximately 5 s, similar to those already described in other
studies [25].

After this, the tissue samples proceeded to ex vivo FCM investigation, which was per-
formed with a Vivascope 2500 Multilaser (Lucid Inc., Rochester, New York, NY, USA) in a
combined reflectance and fluorescence mode [25]. The standard imaging of a 2.50 × 2.50 cm
tissue sample took, on average, between 40 and 90 s. Hereafter, the samples proceeded to
conventional histopathological examinations.

2.3. Tissue Annotation

The obtained ex vivo FCM scans of OSCC were annotated according to the WHO
criteria: irregular epithelial stratification, the disturbed polarity of the basal cells, disturbed
maturational sequence, destruction of the basal membrane and cellular pleomorphism,
nuclear hyperchromatism, increase in the nuclear-cytoplasmic ratio, and loss of cellular
adhesion and cohesion [26]. Tissue areas that showed clear signs of squamous cell carci-
noma were marked using the QuPath bioimaging analysis software. The option to enlarge
the tissue samples maintaining high image quality makes a higher precision during the
delineation process possible (https://qupath.github.io, accessed on 8 November 2021) [25].
A differentiation between tumor cells and dysplasia was made using different colors. Af-
ter loading the high-resolution images, the annotation process was conducted. Unclear
regions were discussed with an external histopathological specialist. Any regions that
did not contain OSCC but included inflammatory or normal tissue were included under
the non-neoplastic category. The average annotation time per picture was about 3–4 h. If
necessary, the annotations were verified by pathologists. Each annotated image was seen at
least by two examiners and one senior histopathologist. Cases with unclear presentations
were excluded from training.

2.4. Image Pre-Processing and Convolutional Neural Networks

In most cases, convolutional neural networks consist of multiple layers, including
convolutional layers, pooling layers, and fully connected layers. In these cases, the fea-
ture extraction in the convolutional layers is followed by pooling and building of one-
dimensional vectors for full connection of the layers, resulting in an output layer to solve
the classification task. The convolutional neural network used in this study is MobileNet
(MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
Available online: https://arxiv.org/pdf/1704.04861.pdf, accessed on 8 November 2021).
The main characteristic of this model is the depth-wise separable convolutions, which
reduce the processing time as a result of smaller convolutional kernels. We used the Adam
optimizer to adjust the weights during the training, and the loss function was the cross-
entropy loss. The learning rate was 1 × 10−5, and we trained the model for 20 epochs.
In order to combat overfitting, additional preprocessing steps were used on the training
dataset (i.e., rotation, zooming, and flipping). The input images had a size of 256 × 256
(Figure 1). During the evaluation phase, the trained MobileNet was fed with the entire ex
vivo FCM images in a sliding window fashion and generated pixel-level probability maps
for both classes.

https://qupath.github.io
https://arxiv.org/pdf/1704.04861.pdf
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quired for the tasks. Furthermore, the MobileNet uses two global hyperparameters, min-
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input layer of our models consisted of 256 × 256 × 3 images. After the application of con-
volutional layers, an 8 × 8 × 512 image output was obtained. Hereafter, a global average 
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Figure 1. An example of an ex vivo FCM scan with a 256 × 256 px input image.

2.5. Training the MobileNet Model

The main principle of a MobileNet model is the application of depthwise separable
convolutions. These convolutions separate into a 1 × 1 pointwise convolution with a single
filter being applied to each input channel. The pointwise convolution then applies a 1 × 1
convolution to combine the outputs. The depthwise convolution performs a separate appli-
cation on each channel compared to standard convolutions, where each kernel is applied
on all channels of the input image. The MobileNet model was selected due to its satisfy-
ing performances in various computer vision tasks and its feasibility towards real-time
applications and transfer learnings for limited datasets. Further, this approach significantly
reduces the number of hyperparameters and thus the computational power required for
the tasks. Furthermore, the MobileNet uses two global hyperparameters, minimizing the
need for extensive hyperparameter tuning to obtain an efficient model. The input layer
of our models consisted of 256 × 256 × 3 images. After the application of convolutional
layers, an 8 × 8 × 512 image output was obtained. Hereafter, a global average pooling
was applied, which then resulted in 2 neurons, meaning that there were 512 × 2 weights in
addition to 2 biases for each neuron. The output was a binary classification.

