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Abstract: Artificial intelligence has the potential to revolutionize modern society in all its aspects.
Encouraged by the variety and vast amount of data that can be gathered from patients (e.g., medical
images, text, and electronic health records), researchers have recently increased their interest in
developing AI solutions for clinical care. Moreover, a diverse repertoire of methods can be chosen
towards creating performant models for use in medical applications, ranging from disease prediction,
diagnosis, and prognosis to opting for the most appropriate treatment for an individual patient.
In this respect, the present paper aims to review the advancements reported at the convergence of
AI and clinical care. Thus, this work presents AI clinical applications in a comprehensive manner,
discussing the recent literature studies classified according to medical specialties. In addition, the
challenges and limitations hindering AI integration in the clinical setting are further pointed out.

Keywords: artificial intelligence; machine learning; deep learning; clinical applications; precision
medicine; personalized medicine

1. Introduction

Artificial intelligence (AI) has increasingly become an integral part of our life, having
an undeniable impact on today’s society. Owing to the growth of computing power,
advances in methods and techniques, and the explosion of data, AI has positioned itself
as a supportive technology in many domains, ranging from industry to business and
education [1–4].

Despite not having an official definition, AI is generally recognized as the ability to
imitate human cognitive functions using machines. Through an ingenious association of
computer science, algorithms, machine learning, and data science, AI can solve tasks with
a comparable performance to humans or above their level [3,5–7].

In more detail, AI comprises any system with the ability to sense, reason, engage, and
learn that can be used for various human-like functions, such as understanding digital
images, voice recognition, motion, planning, and organization. On the other hand, machine
learning (ML) is a subset of AI that uses statistical techniques to endow computer systems
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with the ability to improve with experience. Specifically, ML encompasses the AI tools
that can adapt their models to improve predictions, leading to a progressive performance
enhancement for the set task. Theoretically, ML methods can be applied to datasets of any
size, yet a larger amount of data provides more experience for training the model. The
working principle of ML assumes feeding these features into computational models that
can offer insights into the observations, such as clustering similar observations into groups
or predicting certain outcomes. Moving further, deep learning (DL) assumes the subclass
of ML where algorithms can train themselves due to the “self-learning” ability achieved
through a sequential chain of pivotal features from input data. Data representations are
automatically mastered by deep neural networks (DNNs) that can learn very complex
nonlinear mathematical functions. The term “deep” is used in reference to the number
of layers (so-called neurons) or iterations between the input and output. In more detail,
input features are fed into the first layer of neurons and propagated towards the output
layer, the process being inspired by the information processing principles of biological
neurons [1,7–9]. The relationship between AI, ML, and DL is visually represented in
Figure 1. Moreover, Table 1 briefly defines the most important and relevant concepts
concerning AI tools.
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Table 1. Important AI-related terms and definitions.

Term Description References

Machine learning (ML) Process by which an algorithm encodes statistical regularities from a
database of examples into parameter weights for future predictions [11]

Deep learning (DL) Multilayered complex ML platform comprised of numerous computational
layers able to make accurate predictions [6]

Supervised learning Training an ML algorithm using previously labeled training examples,
consisting of inputs and desired outputs provided by an expert [7,11]
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Table 1. Cont.

Term Description References

Unsupervised learning When an ML algorithm discovers hidden patterns or data groupings
without the need for human intervention [11]

Reinforcement learning

Learning strategies towards acting optimally in certain situations with
respect to a given criterion; such an algorithm obtains feedback on its
performance by comparison with this criterion through reward values

during training

[7]

Model A trained ML algorithm that can make predictions from unseen data [11]

Training Feeding an ML algorithm with examples from a training dataset towards
deriving useful parameters for future predictions [11]

Features Components of a dataset describing the characteristics of the studied
observations [1]

Decision tree

Nonparametric supervised learning method visualized as a graph
representing the choices and their outcomes in the form of a tree; each tree

consists of nodes (attributes in the group to be classified) and branches
(values that a node can take)

[12,13]

Random forest Ensemble classification technique that uses “parallel ensembling”, fitting
several decision tree classifiers in parallel on dataset subsamples [13]

Naïve Bayes (NB)
Classification technique assuming independence among predictors (i.e.,

assumes that the presence of a feature in the class is unrelated to the
presence of any other feature)

[12]

Logistic regression
Algorithm using a logistic function to estimate probabilities that can overfit
high-dimensional datasets, being suitable for datasets that can be linearly

separated
[13]

K-nearest neighbors (KNN)

“Instance-based learning” or a non-generalizing learning algorithm that
does not focus on constructing a general internal model but, rather, stores
all instances corresponding to the training data in an n-dimensional space

and classifies new data points based on similarity measures

[13]

Support vector machine
(SVM)

Supervised learning model that can efficiently perform linear and
nonlinear classifications, implicitly mapping their inputs into

high-dimensional feature spaces
[12]

Boosting
Family of algorithms converting weak learners (i.e., classifiers) to strong
learners (i.e., classifiers that are arbitrarily well-correlated with the true

classification) towards decreasing the bias and variance
[12]

Artificial neural network
(ANN)

An ML technique that processes information in an architecture comprising
many layers (“neurons”), each inter-neuronal connection extracting the

desired parameters incrementally from the training data
[6,11]

Deep neural network (DNN) A DL architecture with multiple layers between the input and output
layers [11]

Convolutional neural network
(CNN)

A class of DNN displaying connectivity patterns similar to the connectivity
patterns and image processing in the visual cortex [11]

In recent years, AI has attracted more and more research interest in medicine, being
investigated for a plethora of applications. Numerous studies have evaluated various
aspects of the healthcare system, reporting the progress in AI involvement in the prevention,
screening, and treatment of diseases and prediction of the prognosis [14,15].

