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Abstract: Background: Children with ataxia experience balance and movement coordination dif-
ficulties and needs intensive physical intervention to maintain functional abilities and counteract
the disorder. Exergaming represents a valuable strategy to provide engaging physical intervention
to children with ataxia, sustaining their motivation to perform the intervention. This paper aims
to describe the effect of a home-conducted exergame-based exercise training for upper body move-
ments control of children with ataxia on their ataxic symptoms, walking ability, and hand dexterity.
Methods: Eighteen children with ataxia were randomly divided into intervention and control groups.
Participants in the intervention group were asked to follow a 12-week motor activity program at
home using the Niurion® exergame. Blind assessments of participants’ ataxic symptoms, dominant
and non-dominant hand dexterity, and walking ability were conducted. Results: On average, the
participants performed the intervention for 61.5% of the expected time. At the end of the training,
participants in the intervention group showed improved hand dexterity that worsened in the control
group. Conclusion: The presented exergame enhanced the participants’ hand dexterity. However,
there is a need for exergames capable of maintaining a high level of players’ motivation in playing. It
is advisable to plan a mixed intervention to take care of the multiple aspects of the disorder.

Keywords: ataxia; exergaming; telerehabilitation; hand dexterity; treatment adherence and compliance

1. Introduction

Ataxia refers to a group of motor disorders associated with the cerebellum or its
afferent and efferent projections dysfunction or damage [1]. People with ataxia experience
a lack of balance and movement coordination that leads to difficulties in walking and
standing, poor limbs and fine hand function control, muscle tone alterations, dysarthria,
and altered ocular motor function [2,3]. Children with ataxia show similar sensorimotor
impairment as adults [4]. A recent literature review estimated a prevalence of 26/100,000
different forms of ataxia in European children [5]. The impairments derived from ataxia
are especially debilitating during childhood as motor development, and learning processes
are still ongoing [4]. Moreover, age is likely to affect engagement and compliance with the
chosen intervention modality and may impact the targeting and timing of rehabilitation
efforts. Children have different information-processing capacities compared to adults and
respond differently to motor learning and skill-acquisition paradigms, suggesting children
may require more exercise practice time before learning is consolidated [6].
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As no effective curative treatments are available, exercise and physical therapy rep-
resent the core interventions available to these children [7,8]. Physical treatment should
start as soon as the diagnosis of ataxia is given, even if only mild symptoms are present. Al-
though the effectiveness of physical therapy intervention for children with ataxia is still not
established [9,10], the therapeutic scenario might rapidly change because of the upcoming
disease-modifying treatments or other symptomatic and rehabilitative interventions [9–14].
Moreover, a growing body of literature emerged in the last decade regarding exergames
usage to provide physical therapy interventions to young patients with ataxia. The term ex-
ergame refers to digital games that require bodily movements to play, stimulating an active
gaming experience to function as a form of physical activity [15–17]. Ilg and colleagues used
three Microsoft Xbox Kinect (MXK) videogames to improve the balance and gait quality of
six children and four adults with several types of progressive spinocerebellar ataxia [18].
Similarly, Schatton et al. reported the use of Nintendo Wii and MXK games to increase the
body balance of six children and four adults with different types of ataxia [19]. Both studies
reported a reduction in the participants’ ataxia symptoms, particularly related to gait and
balance. Despite these preliminary positive results, the efficacy of exergame providing
physical therapy to children with ataxia was, to date, only mildly tested. Moreover, the
available studies focused on balance and gait, overlooking other key ataxia symptoms such
as upper-limb function. A recent literature review [9] identified a sole case study proposing
an elbow movements dexterity training for a 5-year old girl who had undergone surgical
resection of a cerebellar tumor [20]. The patient was asked to track the movements of a
pseudo-random target on a computer screen using elbow joint flexion and extension for
two weeks, 10 min a day. The authors described an improvement in the participant’s elbow
and hand movement dexterity.

Exergames hold the potential to support the motivation of children with ataxia to
perform therapeutic activities in an intensive way and in a meaningful context that was
found fundamental to achieve improvements in ataxia symptoms [8,21].

This paper aims to describe the effect of a home-conducted exergame-based exercise
training for upper body movements control of children with ataxia on their hand dexterity,
ataxic symptoms, and walking ability.