For input, if more than 50% of the 256 × 256 pixels area is annotated as cancerogenic,
then the whole patch is considered as such and is classified as malignant (Figure 2). From
50,000 generated patches, 8000 were considered as malignant and 42,000 as non-malignant.
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2.6. Expanding the MobileNet and Evaluation on the Validation Dataset

For further evaluation, we used the expanded architecture to predict an entire heatmap,
which was then compared with the experts’ annotations. Each slide in the validation
dataset was split into tiles that were 1024 × 1024 in size. These tiles were sequentially
fed to the expanded model, which predicted the heatmap, marking each tile’s most rele-
vant areas. The tiles were then stitched back together in the same order to conserve the
location of each tile. The convolutional layers in the expanded architecture resulted in
32 × 32 × 512 output images. Then, the expanded architecture applies an average pooling
with “7,7” kernels and “1,1” strides with the same padding to conserve the shape of the
input features after the convolutional layers. After forming the fully connected layers,
these are transformed into a convolutional layer using the softmax activation function with
two filters of size 512. The weights of these filters were the weights from the neurons. The
resulting images had a size of 32 × 32 × 2 and were unsampled with a factor of 32 to form
the 1024 × 1024 × 2 image output.

Further, post-processing was applied to each heatmap to obtain a segmentation
mask (Figure 3):

a Applying a threshold of 0.5 (transform every pixel that has a probability lower than
0.5 to 0 and the rest to 1).

b Erosion (the goal of this operation is to exclude isolated pixels).
c Dilation (after the operation of erosion, the entire mask is slightly thinner, and this

operation reverts this property).
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The resulting segmentation mask was then compared with the reference to evaluate
the performance of the model.

2.7. Statistical Analysis

Data analysis was done using cross-validation, where we set the cross-validation
parameter k = 10. This split the dataset into 10 groups of 2 cases, and we conducted
10 training sessions, using 9 groups for training and one for validation. The split was
unique for each training session. After the training was conducted, an evaluation of the
validation dataset was done to calculate the sensitivity and specificity. The training and
evaluation were implemented with Python, using Tensorflow and Scikit-Learn.

The following metrics were considered: sensitivity (how much of the truthfully malig-
nant area did get predicted?) and specificity (how much of the truthfully healthy area did
get predicted?). All these metrics were computed on a pixel level; each pixel was assigned
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one of the following labels: true positive (TP), the pixel in the predicted mask and the truth
mask are both considered malignant; false positive (FP), the pixel in the predicted mask is
considered malignant, but the truth mask marks it as healthy; true negative (TN), the pixel
in the predicted mask and the truth mask are both considered healthy tissue; and false neg-
ative (FN), the pixel in the predicted mask is considered healthy, but the truth mask marks
are malignant. Using this setup, the metrics were calculated using the following formulas:

Speci f icity =
TN

TN + FP

Sensitivity =
TP

TP + FN

3. Results

The average processing time of the model was about 30 s for the largest images and
was generally very dependent on the image size. The model seems to correctly highlight
larger areas but struggles to find smaller malignant areas (Figures 4–6). The model also
struggles to identify malignant areas that are very fragmented. The images represent
the tissue samples after scanning with ex vivo FCM (A in Figures 4–6), annotations of
OSCC regions on the same scan (B in Figures 4–6), a heatmap (C in Figures 4–6), and the
area predicted by a model (D in Figures 4–6). The digital staining of OSCC regions in
pictures B and D is dark green for better contrast and comparability.

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 6 of 13 
 

 

The following metrics were considered: sensitivity (how much of the truthfully ma-
lignant area did get predicted?) and specificity (how much of the truthfully healthy area 
did get predicted?). All these metrics were computed on a pixel level; each pixel was as-
signed one of the following labels: true positive (TP), the pixel in the predicted mask and 
the truth mask are both considered malignant; false positive (FP), the pixel in the pre-
dicted mask is considered malignant, but the truth mask marks it as healthy; true negative 
(TN), the pixel in the predicted mask and the truth mask are both considered healthy tis-
sue; and false negative (FN), the pixel in the predicted mask is considered healthy, but the 
truth mask marks are malignant. Using this setup, the metrics were calculated using the 
following formulas: 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑇𝑁 + 𝐹𝑃 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃𝑇𝑃 + 𝐹𝑁 

3. Results 
The average processing time of the model was about 30 s for the largest images and 

was generally very dependent on the image size. The model seems to correctly highlight 
larger areas but struggles to find smaller malignant areas (Figures 4–6). The model also 
struggles to identify malignant areas that are very fragmented. The images represent the 
tissue samples after scanning with ex vivo FCM (A in Figures 4–6), annotations of OSCC 
regions on the same scan (B in Figures 4–6), a heatmap (C in Figures 4–6), and the area 
predicted by a model (D in Figures 4–6). The digital staining of OSCC regions in pictures 
B and D is dark green for better contrast and comparability. 