In this context, the present paper thoroughly reviews the most recent potential clinical
applications of AI in the fields of cardiology, neurology, oncology, hematology, nephrol-
ogy, gastroenterology, hepatology, orthopedics, and rheumatology, further focusing on
the challenges that limit their introduction to clinical practice. More specifically, this
work reviews English language research articles in the fields published in the last 5 years
(2018–2022). Studies were retrieved from the Science Direct and Google Scholar databases
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using combinations between the following keywords: “artificial intelligence”, “machine
learning”, “deep learning”, “clinical applications”, “prediction”, “diagnosis”, “screening”,
“treatment”, “prognosis”, “cardiology”, “neurology”, “oncology”, “cancer”, “hematology”,
“nephrology”, “gastroenterology”, “hepatology”, “orthopedics”, and “rheumatology”. The
relevant search results were manually selected; the papers were analyzed and discussed
in the main text of the review; and the studies for which at least one of the following
performance metrics was available, namely accuracy, precision, sensitivity, specificity, or
correlation between the automated and manual measurements, were additionally summa-
rized in a series of tables. The choice of the included medical specialties was based on the
available literature data, as other areas were not as explored in recent years or remained at
the level of hypothesis/opinion papers.

2. Applications of AI in Clinical Care

Artificial intelligence has faced tremendous advances in recent years, rendering it
interesting for applications in a variety of clinical care procedures (Figure 2). In this respect,
the following subsections discuss the most recent studies concerning AI involvement in
medicine, classified according to medical specialties. Moreover, the studies for which at
least one of the following performance metrics was available, namely accuracy, precision,
sensitivity, specificity, or correlations between automated and manual measurements, are
included in the summative tables.
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2.1. Cardiology

Cardiovascular diseases represent one of the leading causes of morbidity and mor-
tality worldwide, requiring expensive treatments and posing a burden on both patients
and the healthcare system [16]. Introducing AI technology to the field of cardiology
holds great promise for improving the prediction and diagnosis of cardiac events and
visualizing cardiac anomalies that anticipate patients’ needs and provide personalized
medical care. This is particularly appealing in cardiology due to the large amount and
variety of available biological data. By properly analyzing and interpreting images, pulse
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waves, electrocardiograms, and sound information, various algorithms can identify pat-
terns that lead to disease offset or aggravation, helping the cardiologists in choosing the best
treatment alternative [15,17].

For instance, Ye et al. [18] developed and validated a model for predicting incident
essential hypertension. The authors used a machine learning algorithm for processing
electronic health record (EHR) data that generated an ensemble of classification trees and
assigned a predictive risk score to each individual. As the model was able to accurately
predict incident essential hypertension for the following year, it has been deployed in the
state of Maine to provide implications in interventions for hypertension and associated
diseases and, subsequentially, improve hypertension care.

Another interesting example was proposed by Tison and colleagues [19], who created
a deep neural network for detecting atrial fibrillation using smartwatch data, such as
heart rate and step count. The deep neural network (DNN) was trained by the heuristic
pretraining method (the network approximated representations of the R–R interval (i.e., the
time between heartbeats) without manual labeling of the training data) and validated both
against the reference standard 12-lead electrocardiography in a separate cohort of patients
undergoing cardioversion and on smartwatch data from ambulatory patients against the
reference standard of self-reported persistent AF history. The authors concluded that the
combination of smartwatch photoplethysmography and DNN could be a solution for
passively detecting AF, with some reduction in sensitivity and specificity against a criterion
standard ECG.

In contrast, Picon et al. [20] coupled one-dimensional convolutional neural network
(1D-CNN) layers and a long short-term memory (LSTM) network into a deep learning
architecture for detecting ventricular fibrillation. The newly proposed DL architecture was
compared to 1D-CNN only and to a classical approach based on ventricular fibrillation (VF)
detection features and a support vector machine (SVM), outperforming these classifiers.
Up to that moment, and according to the authors’ knowledge, this algorithm was the
most accurate for VF detection, with the potential to enable an accurate shock or no shock
diagnosis in a very short time.

Artificial intelligence was also found to be useful for the classification of aortic stenosis,
as demonstrated by Yang et al. [21]. The research group used a feature analysis framework
to reduce the features from collected cardio-mechanical signals generated by continuous
wavelet transform. Several ML algorithms were compared by performance, while an
additional 2D-CNN was developed using CWT coefficients as images. The obtained
accuracies validated the effectiveness of the feature selection and classification framework,
encouraging the implementation of AI tools in AS classification.

Alternatively, Eberhard et al. [22] evaluated the feasibility of a computed tomography-
derived fractional flow reserve (FFRCT) in patients presenting to the emergency department
with acute chest pain who underwent chest pain-computed tomography (CPCT). As FFRCT
allows a noninvasive functional assessment of coronary artery stenosis, involving ML-
based software for performing the measurements could only make it more advantageous.
By evaluating the agreement between the results from the FFRCT and patient outcomes for
a follow-up of three months, the authors concluded that this method was feasible for the
tested category of patients. Therefore, this approach can be implemented in clinical care for
improving patient triage by reducing the need for further downstream testing. Nonetheless,
some limitations were noticed in patients with CT signs of acute plaque rupture, so further
research is needed.

