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Abstract: Plasma lipids are carried within lipoproteins with various apolipoprotein content. This
study evaluates the interest of measuring the apolipoproteins of circulating lipoproteins in breast
cancer. Patients with early-stage breast cancer (n = 140) were included. Tumors differed by the
expression of estrogen and progesterone receptor (HR− and HR+ for negative and positive expression)
and the proliferation marker Ki-67 (≤20% or ≥30%). Apolipoprotein concentrations were determined
in plasma, HDL and non-HDL fractions, and results are given in mg/dL, median (25th–75th). Patients
did not differ in their plasma and lipoprotein lipid concentrations. HDL apoC-I and non-HDL apoC-II
were reduced (1.34 (1.02–1.80) vs. 1.61 (1.32–2.04), p = 0.04; 0.31 (0.18–0.65) vs. 0.63 (0.39–1.02), p = 0.01;
respectively), in RH-/high Ki-67 patients in comparison to RH-/low Ki-67 patients, while plasma
apoD and HDL apoD were higher (3.24 (2.99–4.16) vs. 3.07 (2.39–3.51), p = 0.04; 2.74 (2.36–3.35)
vs. 2.45 (2.01–2.99), p = 0.04; respectively). When RH+/high Ki-67 patients were compared with
RH+/low Ki-67 patients, HDL apoC-I and HDL apoC-III were higher (1.56 (1.20–1.95) vs. 1.35
(1.10–1.62), p = 0.02; 2.80 (2.42–3.64) vs. 2.38 (1.69–2.96), p = 0.02; respectively). The distribution
of exchangeable apolipoproteins, such as apoC-I, apoC-II, apoC-III, apoD, between lipoproteins is
linked to the severity of breast cancer.

Keywords: apolipoproteins; lipoproteins; HDL; non-HDL; breast cancer; Ki-67

1. Introduction

Among the last years, several reports evidenced that various metabolic disturbances
related to obesity may be associated with an increased risk of breast cancer [1,2]. Circulating
lipids may be one of the factors that relate to these metabolic abnormalities and the disease
risk [3]. Clinical studies looking at the association between circulating cholesterol carried
by Low-Density Lipoproteins (LDL) or High-Density Lipoproteins (HDL) with breast
cancer have raised conflicting results. Nevertheless, the results of large studies seem to
point towards a positive relationship between LDL and breast cancer, while HDL would
rather be negatively associated with the disease [4]. Apolipoproteins play essential roles in
maintaining the structural integrity and functional specificity of plasma lipoproteins. They
are directly involved in various metabolic processes of lipoproteins, including secretion,
prevention of premature removal from the circulation, binding with cell-surface receptors
and activation of lipolytic enzymes [5]. Besides their role in lipoprotein metabolism,
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apolipoproteins were shown to be involved in the development of breast cancer, as nicely
reviewed recently [6]. The plasma level of some apolipoproteins was related to breast cancer
severity. For instance, low levels of plasma apoA-I were shown to independently predict
the poor clinical outcome of patients with invasive ductal breast cancer [7]. In another
study, lower apoC-I and apoC-II concentrations were found in breast cancer patients when
compared to controls, while apoC-III concentration was higher [8]. Women with advanced
breast cancer were shown to have higher plasma concentrations of apoD [9]. The apoE
plasma concentration was also positively associated with breast cancer malignancy [10].
It is known that apo E is present in plasma in a polymorphic form. The major isoforms
are apoE2, apoE3 and apoE4, leading to six phenotypes, depending on the inherited ε
alleles. There are some studies in the literature suggesting a link between the presence
of the ε4 allele and breast cancer [11]. Therefore, it would be of great interest to consider
not only the cholesterol content of lipoproteins but also their apolipoprotein composition
when studying the association of circulating lipoproteins with breast cancer. The present
study was undertaken to evaluate the interest of measuring the apolipoprotein content of
circulating lipoproteins in the context of breast cancer.