  
(A) (B) 

  
(C) (D) 

Figure 4. Cont.



J. Clin. Med. 2021, 10, 5326 7 of 13J. Clin. Med. 2021, 10, x FOR PEER REVIEW 7 of 13 
 

 

 
(E) 

Figure 4. An example of an OSCC ex vivo FCM image with manually annotated cancerous regions and automated pre-
diction. Image (A) is the input to the model, i.e., digitally stained ex vivo confocal microscopy scan, which was delivered 
in a sequential manner as explained in the Section Material and Methods. Image (B) contains the expert annotation high-
lighted in green. Image (C) shows the predicted heatmap. The colormap used is called jet, and it ranges from blue to red, 
where the former represents the not SCC and the latter SCC. Image (D) presents the prediction mask generated from the 
heatmap, using the described approach in the Section Materials and Methods. Image (E) is a per-row normalized confusion 
matrix, the number 0 represents the class, not SCC, and 1 represents SCC. The abbreviations above the images (C,D) are 
the following: BR_SC for Brier score, JS for Jaccard score, P for precision R for recall, A for accuracy, Sen for sensitivity, 
and Spe for specificity. An entire heatmap and segmentation mask was compared with the experts’ annotations. As we 
can see in this example, the annotated area could be sufficiently predicted by the model. 

  
(A) (B) 

  
(C) (D) 

Figure 4. An example of an OSCC ex vivo FCM image with manually annotated cancerous regions and automated
prediction. Image (A) is the input to the model, i.e., digitally stained ex vivo confocal microscopy scan, which
was delivered in a sequential manner as explained in the Section 2. Image (B) contains the expert annotation high-
lighted in green. Image (C) shows the predicted heatmap. The colormap used is called jet, and it ranges from
blue to red, where the former represents the not SCC and the latter SCC. Image (D) presents the prediction mask
generated from the heatmap, using the described approach in the Section 2. Image (E) is a per-row normalized
confusion matrix, the number 0 represents the class, not SCC, and 1 represents SCC. The abbreviations above the
images (C,D) are the following: BR_SC for Brier score, JS for Jaccard score, P for precision R for recall, A for accu-
racy, Sen for sensitivity, and Spe for specificity. An entire heatmap and segmentation mask was compared with the experts’
annotations. As we can see in this example, the annotated area could be sufficiently predicted by the model.
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The specificity/sensitivity for correct detection and diagnosis of cancerous regions in
FCM images achieved 0.96 and 0.47, respectively (Table 1).

Table 1. Sensitivity and specificity of OSCC diagnosis utilizing the MobileNet model.

10 Fold (n = 20, t = 0.3)

Sensitivity 0.47
Specificity 0.96

We performed 10-fold cross-validation, measured the respective metrics for every case in the validation set for
every fold, and reported the average overall fold. n = number of samples, t = classification threshold used to
convert the heatmap into a segmentation mask.

4. Discussion

This preliminary study aimed to evaluate whether a well-annotated dataset of OSCC
samples fed into a convolutional neural network can be successfully used as a cancer tissue
classifier. In the current work, we applied a machine learning model on ex vivo confocal
images of OSCC. This model was trained on cancerous tissue obtained and evaluated
from a single institutional department. The output of the model was a set of heatmaps
representing the locations of cancerous and non-cancerous regions for tissue classification.
We think that the results of this study are important as, to the best of our knowledge, this
is the first study to validate a machine learning model on images of oral squamous cell
carcinoma obtained with a novel device different from classic histopathology with an ex
vivo fluorescent confocal microscope.

In our model, even though we used a small number of images (n = 20), we observed
excellent results in terms of specificity (0.96), translating to a high detection rate for healthy
non-cancerous regions. In contrast, the sensitivity of the described method only achieved
0.47. This is somewhat to be expected as a result of architectural heterogeneity in cancerous
regions (different nuclear polarization, size, and orientation of cells). The healthy tissue
regions represent graphically clear and similar patterns on a cellular level. Thus, a higher
number of images and data material might be supportive of reaching a high sensitivity in
automated detection of cancerous areas.