Another study conducted by Nguyen et al. [23] proposed an algorithm based on a CNN
as a feature extractor and a Boosting classifier for detecting sudden cardiac arrest on an
electrocardiogram signal. Their developed shock advice algorithm applied in the automated
external defibrillator showed a validated performance, with the accuracy, sensitivity, and
specificity above the preexisting algorithms for the same task. Thus, its high and reliable
detection represents a potential asset in clinical settings, the correct detection of SCA being
essential for improving the survival rate and reducing unnecessary defibrillation.
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Retson and colleagues [24] developed a deep learning algorithm for the clinical mea-
surements of the right and left ventricular volumes and functions. MRI images for various
clinical indications and pathologies were analyzed with the aid of commercially available
software for the automated DL-based and manual contouring of biventricular volumes.
Given the promising obtained results, the authors concluded that their algorithm could be
used to aid in expert segmentation; however, the model can benefit from expert supervision,
especially for solving errors of the basal and apical slices.

Encouraging results were also obtained by Hannun et al. [25], who developed a
DNN able to classify 12 rhythm classes based on single-lead electrocardiograms. When
validated against an independent test dataset annotated by a consensus committee of
board-certified practicing cardiologists, the DNN performance outperformed the special-
ists, exceeding the average cardiologist sensitivity for all the rhythm classes. Hence, it
may be expected that introducing this DL-based approach into the clinical setting could
lower the rate of misdiagnosed computerized ECG interpretations and enhance the hu-
man ECG interpretation efficiency by properly triaging patients and prioritizing the most
urgent conditions.

To summarize the discussion in a clear and easy-to-follow manner, Table 2 comprises
the information regarding the objectives of the studies mentioned above, the used AI
approaches, the data sources for the developed algorithms, and the performance metrics.

Table 2. Summary of the recent AI studies in cardiology.

Task/Objective AI Tool(s) Data/Validation Performance Ref.

Prediction of
incident essential

hypertension
within the

following year

XGBoost

EHR from Maine Health
Information Exchange

network:
Retrospective—n = 823,627,

calendar year 2013
Prospective—n = 680,810,

calendar year 2014

Predictive accuracy:
Retrospective—91.7%
Prospective—87.0%

[18]

Detection of AF
using smartwatch

data
DNN

9750 participants from Health
eHeart Study and 51 patients
undergoing cardioversion at
the University of California,

San Francisco
(Enrollment period: February

2016—March 2017)

External validation:
Sensitivity—98.0%
Specificity—90.2%

Exploratory analysis based on self-report of
persistent AF in ambulatory patients:

Sensitivity—67.7%
Specificity—67.6%

[19]

Detection of VF

DL based on
1D-CNN

and LSTM
network

Public repositories of
arrhythmia (n = 87,919)

OHCA data recorded by
monitor defibrillators during

treatment in Akershus
(Norway), Stockholm

(Sweden), and London (UK)
between 2002 and 2004 (n =

10,857)

For 4-s ECG segments
Public data:

Balanced accuracy—99.3%
Sensitivity—99.7%
Specificity—98.9%

OHCA data:
Balanced accuracy—98.0%

Sensitivity—99.2%
Specificity—96.7%

[20]

Classification of AS
based on

cardio-mechanical
signals from
noninvasive

wearable inertial
sensors

Elastic Net
(for

reducing the
features

generated
by CWT)

Several ML
algorithms
2D-CNN

21 AS patients and 13 non-AS
subjects

After the reduction of features by 95.47%, the
following accuracies were reported:

Decision tree: 87%
Random forest: 96%

Simple neural network: 91%
XGBoost: 95%
2D-CNN: 91%

Custom-constructed classifier: 89%

[21]
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Table 2. Cont.

Task/Objective AI Tool(s) Data/Validation Performance Ref.

Feasibility and
potential clinical
role of FFRCT in

patients presenting
to the emergency
department with
acute chest pain
who underwent

CPCT

ML-based
software

56 patients with acute chest
pain who underwent CPCT
and who had at least a mild
(≥25% diameter) coronary

artery stenosis

Feasibility—68% [22]

SCA detection on
ECG signal

CNN (for
feature

extraction)
Boosting
classifier

57 records from Creighton
University Ventricular

Tachyarrhythmia Database and
MIT-BIH Malignant

Ventricular Arrhythmia
Database, where each record
corresponds to an individual

patient
The data were divided into
70% of training and 30% of

evaluation sets corresponding
to 40 and 17 records,

respectively

Validated accuracy—99.26%
Sensitivity—97.07%
Specificity—99.44%

[23]

Clinical
measurement of RV
and LV volume and

function across
cardiac MR images

obtained for
various clinical
indications and

pathologies

DL
algorithm

First 200 noncongenitally
clinical cardiac MRI

examinations from June 2015
to June 2017 for which

volumetry was available

Correlation between automated measurements and
manual measurements
RV:

End systolic volume: r = 0.93 (p < 0.001)
End diastolic volume: r = 0.92 (p < 0.001)

Ejection fraction: r = 0.73 (p < 0.001)
LV:

End systolic volume: r = 0.99 (p < 0.001)
End diastolic volume: r = 0.97 (p < 0.001)

Ejection fraction: r = 0.94 (p < 0.001)

[24]