2. Materials and Methods
2.1. Ethical Issues

The study was conducted according to the ethical principles of the Helsinki Declaration
and local regulations. All details relating to the study procedure were discussed with the
candidates’ parents, and an informed consent document was signed for all participants.
Enrolment was voluntary, with participants not receiving any incentives, financial or
otherwise, for participation. The Ethical Committee of the Bambino Gesù Children’s
Hospital approved the study.

2.2. Participants

Eighteen children and adolescents (mean age: 11.6± 3.5 years; age range: 5.1–17.2 years)
were enrolled in this study. The inclusion criteria for this study were the presence of a
confirmed diagnosis of ataxia and the absence of any signs of inflammatory, vascular mal-
formation, or tumor central nervous system disease. During the recruitment phase, all
participants underwent a specialist medical examination that assessed their cognitive and
motor aspects to ensure that they could carry out the tests provided in the study protocol.
Patients presenting with intellectual disabilities were excluded from the current investigation.
All the candidates met the inclusion criteria. Participants’ age, sex, and ataxia characteristics
are presented in Table 1. Two participants (11.1%) were diagnosed with non-genetic ataxia.
All participants followed an individual physical therapy treatment for one 45-min session
per week. These interventions concerned the development of activities aimed at improving
the control of gross and fine motor movements, balance in sitting, standing, and walking,
and dexterity in skills related to the activity of daily living (ADL).



J. Clin. Med. 2022, 11, 1065 3 of 12

Table 1. Participants’ group, age at baseline (T0), diagnosis, and SARA items and total scores. The horizontal line separates the data obtained from participants in
the IG and CG.

Group Pt. Age at T0 (Years) Sex Diagnosis
SARA Scores

Gait Stance Sitting Speech
Disturbance

Finger
Chase

Nose-Finger
Test

Fast Alternating
Hand Movements

Heel-Shin
Slide

SARA Total
Score

IG

1 14.9 F Non-genetic ataxia 2 1 0 2 1 1 3 1 11
2 10.2 M Joubert’s ataxia 3 1 0 1 1 0 1 1 8
3 10 F ARCA2 3 0 0 1 1 1 3 1 10
4 8.6 M ARCA2 1 0 0 0 0 1 1.5 0.5 4
5 15.5 F ARCA2 1 0 0 2 1 1 3 1 9
6 9.5 F Friedreich’s ataxia * 2 2 1 0 1 1 3 2 11
7 8.5 M Friedreich’s ataxia * 2 2 0 1 1 1 1 2 10
8 16.9 F Friedreich’s ataxia * 2 2 0 2 0.5 1 0 1.5 9
9 10.5 F ARSACS * 2 1 0 1 1 1 2.5 2 10.5

CG

10 17.2 F Non-genetic ataxia 1 1 0 1 1 1 1 2 8
11 15.5 F Joubert’s ataxia 1 1 0 1 1 1 0 0 5
12 11.2 M Joubert’s ataxia 1 1 0 0 1 1 1 1 6
13 10.4 M ARCA2 2 2 0 2 1 1 3 1.5 12.5
14 7.7 M ARCA2 2 2 0 2 1 1.5 3 3.5 15
15 9 F Friedreich’s ataxia * 3 3 0 1 1 1.5 3 2.5 15
16 12.6 F Friedreich’s ataxia * 1 2 0 1 0.5 1 0.5 1.5 7.5
17 15.4 M Friedreich’s ataxia * 3 2 1 0 1 1 1 3 12
18 5.1 F Ataxia telangiectasia * 2 2 0 1 1 0 3 1 10

Abbreviation list: IG = Intervention Group; CG = Control Group; Pt. = Participants; M = Male; F = Female; ARCA2 = Autosomal Recessive Cerebellar Ataxia 2; ARSACS = Autosomal
recessive spastic ataxia of Charlevoix-Saguenay; SARA = Scale for the Assessment and Rating of Ataxia. *: progressive ataxia.
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2.3. Procedure