This also serves as the main limitation of the present study: a larger amount of data
would be required for reliable results in the automated classification of OSCC. Especially
multi-center studies involving large cohorts are warranted, as in single institutional cohorts,
the collected samples may not represent the true diversity of histological entities. In
addition, in our study, we applied just one CNN model to verify our results; verification of
results with other CNN architecture would be necessary to determine the best architecture
for the respective dataset. In general, a successful predictive model requires a large amount
of data for sufficient CNN training [27]. In oncologic pathology, the problem has been or is
currently being solved through multicenter collaboration and establishment of databases
to cover all rare cases on the field. Due to the novelty of applied technology, there is not
much data with ex vivo FCM images and almost no material in oral pathology. However,
since the digitalization of pathological images and the invention of whole slide images
(WSIs) with gigapixel resolution, it has become possible to analyze each pixel and enhance
the data volume [12,28].

At the beginning of the computational pathology era, the main works were focused
on traditional pathology methods of mitosis counting [9,29,30]. Since the process was
extremely time-consuming and investigator dependent, new diagnostic features for compu-
tational malignancy identification had to be investigated. For example, in 2014, a working
group [31] achieved high accuracy in distinguishing not only between benign breast ductal
hyperplasia and malignant ductal carcinoma in situ but also between the low-grade and
high-grade variants. This was possible through the analysis of nuclear size, shape, intensity,
and texture.

Concerning oral oncology, there are just a very few studies, and most of them are fo-
cused on prognostication and survival and recurrence prediction in OSCC
patients [32–38]. These works use machine learning to analyze demographic, clinical,
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pathological, and genetic data to develop a prognostic model. One working group [39]
developed a model for OSCC prognosis in 2013 with the AUC of 0.90 based on p63, tumor
invasion, and alcohol consumption anamnesis.

A couple of studies investigated the possibilities of automated detection of OSCC
regions using optical imaging systems. For example, an accuracy of 95% for OSCC classifi-
cation was achieved in the study by Jeyaraj et al. [40].

Machine learning applied on digital histopathological images of OSCC was described
by Lu et al. [41], where each tissue microarray was divided into smaller areas and analyzed
as a disease survival predictor. The specificity and sensitivity achieved with this classi-
fier (71% and 62%, respectively) showed promising results for the investigation of small
areas of tissue.

Evaluation of oral cancer detection utilizing artificial intelligence has been performed
by testing numerous machine learning techniques in the past. Principal component analysis
and Fisher’s discriminant are often used to build promising algorithms. There is evidence
that support vector machine, wavelet transform, and maximum representation and discrim-
inant feature are particularly suitable for solving such binary classification problems. For
example, in early research of Krishnan et al. focusing on oral-submucosal fibrosis, a support
vector machine for automated detection of the pathology was able to reach an accuracy of
92% [42]. In addition, Chodrowski et al. applied four common classifies (Fisher’s linear
discriminant, kNN-Nearest Neighbor, Gaussian quadratic, and Multilayer Perceptron)
to classify pathological and non-pathological true color images of mouth lesions, such
as lichenoid lesions. They reported that the linear discriminant function led to the most
promising accuracy results, reaching nearly 95% considering 5-fold cross-validation [43].
Although this study reveals the potential of intraoral pathology detection by combining
optical imaging and machine learning techniques, the intraoperative validation of wound
margins would not be possible with this approach. The MobileNet model used by us was
selected due to its resource efficiency, the promising available evidence on skin lesion detec-
tion [44,45], and its feasibility for real-time applications, making it exceedingly feasible for
the combination with ex vivo confocal microscopy. The depthwise separable convolutions
allowed us to build lightweight deep neural networks, and we applied two simple global
hyper-parameters that efficiently reduce the required computational resources. Further, the
model is suitable to assess limited datasets and minimizes the need for extensive hyperpa-
rameter tuning while evaluating the model in the preclinical stage. Notably, a multi-class
detection model combining optical imaging and machine learning to solve classification
problems is highly warranted in the future and would improve the method presented here.
Valuable data regarding this idea was provided recently by Das et al. [46]. The authors
assessed multiple machine learning models for automated multi-class classification of
OSCC tissues. Their model could be of high interest in the future when combined with ex
vivo fluorescence confocal microscopy in the way our workgroup applied it. Consequently,
the affected tissue can not only be classified as pathological or not (binary classification) but
also subtypes of OSCC or gradings can be considered. Further, they provided important
comparisons of different machine learning models that will help to find the most promising
combination of technical application (optical imaging) and neural network model to solve
OSCC classification problems. Based on our findings and the evidence available in the
literature, this will be of high clinical relevance in the future.

5. Conclusions

Given the early promising results in the field of OSCC detection by optical imaging, we
showed the feasibility of a novel diagnostic approach compared to classic histopathology
in the current study. We encourage other workgroups to do more research on deep learning
methods in cancer medicine to promote the current developments of precise, fast, and
automatized cancer diagnostics.
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