Classification of
various arrythmias

from single-lead
ECGs

DNN

91,232 single-lead ECGs from
53,549 patients who used a

single-lead ambulatory ECG
monitoring device

Specificity | Sensitivity for:
Atrial fibrillation and flutter—94.1% | 86.1%

AVB—98.1% | 85.8%
Bigeminy—99.6% | 92.1%

EAR—99.3% | 44.5%
IVR—99.1% | 86.7%

Junctional rhythm—98.4% | 72.9%
Noise—98.3% | 80.3%

Sinus rhythm—85.9% | 95.0%
SVT—98.3% | 48.7%

Ventricular tachycardia—99.6% | 70.2%
Wenckebach—98.6% | 65.1%

[25]

1D—one-dimensional; 2D—two-dimensional; AVB—atrioventricular block; CWT—continuous wavelet transform;
CNN—convolutional neural network; DL—deep learning; DNN—deep neural network; EAR—ectopic atrial
rhythm; IVR—idioventricular rhythm; LSTM—long short-term memory; LV—left ventricle; OHCA—out-of-
hospital cardiac arrest; RV—right ventricle; SVT—supraventricular tachycardia.

2.2. Neurology

The benefits of AI have also attracted attention in the area of clinical neurosciences,
as newly developed tools can ensure early detection and improve the management of
neurological conditions [26].

Abedi et al. [27] recently investigated ML-based tools for predicting stroke recurrence
and identifying the key variables. All the selected algorithms (i.e., logistic regression,
XGBoost, gradient boosting machine, random forest, SVM, and decision tree) could be



J. Clin. Med. 2022, 11, 2265 8 of 33

trained to predict the occurrence of long-term ischemic stroke, and laboratory-based vari-
ables were highly correlated with stroke recurrence, paving the way for personalized
interventions. Another study on acute ischemic stroke was conducted by Rava et al. [28],
who researched the matter from the perspective of collateral circulation. AI-based algo-
rithms can accurately and efficiently determine a patient’s degree of collateral flow, being
a potential tool for helping in the decision of which patients are eligible for a reperfusion
procedure.

Tackling the potential of machine learning as well, Young et al. [29] introduced a
ML technique called “Subtype and Stage Interference (SuStaIn)”. SuStaIn can be used
for identifying genotypes from imaging alone in neurodegenerative diseases, such as
genetic frontotemporal dementia and Alzheimer’s disease. Providing fine-grained patient
stratification, SuStaIn can significantly enhance the ability to predict the conversion between
diagnostic categories over standard models that ignore the subtype or temporal stage.
Thus, it holds great promise in enabling disease subtype discovery and precision medicine.
Following similar considerations, Eshaghi and colleagues [30] applied unsupervised ML to
brain MRI scans to classify multiple sclerosis based on the pathological features. According
to the authors’ findings, the identified subtypes predicted the disability progression and
patients’ responses to treatment, SuStaIn being a valuable technique for use in defining
groups of patients in interventional studies.

Considerable research interest has been invested in applying AI technology to detect-
ing epilepsy and managing this disease. For instance, Jin et al. [31] coupled machine learn-
ing with automated surface-based MRI morphometry, obtaining a robust performance of
detecting FCD during presurgical evaluations for patients with pharmacoresistant epilepsy.
Using a similar approach, Gleichgerrcht et al. [32] focused on improving the detection
of brain abnormalities in temporal lobe epilepsy patients, concluding that ML has the
potential to aid in the radiological diagnosis of this disease. Alternatively, Daoud and
Bayoumi [33] developed a deep learning-based technique applied to long-term scalp elec-
troencephalogram recordings for predicting incoming epileptic seizures, obtaining the best
performance among the state-of-the-art techniques. As recently demonstrated by Quon
and colleagues [34], DL also represents a potential solution in automatically classifying
intracranial epileptiform discharges (IEDs). Using a template-matching algorithm and a
CNN, the authors obtained comparable performances to expert clinical neurophysiologists,
confident in their study’s potential practical applications.

Another interesting study for the field of neurology was reported by Qiu et al. [35]. The
authors proposed an interpretable DL strategy for the delineation of unique Alzheimer’s
disease signatures from multimodal inputs. A fully convolutional network was involved
for constructing high-resolution maps of disease probability from the local brain structure
to a multilayer perceptron. In this manner, the model could generate precise, intuitive visu-
alization of an individual’s Alzheimer’s disease risk, identifying nuanced neuroimaging
signatures for diagnosing this condition.

Research has also been conducted towards improving the diagnosis and care of other
neurodegenerative disorders. For example, Shinde et al. [36] established a computer-based
analysis technique to create prognostic and diagnostic biomarkers of Parkinson’s disease
(PD) by the use of neuromelanin-sensitive MRI (NMS-MRI). NMS-MRI has been involved,
as this method can help identify the abnormalities in the substantia nigra pars compacta
(SNc) in PD, since condition is characterized by the loss of dopaminergic neurons in the
SNc. The proposed CNN-based method offered a testing accuracy superior to contrast ratio-
based classification and the radiomics classifier, supporting PD discrimination from atypical
parkinsonian syndromes. The authors concluded that their technique might support the
radiological diagnosis of PD while facilitating a deeper understanding of the abnormalities
in SNc.

Important results were also reported in a study performed on patients in the intensive
care unit who had an acute brain injury and were unresponsive to spoken commands.
Claassen et al. [37] applied ML to patients’ EEG recordings to detect brain activation in
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response to commands that patients move their hands. The authors observed in this manner
that, early after brain injury, 15% of the clinically unresponsive patients who did not follow
spoken motor commands presented EEG evidence of brain activation in response to them.