2. Materials and Methods
2.1. Patient Samples

This study included 140 patients with early-stage breast cancer referred to our hospital
(ICO René Gauducheau, Saint-Herblain, France). Biological material was collected from
our biobank, which was declared to and authorized by the French Research Ministry
(Declaration Number: DC-2018-3321). This declaration includes approval by a research
ethics committee (CPP: Comité de Protection des Personnes) [12]. Informed consent was
obtained from patients, granting permission to use their biological specimens and clinical-
pathological data for research purposes, as required by the French legislation and the French
committee for the protection of human rights. Patient tumors differed by the expression
of estrogen (ER) and/or progesterone (PR) receptor (HR− for ER- PR- and HR+ for ER+
and/or PR+, respectively) and the level of the proliferation marker Ki-67 (Ki-67 ≤ 20% or
Ki-67 ≥ 30%). Although the cut-off value of 20% is commonly used in clinical practice to
categorize patients with high or low proliferative index, the value of 30% was chosen in
order to avoid the “grey zone”, which could be misleading for our analyses. Serum and
EDTA plasma samples from patients were collected at the time of diagnosis and before
any therapeutic intervention, were retrieved from our biobank. The distribution of these
sera was as follows: 92 were obtained from HR+ patients, and 48 were obtained from
HR− patients. Among the HR+ group, 41 tumors were Ki-67 ≥ 30%, and 51 tumors were
Ki-67 ≤ 20%. Among the HR− group, 29 tumors were Ki-67 ≥ 30%, and 19 tumors were
Ki-67 ≤ 20%.

2.2. Biological Analyses

Plasma cholesterol, plasma triglycerides, HDL cholesterol and LDL cholesterol concen-
trations were measured using enzymatic kits from Diasys, according to the manufacturer’s
instructions (Grabels, France). HDL and non-HDL fractions were separated from EDTA
plasma by the specific precipitation of apoB-containing lipoproteins. An MgCl2 solution
(2 mol/L, 2.5 µL) was added to plasma samples (100 µL). Then, 10 µL of 4% phospho-
tungstic acid (in NaOH 1 mol/L:water; 16:84; v:v) were added. Samples were vortex-mixed
and centrifuged for 30 min (4 ◦C, 4000× g). Supernatants (HDL fraction) were collected,
and the pellets (non-HDL fraction) were resuspended in 100 µL of ultra-pure water. Total
plasma, HDL and non-HDL apolipoproteins A-I, B100, C-I, C-II, C-III, D and E, as well
as apoE phenotyping, were determined by liquid chromatography–tandem mass spec-
trometry, as described previously [13]. Briefly, the apolipoproteins were quantified in
40 µL sample aliquots using trypsin proteolysis and the subsequent analysis of proteotypic
peptides. The intra- and inter-assay variabilities did not exceed 6.5% in plasma and HDL
samples. The non-HDL concentrations were deducted by subtracting total plasma and
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HDL concentrations. The calculated non-HDL concentrations were compared to the direct
measurement of apolipoproteins in the precipitated non-HDL fraction in a representative
set of samples (25%). Since coefficients of variation did not exceed 6.8% between both
measurements, we kept the calculated non-HDL values for analyses to gain sensitivity.

2.3. Statistical Analyses

All statistics were calculated using SAS software (Chapel Hill, NC, USA) version 9.04.
The univariate procedure was also used to determine median and 25th and 75th intervals
for these variables. The statistical differences between biological variables in EDTA plasma,
HDL and non-HDL between patients with different levels of proliferation were estimated
by median test analyses in each subset of samples, HR+ and HR−.

3. Results

Table 1 presents the clinical characteristics of the studied population. HR+ patients
were significantly older (p = 0.003) in the group with low proliferative index, explaining
the difference in menopausal status (p = 0.006). However, no difference in BMI and
normolipidemic drug consumption were observed. Infiltrating duct carcinoma was the
most common type of cancer found. As expected, the histopronostic grade of tumors
differed according to the HR/Ki-67 groups with the most pejorative grade in the Ki-67 ≥ 30
both for HR+ and HR− groups (p < 0.001). Tumors of all HR+ patients with a high Ki-67
level were luminal B HER2- 26/41 (63.4%) or HER2+ 15/41 (36.6%), while in the sub-group
of low Ki-67 level, 46/51 (90.2%) were luminal A and 5/51 (9.8%) were luminal B HER2+.
For HR− patients, 21/29 patients (72.4%) were triple-negative breast cancer (TNBC) in
the sub-group of high Ki-67 level, and 16/19 (84.2%) were TNBC in the sub-group of low
Ki-67 level.