All participants’ informed consents for participation were collected from their par-
ents at the recruitment. Before starting the intervention (T0), all participants’ outcome
measures were collected by two independent assessors with previous experience in the
rehabilitation of people with ataxia. After the evaluation, the participants were randomly
and consecutively assigned to the Intervention Group (IG) and Control Group (CG). The as-
sessors did not know which group the participants were assigned at any study stage. Then,
participants in the IG were given the exergame for upper body rehabilitation (Niurion®

kit—P2R, Bergamo, Italy). This inertial measurement unit (IMU) based rehabilitation device
comprises five IMUs, a data receiver connected with a computer, an adherent shirt, and
the software itself. The exergame included eight specific exercises aimed at improving
the trunk and upper limbs movements control and muscle strength. Specific activities
performed during each exercise were the following: elbows flexion, shoulders abduction at
90◦ and 180◦, shoulders flexion at 90◦ and 180◦, target reaching with the hand and arm in
the ipsilateral and contralateral space, and anteroposterior trunk oscillation. Participants
were asked to wear an adherent shirt and insert the IMUs in their designed pocket on the
shirt (see Figure 1).
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Figure 1. Visual description of IMU sensors (marked with asterisks) placement in the Niurion® shirt.

Then, a calibration occurs, and an avatar reproducing the upper body movements
of the participant was constructed by the software, and the exercises began. During each
exercise, the participant stood in front of the screen and saw the avatar moving accordingly
with his movements in the virtual space (see Figure 2).
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Each exercise was performed in a different virtual space. The participant had to move
his arms or body to interact with the environment and complete the game. The software was
designed to recognize the trunk, the arm, and forearm movements allowing the interaction
with the targets in the virtual environment. Moreover, the in-built algorithm of the software
provides a real-time adaptation of the difficulty of the proposed tasks to avoid frustration
due to continuous failures or motivation falling due to carrying out activities that are too
simple for the subject. Each exercise lasted for seven minutes, and a 30 s recovery time was
provided between the exercises (duration of the entire session: ~1 h). Each subject in the
IG participated in two individual training sessions to be taught to use the system correctly.
Participants’ parents also participate in these meetings to better comprehend the system’s
functioning. At the end of the second training session, participants in the IG were asked to
start the intervention at their home, performing the entire session (all the eight exercises)
five days a week for 12 weeks (total of 60 sessions for each exercise). The time spent by
each participant in the IG in the activities foreseen by the treatment was collected by the
Niurion® software (version 1.2.0, P2R, Italy) and analyzed to establish the participant’s
adherence to the proposed intervention. Meanwhile, participants in the CG continued with
the same therapeutic regimen conducted at a rehabilitation facility with their reference
physiotherapist, without any change. None of the subjects in the IG changed their regimen
of physical therapy sessions during the intervention period. Therefore, each participant
received 12 physical therapy sessions within the duration of the current intervention.

At the end of the intervention (T1), the outcome measures were collected again for all
participants, and obtained data were analyzed. Each participant’s number of therapeutic
sessions was collected from their reference therapists at the end of the protocol.

2.4. Outcome Measure

The 9-Hole Peg Test (9HPT) was administered to obtain a timed measure of the
participants’ pre- and post-intervention finger dexterity. This commonly used test requires
placing and removing nine pegs in a pegboard as quickly as possible. The total time
(seconds) to complete the task was recorded for both the dominant and non-dominant
hands three times, and the mean of the three tests for each hand was calculated. This test
has established intra- and inter-rater and test–retest reliability and normative reference
values [22–25].

The Scale for the Assessment and Rating of Ataxia (SARA) was used to describe the
ataxia severity level. Higher values reflect higher disease severity. This is a reliable and valid
clinical scale measuring the severity of ataxia to be used in all cerebellar disorders [26–28].
SARA is “recommended” to assess cerebellar symptoms of different types of ataxia. It
has been utilized by research groups other than the developer [3,29–32], and adequate
psychometric proprieties support its use [33].

The Timed 25-Foot Walk test (T25FW) was used to assess the impact of the treatment
on the participants’ global mobility ability. The test required the participant to walk a
25-foot-long path as fast as possible. The test was performed twice. The time (seconds)
to complete the path was recorded for each trial, and the mean score was then calculated.
The T25FW was found highly representative of mobility function and disability stage in
patients with Friedreich ataxia [34,35].