Artificial intelligence can also be involved in improving brain surgeries. Shahjouei
et al. [38] developed an ANN for predicting the safe clipping time (SCT) of temporary
artery occlusion during intracranial aneurysm surgery. The proposed technique works
offline, estimating the SCT before the surgery; however, the authors suggested that an
online version would provide a more accurate and precise SCT during the surgery.

A summary of the above-presented studies is comprised in Table 3.

Table 3. Summary of the recent AI studies in neurology.

Task/Objective AI Tool(s) Data/Validation Performance Ref.

Prediction of
ischemic stroke

recurrence

Several ML
algorithms

Geisinger EHR of 2091 ischemic
stroke patients

Recurrence within 1-year prediction
using random forest with
up-sampling the training dataset:

Accuracy—88%
Positive predictive value—42%

Specificity—96%

[27]

Automated lesion
detection ANN classifier

61 patients with pharmacoresistant
epilepsy and histologically proven

FCD type II from three different
epilepsy centers

Normal database with 120 healthy
controls

Additional 35 healthy test controls
and 15 disease test controls with

histologically confirmed
hippocampal sclerosis

Sensitivity—73.7%
Specificity—90.0%

(91.4% specificity in healthy test group;
86.7% specificity in disease test group)

[31]

Early prediction of
epileptic seizures

DCNN
Several DL-based

classifiers

Long-term scalp EEG data for 22
pediatric subjects with intractable
seizures from Children’s Hospital

Boston

Accuracy—99.66%
Sensitivity—99.72%
Specificity—99.60%

False alarm rate—0.004 h−1

[33]

Prediction of
Alzheimer disease

status

DL framework
linking an FCN to
a traditional MLP

Four distinct datasets:
ADNI: 229 normal cognition; 188

Alzheimer’s disease
AIBL: 320 normal cognition; 62

Alzheimer’s disease
FHS: 73 normal cognition; 29

Alzheimer’s disease
NACC: 356 normal cognition; 209

Alzheimer’s disease

ADNI test:
Accuracy—96.8 ± 1.4%
Sensitivity—95.7 ± 1.4%
Specificity—97.7 ± 3.1%

AIBL:
Accuracy—93.2 ± 3.1%

Sensitivity—87.7 ± 3.2%
Specificity—94.3 ± 4.2%
FHS:

Accuracy—79.2 ± 3.9%
Sensitivity—74.2 ± 18.5%
Specificity—80.8 ± 8.2%

NACC:
Accuracy—85.2 ± 3.7%
Sensitivity—92.4 ± 2.5%
Specificity—81.0 ± 6.8%

[35]
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Table 3. Cont.

Task/Objective AI Tool(s) Data/Validation Performance Ref.

Diagnosis of
Parkinson disease CNN

45 patients with Parkinson’s disease,
20 patients with atypical

parkinsonian syndromes, 35 healthy
controls from the general outpatient

clinic and movement disorder
services at the Department of

Neurology, National Institute of
Mental Health and Neurosciences,

Bangalore, India

Parkinson’s disease vs. healthy
controls:

Accuracy—80.0%
Sensitivity—86%
Specificity—70%

Parkinson’s disease vs. atypical
parkinsonian syndromes:

Accuracy—85.7%
Sensitivity—100%
Specificity—50%

[36]

Assessment of
collateral flow of
patients with AIS

CNN

200 patients with AIS who presented
at the comprehensive stroke center

with stroke-like symptoms between
March 2019 and January 2020

Dichotomized classification:
Accuracy—85 ± 1%
Sensitivity—88 ± 1%
Specificity—82 ± 3%

Multiclass classification:
Accuracy—80 ± 1%
Sensitivity—64 ± 1%
Specificity—85 ± 1%

[28]

Detection of
intracranial IED

Template-
matching
algorithm

CNN

1000 intracranial EEG epochs
extracted randomly from 307

subjects with refractory epilepsy
enrolled in the Defense Advanced

Research Projects Agency (DARPA)
Restoring Active Memory (RAM)

collaborative agreement

Accuracy for classifying an IED—91%
Accuracy for classifying a

non-IED—96%
Sensitivity—91–100%
Specificity—82–97%

[34]

Prediction of the
safe clipping time

of temporary artery
occlusion (TAO)

during intracranial
aneurysm surgery

ANN

125 patients: 105 patients from a
retrospective cohort for training the

model and 20 patients from a
prospective cohort for validating the

model

Accuracy—88% [38]

ADNI—Alzheimer’s Disease Neuroimaging Initiative; AIBL—Australian Imaging, Biomarker and Lifestyle
Flagship Study of Ageing; ANN—artificial neural network; CNN—convolutional neural network;
DCNN—deep convolutional neural network; FCN—fully convolutional network; FHS—Framingham
Heart Study; IED—interictal epileptiform discharges; ML—machine learning; NACC—National Alzheimer’s
Coordinating Center.

In addition to neurological condition-specific studies, interest has also been drawn to
integrating AI algorithms into neurosurgical audits. Brzezicki et al. [39] used the Frideswide
algorithm to analyze the same dataset (clinical notes of 45 medical outliers on a neuro-
surgical ward) as 46 human students. The AI-based algorithm produced considerably
more recommendations in a shorter time, the audits being more factually accurate and
logically consistent. Thus, this method may help improve the safety, efficiency, and quality
of care, implying only a small part of the resources would be required to conduct it through
human processes.