Table 1. Clinicobiological parameters of the studied cohort. Data are presented with median
(25th–75th percentile) and frequencies as number (precentage).

HR− HR+

Ki-67 ≤ 20%
(n = 19)

Ki-67 ≥ 30%
(n = 29) p Ki-67 ≤ 20%

(n = 51)
Ki-67 ≥ 30%

(n = 41) p

Age
(years)

62.5
[56.0–69.0]

54.4
[43.0–66.0] 0.08 64.1

[56.0–72.5]
56.2

[48–66.0] 0.003

BMI
(Kg/m2)

24.7
[21.8–27.3]

25.2
[22.2–27.1] 0.66 25.4

[22.7–27.5]
26.1

[21.9–28.8] 0.67

Menopause 0.15 0.006
Yes 17 (89%) 21 (72%) 43 (84.3%) 24 (58.8%)
No 2 (11%) 8 (28%) 8 (15.7%) 17 (41.2%)
Normolipidemic
Treatment 0.85 0.71

Yes 3 (16%) 4 (14%) 5 (9.8%) 5 (12%)
No 16 (84%) 25 (86%) 46 (90.2%) 36 (88%)
Type of cancer 0.29 0.01
Inflitrating duct
carcinoma 16 (84%) 28 (97%) 51 (100%) 36 (88%)

Invasive lobular
carcinoma 2 (11%) 1 (3%) 0 (0%) 5 (12%)

Histopronostic grade <0.001 <0.001
Grade I 0 (0%) 0 (0%) 21 (41.2%) 0 (0%)
Grade II 17 (89%) 3 (10.3%) 26 (51%) 6 (14.6%)
Grade III 2 (11%) 26 (89.7%) 4 (7.8%) 35 (85.4%)
Molecular sub-types
Luminal B HER2+ 5 (9.8%) 15 (36.6%)
Luminal B HER2− 0 (0%) 26 (63.4%) <0.001
Luminal A 46 (90.2%) 0 (0%)
TNBC 16 (84.2%) 21 (72.4%)

0.488HER2 Type 3 (15.8%) 8 (27.6%)
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Table 2 shows the concentration of plasma and lipoprotein lipids in RH- and RH+
breast cancer patients and low (Ki-67 ≤ 20%) or high (Ki-67 ≥ 30%) proliferative index.
In each group of hormone receptor breast cancer patients, no significant difference was
observed in any plasma or lipoprotein lipid concentrations between patients with a low
proliferative index and patients with a high proliferative index.

Table 2. Plasma and lipoprotein lipids in estrogen receptor-positive (HR+) and negative (HR−) breast
cancer patients, according to the proliferation index (Ki-67 ≤ 20% or Ki-67 ≥ 30%). Data are presented
with median (25th–75th percentile).

HR− HR+

Parameters Ki-67 ≤ 20%
(n = 19)

Ki-67 ≥ 30%
(n = 29) p Ki-67 ≤ 20%

(n = 51)
Ki-67 ≥ 30%

(n = 41) p

Plasma Cholesterol
(mmol/L)

5.30
[4.53–5.93]

5.25
[4.07–5.75] 0.770 5.03

[4.17–5.83]
5.36

[4.44–5.91] 0.297

Plasma Triglycerides
(mmol/L)

1.23
[0.91–1.74]

1.11
[0.79–1.37] 0.381 0.90

[0.71–1.25]
0.92

[0.74–1.12] 0.835

LDL Cholesterol
(mmol/L

3.30
[2.47–3.82]

3.39
[2.39–4.01] 0.770 3.18

[2.49–3.90]
3.38

[2.60–3.97] 0.297

HDL Cholesterol
(mmol/L)

1.48
[1.10–1.66]

1.39
[1.07–1.51] 0.144 1.30

[1.09–1.62]
1.38

[1.14–1.57] 0.297

Non HDL Cholesterol
(mmol/L)