2.5. Statistical Analysis

Due to the small sample size, the non-parametric statistic was used to analyze the
collected data. The Mann–Whitney U test was first used to evaluate the comparability of
participants’ age, sex, and the pre-intervention outcome measures scores among the IC
and GC groups. The same test was conducted at the end of the intervention to compare
the outcome measures variations between participants in the two groups. A delta was
calculated with the difference between the scores obtained by each participant at T1 and T0
(∆ = T1 − T0) to obtain the outcome measures variations. The Wilcoxon Signed-Rank test
was used to evaluate the variation that occurred in the outcome measures of participants of
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each group separately. The threshold for significance for the analyses above was assumed
to be α = 0.05. No correction was applied for multiple comparisons [36].

3. Results

No difference was found between IG and CG when comparing the participants’ sex,
age, and outcome measures scores at T0, proving the comparability of the two groups.

All the participants in the IG completed the protocol. The average adherence of each
exercise is presented in Table 2. The average adherence was slightly varied among the
exercises (range: 53.3–66.1%). All participants attended all the physical therapy sessions
planned during the protocol (12 sessions). Individual participants’ adherence data and
related descriptive statistics are available as Supplementary Material (Table S1).

Table 2. Average adherence for each exercise and the whole treatment. The percentage represents the
average portion of time spent by participants in the IG in each exercise compared to the time required
by the protocol (60 1 h sessions).

Exercises Adherence
Avg (SD)

Elbow flexion 53.3 ± 0.4%
Shoulder 90◦ abduction 64.1 ± 0.2%

Shoulder 180◦ abduction 58.0 ± 0.3%
Shoulder 90◦ flexion 64.4 ± 0.3%
Shoulder 180◦ flexion 66.1 ± 0.3%

Ipsilateral target reaching 62.8 ± 0.3%
Controlateral target reaching 56.4 ± 0.3%

Trunk oscillation 63.9 ± 0.3%
General adherence 61.5 ± 3.9%

Abbreviation list: Avg = Average; SD = Standard Deviation.

The collected outcome measures scores and statistical analysis results are reported
in Table 3. Participants’ individual scores for each outcome measure are available as
Supplementary Material (Table S2). A significant change occurred in both groups’ dominant
hand dexterity scores measured with the 9HPT at T1. Participants in the IG, on average,
reduced the time needed to complete the task (representing an improvement—p: 0.05),
while those in the CG increased it (representing a worsening—p: 0.03). In this test, the score
changes that occurred in the IG and CG were statistically different (p: 0.01). The same trend
was observable for the non-dominant hand. However, this difference did not reach the
statistical significance between and within groups comparison analysis.

Participants’ individual data collected at T0 and T1 for each outcome measure are
available as Supplementary Materials. Looking at the 9HPT scores, among the IG, improve-
ments in the 9HPT scores were found in eight participants (88.9%) for the dominant hand
and in six of them (77.8%) for the non-dominant hand. Conversely, in the CG, one subject
(11.1%) ameliorated his dominant hand score, and four (44.4%) improved their perfor-
mance with the non-dominant hand. Participants’ individual 9HPT scores are graphically
represented in Figure 3.



J. Clin. Med. 2022, 11, 1065 7 of 12

Table 3. Descriptive statistics and statistical analysis of outcome measures scores for IC and CG at T0 and T1 and occurred scores variation (∆). “IG” (T0 and T1),
“CG” (T0 and T1), and “∆ Scores” (∆ IG and ∆ CG) columns report the average score and standard deviation (in parenthesis) for each outcome measure. “p-value IG
T0 vs. T1” and “p-value CG T0 vs. T1” columns report the results obtained from the Wilcoxon Signed-Rank test analyzing the scores difference between T0 and T1 for
each group. “p-value ∆ IG vs. ∆ CG” column reports the results attained from the Mann–Whitney U test comparing the variation in the scores (∆) of the IG and CG.