2.3. Oncology

Cancer comprises a group of more than a hundred types of diseases characterized by
abnormal cell growth in different body parts and requires prompt and adequate treatment
to prevent serious health issues and increase patients’ survival rates [40–43]. As cancer
poses tremendous burdens on patients and healthcare systems worldwide, there is no
surprise that AI has started being investigated in relation to oncology. AI may assist with
collecting and evaluating data, diagnose the information on the basis of health, match it
with prior information and expertise, and choose adequate diagnostic treatment plans.
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Thus, it has been studied for improving the diagnosis and management of many forms of
cancer, including breast, lung, thyroid, oral, gastric, colorectal, liver, and skin cancers [44].

For instance, Rocca et al. [45] used AI models for improving the radiological diagnosis
of colorectal cancer liver metastases (CRCLM). With a precision of 100%, Formal Methods
(FM) can help medical professionals predict the presence of liver metastasis still unde-
tectable when using the standard protocols. Thus, the authors concluded that FM could
effectively detect CRCLM, even in very heterogeneous and small clinical samples.

Alternatively, Lu and colleagues [46] employed the Faster RCNN model to create a
recognition framework for colorectal cancer tumor sprouting. The model can automatically
identify the budding areas from pathological sections and count their numbers in a short
time, with high accuracy. Therefore, this method can improve the diagnostic efficacy while
also reducing the burden of pathologists in reading the sections.

Lee et al. [47] investigated the use of AI in analyzing pancreatic cancer recurrence
after surgery and its determinants. Employing the random forest algorithm, the authors
concluded that the major predictors of disease-free survival were tumor size, tumor grade,
TNM stage, T stage, and lymphovascular invasion. Thus, this technology represents a
promising decision support system for treating patients undergoing surgery for pancreatic
cancer; yet, further studies are required to demonstrate its benefits in clinical practice.

A different study, conducted by Pantanowitz et al. [48], focused on aiding in a
prostate cancer diagnosis from H&E-stained slides of prostate core needle biopsies. Their
computer-assisted diagnostic tool could accurately detect, grade, and evaluate clinically
relevant features in digitized slides. These encouraging results suggest that the devel-
oped technique could be a useful asset in automating the screening of prostate biopsies
for a primary diagnosis, assessing signed-out cases for quality control purposes, and
standardizing reporting.

An interesting AI approach for cancer care was proposed by Faron et al. [49]. The
authors used an automated DL-based body composition analysis pipeline to predict the
outcome in patients with melanoma receiving immune checkpoint inhibitor therapy. The
model identified a lowered skeletal muscle mass as an independent predictor of mortality,
the patients with such characteristics displaying increased mortality rates up to three years
after starting the treatment.

An innovative ML-based strategy for diagnosing laryngeal cancer was reported by
Kim et al. [50]. The researchers investigated if an automated voice signal analysis could help
to discriminate between patients with laryngeal cancer and healthy individuals. Promising
results were obtained, as the deployed method demonstrated a greater performance than
trained laryngologists in identifying the diseased.

Recent research was also directed at developing a reliable tool for estimating radia-
tion doses before any planning of head and neck radiation therapy. In this respect, Chan
et al. [51] created a machine learning-based clinical decision support system that could
predict whether mandible subsites would receive a mean dose higher than 50 Gy. Obtaining
promising results, the authors concluded that the implementation of such a dose predic-
tion system would allow for more precise estimations of radiation side effects in specific
at-risk organs.

One more study that focused on cancer therapy rather than diagnosis/monitoring
was proposed by Houy and Le Grand [52]. The authors used AI technology for comput-
ing optimal personalized protocols for temozolomide administration in a heterogeneous
population of patients. Every day, the protocol was updated with the feedback from the
patients’ reactions to drug administration, resulting in very different personalized protocols
between the tested group and the standard maximum tolerated dose protocol. This treat-
ment customization was reflected in a reduced tumor size, on average and patient-wise,
while avoiding severe toxicity.

To summarize the discussion on the oncological applications of AI, Table 4 was created.
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Table 4. Summary of the recent AI studies in oncology.

Task/Objective AI Tool(s) Data/Validation Performance Ref.

Prediction of liver
metastasis presence

when still
undetectable using

the standard
protocols

FM

CT scan data of 30 patients
collected between January
2013 and June 2021 at the

Pineta Grande Hospital Castel
Volturno, Caserta, Italy

Precision rate—100%
Global accuracy—93.3%

Recall rate—77.8%
[45]

Recognition of
colorectal cancer
tumor sprouting

Faster RCNN

Retrospectively collected 100
surgical pathological sections

of colorectal cancer from
January 2019 to October 2019;
1000 images were screened,

and the total number of tumor
buds was approximately 3226

Precision rate—85.5%
Image diagnosis accuracy—89%

Sensitivity—94%
Specificity—83%

[46]

Detection, grading,
and evaluation of
clinically relevant

findings in digitized
slides of prostate core

needle biopsies

Multilayered
CNN

1,357,480 image patches from
549 H&E-stained slides for
training; 2501 H&E-stained

slides for internal test; external
dataset of 100 consecutive
cases (1627 H&E-stained

slides)

Correlation between cancer percentages
calculated by the algorithm and

pathologists:
r = 0.882 (p < 0.0001)