3.90
[3.19–4.65]

3.79
[2.82–4.46] 0.770 3.57

[2.94–4.39]
3.84

[3.17–4.50] 0.531

Table 3 shows the concentrations of plasma, HDL and non-HDL apolipoproteins.
When considering the plasma concentrations, no difference between low proliferative
index and the high proliferative index was observed, either in RH- or RH+ patients, with
the exception of apoD, which was significantly increased in RH- patients with a high
Ki-67 index when compared with RH- patients with a low Ki-67 index (p = 0.042). The
patient populations did not differ for the plasma concentrations of either apoA-I, the main
carrier of HDL or apoB100, the main carrier of non-HDL lipoproteins. RH- patients were
characterized by a lower concentration of HDL apo-C-I when their tumor exhibited a
higher proliferative index (p = 0.041), while the opposite was observed for RH+ patients
(p = 0.022). In RH+ patients, a tendency towards a higher non-HDL apo-C-I concentration
(p = 0.060) was also observed in the case of a high Ki-67 index. RH- patients with a high
Ki-67 index had a lower concentration of non-HDL apoC-II than those with a low Ki-67
index (p0.009). HDL apo-C-III was significantly increased in RH+ patients with a high
proliferative index, compared with RH+ patients with a low proliferative index (p = 0.022).
In RH- patients, HDL apoD was higher in patients with a high Ki-67 index when compared
with RH- patients with a low Ki-67 index (p = 0.035).

Table 3. Concentration of plasma, HDL and non-HDL apolipoproteins in estrogen receptor-positive
(HR+) and negative (HR−) breast cancer patients, according to the proliferation index (Ki-67 ≤ 20%
or Ki-67 ≥ 30%). Data are presented with median (25th–75th percentile).

HR− HR+

Parameters Ki-67 ≤ 20%
(n = 19)

Ki-67 ≥ 30%
(n = 29) p Ki-67 ≤ 20%

(n = 51)
Ki-67 ≥ 30%

(n = 41) p

Plasma apoA-I
(mg/dL)

148.60
[133.1–159.0]

160.0
[137.0–170.0] 0.381 152.40

[128.3–168.4]
148.84

[133.7–163.6] 0.531

Plasma apoB100
(mg/dL)

79.86
[68.3–104.4]

96.60
[78.1–117.0] 0.144 95.67

[76.5–118.8]
88.40

[75.9–108.8] 0.297

Plasma apoC-I
(mg/dL)

2.15
[2.00–2.89]

2.46
[1.78–2.82] 0.381 1.99

[1.64–2.58]
2.30

[1.97–3.06] 0.060

HDL apoC-I
(mg/dL)

1.61
[1.32–2.04]

1.34
[1.02–1.80] 0.041 1.35

[1.10–1.62]
1.56

[1.20–1.95] 0.022
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Table 3. Cont.

HR− HR+

Parameters Ki-67 ≤ 20%
(n = 19)

Ki-67 ≥ 30%
(n = 29) p Ki-67 ≤ 20%

(n = 51)
Ki-67 ≥ 30%

(n = 41) p

Non-HDL apoC-I
(mg/dL)

0.62
[0.11–1.29]

0.87
[0.43–1.37] 0.381 0.58

[0.26–1.07]
0.77

[0.43–0.98] 0.060

Plasma apoC-II
(mg/dL)

1.97
[1.43–2.45]

2.00
[1.60–2.30] 0.770 2.00

[1.56–2.55]
2.00

[1.49–2.70] 0.835

HDL apoC-II
(mg/dL)

1.31
[1.00–1.72]

1.48
[1.19–2.01] 0.381 1.67

[1.16–1.85]
1.73

[1.10–2.06] 0.531

Non-HDL apoC-II
(mg/dL)

0.63
[0.39–1.02]

0.31
[0.18–0.65] 0.009 0.47 [

0.17–0.74]
0.48

[0.23–0.71] 0.835

Plasma apoC-III
(mg/dL)

4.54
[3.77–5.31]