IG p-Value IG
T0 vs. T1

CG p-Value CG
T0 vs. T1

∆ Scores p-Value
∆ IG vs. ∆ CGT0 T1 T0 T1 ∆ IG ∆ CG

SARA Scores

Gait 2 (0.7) 2.1 (0.9) 0.65 1.8 (0.8) 2 (0.5) 0.48 −0.1 (0.8) −0.2 (1) 0.60
Stance 1 (0.9) 1.1 (0.8) 0.32 1.8 (0.7) 1.6 (0.7) 0.16 −0.1 (0.3) 0.2 (0.4) 0.09
Sitting 0.1 (0.3) 0 (0) 0.32 0.1 (0.3) 0.3 (0.7) 0.16 0.1 (0.3) −0.2 (0.4) 0.09

Speech disturbance 1.1 (0.8) 1.2 (0.8) 1.00 1 (0.7) 1.4 (1) 0.18 0 (0.5) −0.4 (1) 0.30
Finger Chase 0.8 (0.4) 0.8 (0.4) 0.32 0.9 (0.2) 1.1 (0.8) 0.59 −0.1 (0.2) −0.2 (0.8) 0.90

Nose-finger test 0.9 (0.3) 1 (0) 1.00 1 (0.4) 1.2 (0.8) 0.71 0 (0) −0.2 (0.8) 1.00
Fast alternating hand

movements 2 (1.1) 1.9 (0.9) 1.00 1.7 (1.3) 1.8 (1.2) 0.32 0.1 (0.8) −0.1 (0.2) 0.90

Heel-shin slide 1.3 (0.6) 1.4 (0.6) 0.16 1.8 (1.1) 1.7 (1) 1.00 −0.1 (0.2) 0.1 (0.8) 0.80
SARA Total score 9.2 (2.2) 9.6 (2.4) 0.18 10.1 (3.7) 11.1 (3.9) 0.02 *↓ −0.4 (0.9) −0.9 (1) 0.31

T25FW 5.3 (1) 5.3 (0.5) 0.86 6.3 (1.4) 5.9 (1.2) 0.31 0.1 (0.8) 0.3 (0.7) 0.31

9HPT Dominant hand 37.9 (8.4) 34.9 (6) 0.05 *↑ 39.1 (8.9) 41.9 (11) 0.03 *↓ 3 (3.9) −2.6 (3.1) 0.01 *
9HPT Non-dominant hand 40.2 (9) 38.3 (7.5) 0.17 45.2 (10.1) 46.6 (9.9) 0.37 1.9 (3.3) −1.6 (3.9) 0.08

Abbreviation list: SARA = Scale for Assessment and Rating of Ataxia; T25FW = Timed 25-Foot Walk; 9HPT = 9-Hole Peg Test; IG = Intervention Group; CG = Control Group;
T0 = pre-intervention evaluation; T1 = post-intervention evaluation. ∆: Delta; *: p-value ≤ 0.05; ↑: statistically significant change reflects an improvement; ↓: statistically significant
change reflects a worsening.
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No statistically significant changes were identified in the SARA items and total scores
collected from the IG at T0 and T1. Conversely, a significant increment of the SARA total
score was found for the CG at T1. However, although a more substantial change occurred
in the CG, no statistical difference emerged comparing the SARA items and total score
variation between the two groups.

No significant change was recognized when analyzing the T25FW scores. A minor
improvement can be found in both groups at this test, with the CG reducing its scores
slightly more than the IG.

4. Discussion

The present article described the effects of exergame use for upper body physical
rehabilitation training for children with ataxia on participants’ hand dexterity, disease
severity, and walking ability.

On average, the proposed intervention improved the hand dexterity of participants in
the IG, while those in the CG worsened their performance. This result was confirmed when
looking at the individual participants’ 9HPT scores showing that most of the subjects in the
IG reduced their scores, and most of those in the CG increased the time required to complete
the test. The 9HPT test–retest error margin was identified as 5% for the dominant hand
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and 2.4% for the non-dominant hand for the population with spinocerebellar ataxia [37].
Although minor changes occurred in the participants’ scores, the 9HPT deltas exceeded the
test’s test–retest error margin in eight subjects for both the dominant and non-dominant
hand in the IG. Of these, seven participants (77.8%) for the dominant hand and six (66.7%)
for the non-dominant hand improved their score. Conversely, 9HPT deltas of six subjects for
the dominant hand and five for the non-dominant hand surpass the test–retest error margin.
Of them, five (55.6%) for the dominant hand and four (44.4%) for the non-dominant hand
worsened their score. The authors believe that the conducted training strengthened the
participants’ body and arms muscles and increased their body segments control, improving
the trunk, shoulders, and arms stabilization during the hand dexterity task performance.
These findings echo those of Ada and colleagues [20], who reported that computer-based
elbow dexterity training positively affected the ipsilateral hand dexterity.