Internal test—Sensitivity | Specificity for:
Benign vs. cancer—99.59% | 90.14%
External validation—Sensitivity |

Specificity for:
Benign vs. cancer—98.46% | 97.33%

Gleason score 6 or ASAP vs. Gleason score
7–10—85.9% | 90.41%

ASAP or Gleason pattern 3 or 4 vs. Gleason
pattern 5—85% | 90.84%

Cancer without vs. with perineural
invasion—86.96% | 90.74%

[48]

Automated voice
signals analysis for

differentiating
subjects with

laryngeal cancer from
healthy individuals

Several ML
algorithms

Preoperative medical records
from a single university center
from July 2015 to June 2019 of
patients who underwent voice

assessments at the time of
laryngeal cancer diagnosis;

normal voice samples acquired
from otherwise healthy

subjects who underwent voice
assessments prior to general

anesthesia for surgical
procedures involving sites

other than the head and neck
region

Accuracy | Sensitivity | Specificity of:
SVM—70.5% | 78.0% | 62.2%

XGBoost—70.5% | 62.0% | 80.0%
LightGBM—71.5% | 70.0% | 73.3%

ANN—69.4% | 62.0% | 77.7%
1D-CNN—85.2% | 78.0% | 93.3%

2D-CNN (MFCCs)—73.3% | 69.6% | 77.5%
2D-CNN (STFT)—67.1% | 58.6% | 76.6%

[50]

Prediction of
radiation doses to

subsites of the
mandible before

planning of radiation
therapy for

oropharyngeal cancer

ML-based clinical
decision support

86 previously delivered RT
treatment plans (for the

training set) and 20 patients
whose cases were

chronologically subsequent to
the training dataset (for the

test dataset)

Positive predictive value—95%
Negative predictive value—88%

Correlation between the prediction of the AI
algorithm vs. the physician:

r = 0.72 (p < 0.001)

[51]

1D—one-dimensional; 2D—two-dimensional; ANN—artificial neural network; ASAP—atypical small acinar
proliferation; CNN—convolutional neural network; FM—Formal Methods; MFCCs—Mel-frequency cepstral
coefficients; ML—machine learning; RCNN—region convolutional neural network; STFT—short-time Fourier
transform; SVM—support vector machine.
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2.4. Hematology

AI approaches have also gathered interest in benign and malign hematology settings,
being researched for applications in the diagnosis and prognosis of various forms of
leukemia, lymphoma, anemias, and genetic blood disorders [53,54].

Carreras et al. [55] recently employed an algorithm using multilayer perceptron ANN
to highlight new markers and predict the overall survival of patients with mantle cell
lymphoma (MCL) (a subtype of mature B-cell non-Hodgkin’s lymphoma). The AI tool
identified five genes associated with poor survival (i.e., KIF18A, YBX3, PEMT, GCNA,
and POGLUT3) and five genes linked with favorable survival (i.e., SELENOP, AMOTL2,
IGFBP7, KCTD12, and ADGRG2). By the further use of several ML-based algorithms, the
authors obtained high accuracy predictions of the overall survival of MCL patients.

In another recent study, El Hussein et al. [56] investigated the use of a novel AI-
based heatmap technique for the objective assessment of proliferation centers in chronic
lymphocytic leukemia (CLL). The integrative analysis of the cell nuclear size and mean
nuclear intensity model demonstrated a high accuracy in separating the three progression
stages, displaying robust diagnosis predictive values.

Alternatively, Boldú et al. [57] used peripheral blood cell images to predict an acute
leukemia diagnosis. The authors used a DL-based approach, configuring a system with two
sequentially working CNN modules: the first one for recognizing abnormal promyelocytes
among other mononuclear blood cell images, and the second module for distinguishing
whether the blasts were of myeloid or lymphoid lineage. The as-designed model represents
a promising asset for clinical pathologists, helping them diagnose acute leukemia during a
blood smear review. In comparison, Didi and colleagues [58] trained and compared ML
and DL predictive models in order to predict the best treatment for newly diagnosed acute
myeloid leukemia. The AI algorithms outperformed the classical statistical analysis or
naïve predictors, also predicting the overall survival with high accuracy.

A study proposed by AlAgha et al. [59] focused on overcoming the challenges in a
thalassemia diagnosis. Using simple laboratory test results, the authors involved a hybrid
data mining approach to differentiate between healthy individuals and persons carrying
beta-thalassemia. In addition to the promising performance of the proposed model, this
method also helped to reduce the diagnosis cost and time as, without AI tools, additional
tests would have been needed to correctly identify the diseased persons.

A different study, conducted by Memmolo et al. [60], aimed to find better solutions
for the early differential diagnosis of anemia. The authors used label-free holographic
microscopy coupled with a hierarchical ML decider, obtaining enough accuracy for discern-
ing between different hereditary anemia classes with minimal morphological differences.
In addition, the method only requires a fraction of a blood drop, reducing the necessary
volume of blood drawn for a correct diagnosis. Moreover, this study opened the door for
point-of-care blood testing and telemedicine with lab-on-chip platforms.

Given the significant interindividual variabilities of presentation and the clinical
course among patients with sickle cell anemia, Dutra et al. [61] proposed an AI method
for better understanding this disease. By using a cluster analysis, the authors identified
five clusters differentiated by unconjugated bilirubin, reticulocytes, lactate dehydrogenase,
leukocytes, lymphocytes, and monocytes. Furthermore, it was investigated if this grouping
could be correlated with clinical manifestations, concluding that the clusters exhibited
different degrees of inflammation, hemolysis, and liver abnormalities.