4.20
[3.70–5.10] 0.144 4.49

[3.80–5.33]
4.94

[3.92–6.04] 0.297

HDL apoC-III
(mg/dL)

2.66
[2.22–3.12]

2.60
[2.00–3.30] 0.381 2.38

[1.69–2.96]
2.80

[2.42–3.64] 0.022

Non-HDL apoC-III
(mg/dL)

1.98
[1.31–3.13]

1.87
[1.07–2.71] 0.381 2.14

[1.29–2.95]
1.99

[1.40–2.74] 0.835

Plasma apoD
(mg/dL)

3.07
[2.39–3.51]

3.24
[2.99–4.16] 0.042 3.61

[3.09–4.27]
3.40

[2.69–4.06] 0.233

HDL apoD
(mg/dL)

2.45
[2.01–2.99]

2.74
[2.36–3.35] 0.035 2.88

[2.48–3.43]
2.63

[2.22–3.21] 0.156

Non-HDL apoD
(mg/dL)

0.48
[0.38–0.65]

0.57
[0.37–0.69] 0.300 0.64

[0.51–0.91]
0.73

[0.49–0.96] 0.903

Plasma apoE
(mg/dL)

6.07 [
5.20–7.54]

5.71
[4.64–7.48] 0.770 6.11

[5.06–7.68]
6.30

[5.07–7.95] 0.835

HDL apoE
(mg/dL)

2.75
[2.18–4.08]

2.99
[1.96–3.50] 0.144 2.80

[2.25–4.82]
3.32

[1.78–4.64] 0.297

Non-HDL apoE
(mg/dL)

3.68
[2.31–4.42]

3.10
[2.40–4.70] 0.381 3.11

[1.90–4.23]
3.17

[2.63–3.96] 0.531

In order to determine if the observed differences were related to a difference in the
absolute concentration of HDL or non-HDL lipoproteins carrying a given apolipoprotein or
if they were related to a relative enrichment or a relative impoverishment in this apolipopro-
tein, the molar ratios between these apolipoproteins and apoA-I in HDL or apoB100 in
non-HDL were compared between patients with a low proliferative index and patients
with a high proliferative index. These results are shown in Table 4. RH- patients were
characterized by a decrease in the apoC-I-to-apoA-I ratio in HDL when Ki-67 was high
compared with patients with a low Ki-67 index (p = 0.001). The opposite was observed in
RH+ patients, with higher values of this ratio in patients with a high Ki-67 value (p = 0.007).
In RH- patients, the apoC-II-to-apoB100 ratio in non-HDL was lower when the Ki-67 was
high when compared with the low Ki-67 sub-group (p = 0.001). The apoC-III-to-apoA-I
ratio of HDL was also lower in RH- patients with a high Ki-67 value when compared
with the low Ki-67 sub-group (p = 0.041). In RH+ patients, the apoE-to-apoB100 ratio in
non-HDL was significantly higher in the sub-group of patients with a high Ki-67 value,
in comparison with patients with a low Ki-67 value (p = 0.022). A tendency (p = 0.060)
towards a higher apo-C-III-to-apoA-I ratio in HDL of RH+ patients with a high Ki-67 value
was also observed.
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Table 4. Molar ratios between apolipoproteins and apoA-I in HDL or apoB100 in non-HDL. Data are
presented with median (25th–75th percentile).

HR− HR+

Molar Ratio Ki-67 ≤ 20%
(n = 19)

Ki-67 ≥ 30%
(n = 29) p Ki-67 ≤ 20%

(n = 51)
Ki-67 ≥ 30%

(n = 41) p

HDL apoC-I/apoA-I 0.045
[0.040–0.054]

0.030
[0.027–0.042] 0.001 0.031

[0.028–0.039]
0.039

[0.031–0.050] 0.007

Non-HDL apoC-I/
apoB100

0.56
[0.12–0.99]

0.64
[0.30–1.03] 0.381 0.46

[0.24–0.72]
0.64

[0.32–0.88] 0.144

HDL apoC-II/apoA-I 0.029
[0.024–0.037]

0.033
[0.027–0.036] 0.381 0.032

[0.027–0.038]
0.034

[0.025–0.042] 0.531

Non HDL apoC-II/
apoB100

0.51
[0.36–0.78]