The disease severity data show that no significant change occurred for participants
in the IC while those in the CG showed a significant increment of their SARA scores.
This result should be interpreted with caution due to the small sample size. Moreover,
although the disease progression resulted in diminished IC, no statistical difference was
found between SARA score deltas of subjects in the IC and CG. Previous research reported
better outcomes of exergame training on children’s ataxia symptoms assessed with the
SARA [18,19]. However, these papers proposed treatments that focused more on balance
and gait, while the one presented mainly involved arms movements. This discrepancy hints
that a mixed intervention aimed at taking in charge different key aspects of the disorder
may lead to more global improvements.

The walking ability changed accordingly in both groups showing no impact of the
intervention on this skill. This result is not surprising as the implemented training was
performed in a standing position and involved accurate upper limbs and trunk movements.
Again, keeping in mind the globality of the motor impairment of children and adolescents
with ataxia, it is advisable to combine interventions to take care of as many critical aspects
of the pathology as possible. This finding is in line with a previous report suggesting that
postural control can be enhanced using exergame as complementary training in adults with
Ataxia [38]. The use of various exergames involving different body parts and skills across
the week could also increase the child’s interest, supporting the adherence to the program.

Adherence data suggest that the presented results can be attained even with a less
intensive intervention than expected. The authors believe that the Niurion® exergame
supported the participants’ motivation to follow and adhere to the intervention, but it was
insufficient to sustain the required adherence. These data align with previous statements re-
porting exergames’ difficulties in maintaining the player’s interest over long periods [17,39].
The literature recommends intensive, daily physical intervention for this population that
could lead to even better results if reached [8,21,38]. Highly motivating virtual environ-
ments are needed to stimulate young users to adhere to long-lasting intensive practices
and achieve ecologic and meaningful treatment [40]. The individuality of the motivational
factors necessary to sustain prolonged treatments requires the possibility of pursuing the
same therapeutic goal throughout multiple virtual environments and tasks, adapting to
personal and age adequate preferences. Although previous studies suggested some factors
supporting the children’s motivation to play an exergame [41,42], the implementation of
such elements remains technically challenging. However, exergaming is a relatively young
and constantly developing technology, and its real potential in health promotion is far from
being expressed [17].

Finally, considerations should be made on the fact that the present intervention was
conducted at home, with minimal remote supervision of the health care professionals.
These options represent a great advantage for monitoring and treating people with a rare
pathology such as ataxia, which is widely distributed across the territory, sometimes with
limited access to rehabilitation facilities. Moreover, as the proposed training acts as a supple-
mentary intervention for the individuals in the IG, it could be speculated that the obtained
improvement could be strictly related to the increased amount of time spent by participants
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in performing therapeutic activities, according to the existing literature [8,21,38]. Therefore,
exergames could represent a cost-effective solution to increase the number of therapeutic
sessions received by children with ataxia. The exergames cost-effectiveness is still limited by
the hardware and software development price. However, more widely affordable solutions
are emerging, such as the one used in this study and others [17,43–47].

This study presents some limitations. Although a robust experimental design was
applied, a small number of participants was enrolled, limiting the generalization of the
results. Enrolling large samples of patients with rare disorders in clinical rehabilitation
research is difficult. Greater collaboration between scientists, clinicians, and the association
of patients and families is needed to enhance the research quality in this field [11]. The
external validity of our results is also challenged by the lack of a baseline and wash-
out phases. Future studies should establish these phases to confirm the cause/effect
relationship between the intervention and the occurred changes and their maintenance
after the treatment interruption. In addition, there is a lack in the literature related to the
expected change in the 9HPT score for the pediatric population with ataxia, challenging
the possibility of comparing the presented results with the natural history of these patients.
Finally, the effect of the intervention on the participants’ activity of daily living was not
assessed within the current project and could represent an interesting study of the efficacy
of exergame.

5. Conclusions

The presented exergame effectively enhanced the hand dexterity of children with
ataxia. However, there is a need for more engaging and fun exergames capable of maintain-
ing a high level of players’ interest and motivation in playing. Moreover, it is advisable to
plan a mixed intervention (eventually with more than one exergame) to take care of the
multiple aspects of the disorder.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11041065/s1, Table S1: Adherence individual data for each
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