0.21
[0.13–0.48] 0.001 0.28

[0.13–0.40]
0.34

[0.21–0.45] 0.531

HDL apoC-III/apoA-I 0.065
[0.055–0.074]

0.055
[0.046–0.066] 0.041 0.054

[0.038–0.063]
0.060

[0.052–0.084] 0.060

Non HDL apoC-III/
apoB100

1.44
[1.11–2.21]

1.15
[0.82–1.92] 0.381 1.32

[0.99–1.93]
1.47

[1.18–1.88] 0.297

HDL apoD/apoA-I 0.017
[0.015–0.021]

0.017
[0.016–0.019] 0.593 0.018

[0.015–0.024]
0.018

[0.015–0.021] 0.481

Non HDL apoD/
apoB100

0.14
[0.09–0.15]

0.11
[0.07–0.16] 0.821 0.12

[0.09–0.19]
0.16

[0.10–0.21] 0.537

HDL apoE/apoA-I 0.018
[0.014–0.023]

0.016
[0.010–0.019] 0.144 0.018

[0.012–0.023]
0.018

[0.013–0.023] 0.835

Non HDL apoE/
apoB100

0.66
[0.43–0.83]

0.51
[0.41–0.64] 0.144 0.48

[0.36–0.60]
0.58

[0.38–0.72] 0.022

4. Discussion

Here, we aimed to evaluate the interest of measuring the apolipoprotein content
within circulating lipoproteins in breast cancer patients. We showed that patients with
breast cancer of various severity display similar concentrations of plasma and lipoprotein
lipids but different concentrations of some apolipoproteins carried by HDL and non-HDL.
Besides, we showed that the relationship between apolipoproteins and the disease severity
differs between hormone receptor-negative and hormone receptor-positive tumors. Some
previously published results indicated that some apolipoproteins might be involved in the
development of breast cancer. These results were nicely summarized in a recent review [6].

Despite the fact that low levels of plasma apoA-I were shown to independently predict
the poor clinical outcome of patients with invasive ductal breast cancer [7], a large study
conducted on 1411 women from the AMORIS cohort with breast cancer severity known
only found a modest positive association between the apoB100-to-apoA-I ratio and breast
cancer severity [14]. In line with these previous results, we did not find any difference
between patients with high proliferative tumor index and patients with low proliferative
tumor index. This was the case for RH- as well as RH+ tumors.

In a study using serum fractionation by strong anion exchange chromatography fol-
lowed by mass spectrometry analysis, lower apoC-I and apoC-II concentrations were found
in breast cancer patients than controls, while apoC-III concentration was higher [8]. In a
recent study comparing protein profiles between breast cancer patients and controls, it was
also shown that plasma apoC-I was lower in affected patients, and further analyses identi-
fied apoC-I signature peptides able to inhibit breast cancer cell proliferation in vitro [15]. It
was also suggested that elevated apoC-I levels could help distinguish triple-negative breast
cancer and non-triple negative breast cancer [16]. These results pointed out the potential
of apoC-I as a biomarker of breast cancer. However, the design and goals of the present
study were different from those published previously. Our results suggest that it may be
of interest to distinguish between HDL and non-HDL apolipoproteins when studying the
relationship of apolipoproteins with breast cancer. As a matter of fact, in the present study,
plasma apoC-I, apoC-II and apoC-III concentrations did not differ between patients with
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high proliferative index tumors and patients with low proliferative index tumors. However,
HDL apoC-I was lower in the case of high proliferative index tumors when breast cancer
was RH-, while it was higher in high proliferative index tumors when breast cancer was
RH+. HDL apoC-III was also higher in RH+ patients with a high proliferative index tumor.
This deeply suggests that the relationship between apoC-I or apoC-III and breast cancer tu-
mor behavior concerns only HDL and that it differs from the nature of the tumor. The only
difference observed for apoC-II was for non-HDL concentration, which was lower in case of
high proliferative index RH- tumors. The analysis of the ratios between one apolipoprotein
and apoA-I for HDL or one apolipoprotein and apoB100 for non-HDL may be used to
determine if these differences are related to a change in the absolute number of lipoprotein
particles containing this apolipoprotein or if this is related to a change in the number of
copies of a given apolipoprotein per lipoprotein particle. If this ratio increases, this means
that the number of copies of this apolipoprotein per lipoprotein particle increases; if this
ratio decreases, this means that the number of copies of this apolipoprotein per lipoprotein
particle decreases. This change in the apolipoprotein composition of the lipoprotein particle
may be independent of its absolute concentration in plasma but it reflects a modification of
its quality, which may affect its biological behavior. Concerning apolipoproteins C-I, C-II
and C-III, our results suggest that these differences are due to a change in the number of
copies of each apolipoprotein per lipoprotein particle.

ApoD is probably one of the apolipoproteins that were the most extensively studied
in the context of breast cancer. However, its interaction with the disease is rather complex.
While apoD has been shown to inhibit the proliferation of breast cancer cells [17], estrogens
significantly reduce apoD gene expression [18]. At the cell level, apoD may influence
several critical pathways, including MAPK, 5-LO and COX-2 pathways [19–22]. It was
also suggested that apoD expression could be predictive of breast cancer recurrence in
tamoxifen-treated patients [23–28]. However, a large population-based case-control study
on 11,251 women with well-characterized tumors failed to demonstrate any association
between apoD nuclear and cytoplasmic expression and disease recurrence in HR− as well
as tamoxifen-treated HR+ patients [29]. Nevertheless, women with advanced breast cancer
were shown to have higher plasma concentrations of apoD [9], and apoD was suggested to
be a good prognostic indicator for the disease [30]. In the present study, we showed that
plasma apoD is higher in the case of high proliferative index tumors, only in the case of
RH- breast cancer tumors. In addition, this difference was observed for HDL only, while
non-HDL apoD did not differ with the proliferative index of tumors. However, when
calculating the ratio between apoD and apoA-I in HDL, these differences disappeared,
suggesting that the relationship between HDL apoD and RH- breast cancer severity is due
to an increased number of HDL particles carrying apoD, and not to a relative enrichment
of HDL in apoD.

On the cellular level, apoE may inhibit angiogenesis and the proliferation of breast
cancer cells [31,32]. By contrast, in a clinical study, it has been shown that the apoE
plasma concentration is positively associated with breast cancer malignancy [10]. In the
present results, we were unable to show any difference in plasma, HDL or non-HDL apoE
concentration between patients with high proliferative index tumors when compared with
patients with low proliferative index tumors. However, when considering the relative
enrichment of HDL and non-HDL in apoE, it was found that RH+ patients with high
proliferative index tumors exhibit non-HDL lipoprotein particles enriched in apoE, as
suggested by the significantly higher apoE-to-apoB100 ratio in this group of patients.

Several isoforms of apoE may be found in Humans. The major isoforms are apoE2,
apoE3 and apoE4, leading to six phenotypes, depending on the inherited ε alleles. There
are some studies in the literature suggesting a link between the presence of the ε4 allele and
breast cancer [33–35]. However, a meta-analysis found a significant relationship between
the presence of this allele and breast cancer only in the Asian population [11]. The ApoE
phenotype influences HDL and non-HDL levels in plasma and the apoE concentration [36].
The apoE distribution between HDL and non-HDL may vary with the ε alleles, and different
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apoE phenotypes distribute differently between lipoproteins [37]. Therefore, the relative
enrichment of non-HDL that we observed in RH+ patients could be related to a different
distribution of ε alleles between patients with high proliferative index tumors and patients
with low proliferative index tumors. However, in our population, most of the patients
carried the E3/E3 phenotype, and the ε allele distribution did not differ between groups of
patients defined by their hormone receptor status and their proliferative index. Therefore,
although we cannot exclude an influence of the apoE polymorphism, it does not explain
why non-HDL were relatively enriched in apoE in RH+ patients with high proliferative
index tumors.

This descriptive study shows that the distribution of apolipoproteins C-I, C-II, C-III
and D between HDL and non-HDL is linked with the severity of breast cancer, as assessed
by Ki-67.
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