Research has also been conducted towards improving anemia management in hemodial-
ysis patients. Barbieri et al. [62] developed an AI decision support system called the “Ane-
mia Control Model” (ACM) that can recommend suitable erythropoietic-stimulating agent
doses according to patient profiles. ACM showed promising results, as it helped improve
anemia outcomes in the target population while minimizing their medication use and
reducing the cost of treatment.

As cytomorphology represents the gold standard for assessing peripheral blood and
bone marrow samples in hematological neoplasms, interesting investigations have also
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been performed for enhancing this method through AI tools. In this respect, Haferlach
et al. [63] conducted a prospective, blinded clinical study (NCT04466059) in which they
compared a blood smears analysis done by an ML-based model vs. routine diagnostics,
obtaining a correlation of 95% for the pathogenic cases. Alternatively, Osman et al. [64]
tackled the benefits of a CNN for separating monocytes from their precursor cells (i.e.,
promonocytes and monoblasts). The authors concluded that the AI-based method could
reach an accuracy comparable to the human reviewers, suggesting that CNN models could
be used for this task and further improved with a larger study population.

The studies discussed above are outlined in Table 5.
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Table 5. Summary of the recent AI studies in hematology.

Task/Objective AI Tool(s) Data/Validation Performance Ref.

Automation and
enhancement of
PCs delineation

CNN

Manually annotated 25, 28, and
21 regions of interest

encompassing small round PCs
and confluent/expanded PCs of

10 CLL, 12 aCLL, and 8 RT
digitized H&E-stained slides,

respectively

Accuracy using data from:
Nuclear size—65.8 ± 11.5%
Mean nuclear intensity—67.9 ± 9.4%
Heat value frequencies (integrating
nuclear size and mean nuclear
intensity)—81.3 ± 6.3%

[56]

Prediction of
overall survival and
best treatment for

acute myeloid
leukemia

Several ML
algorithms

3687 consecutive adult AML
patients included in the

DATAML registry between 2000
and 2019 (3030 receiving IC, 657

receiving AZA)

Overall survival prediction accuracy for:
Patients receiving IC, at the 18-month
mark—68.5%
Patients receiving AZA, at the 9-month
mark—62.1%
Best treatment prediction
accuracy—88.5%

[58]

Prediction of
diagnosis of acute

leukemia using
blood cell images

ALNet (a DL
model)

A set of 731 blood smears
containing 16,450 single-cell

images from 100 healthy
controls, 191 patients with viral

infections and 148 with acute
leukemia

Overall accuracy—94.2%
Acute promyelocytic leukemia

Sensitivity—100%
Specificity—100%
Precision—100%

Acute myeloid leukemia
Sensitivity—100%
Specificity—92.3%
Precision—93.7%

Acute lymphoid leukemia
Sensitivity—89%
Specificity—100%
Precision—100%

[57]

Automatic
detection of
β-thalassemia

carriers

CRISP-DM
SMOTE

(oversampling
technique)

Several classifiers

Blood parameters of apparently
healthy 45,498 individuals who

were referred to the Thalassemia
and Hemophilia center, Palestine
Avenir Foundation in from 2012

to 2016 to be screened for the
premarital tests;

44,360 of the study samples were
classified as normal while 1138

were confirmed as β-thalassemia
carriers

Sensitivity—98.81%
Specificity—99.47% [59]

Differential
screening of

hereditary anemias
from a fraction of

blood drop

Hierarchical ML
decider

Several classifiers

8 patients with clinical and
molecular diagnosis of CDA

type I, CDA type II, HS, DHS1,
IRIDA, and α-thalassemia and 7

healthy donors;
for each donor, up to ten

independent digital holograms
of RBCs were recorded

Overall accuracy of cubic SVM for:
Binary classification—84.3%
Differential classification—69.5%

[60]

AML—Acute Myeloid Leukemia; AZA—azacitidine; CDA—congenital dyserythropoietic anemia;
CNN—convolutional neural network; CRISP-DM—cross-industry standard process for data mining;
DHS—dehydrated hereditary stomatocytosis; HS—hereditary spherocytosis; IC—intensive chemotherapy;
IRIDA—iron-refractory iron-deficiency anemia; SVM—support vector machine.

2.5. Nephrology

The advancement of digitalization and widespread availability of EHR have been
reflected in finding better solutions of care in nephrology settings. AI influence has been
specially investigated for the early detection and prediction of acute kidney injury (AKI)
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in an effort to help clinicians intervene during what may be a crucial stage for preventing
permanent kidney injury [65,66].

For example, Tomašev et al. [67] developed a DL approach involving an RNN for the
continuous risk prediction of future deterioration in patients with AKI. This method may
ensure the identification of patients at risk within a time window that would enable early
treatment and, consequently, improve the outcomes.

In contrast, other scientists have employed several ML algorithms for better tackling
AKI recognition and prediction. Specifically, Mohamadlou et al. [65] used XGBoost to train
an AKI prediction tool on retrospective data. The promising results obtained by the authors
encouraged them to state that this method may provide important prognostic capabilities
for determining which patients are likely to suffer AKI, but, being a retrospective study,
no conclusions could be drawn about the impact on patient outcomes in a clinical setting.
Alternatively, Adhikari et al. [66] proposed an algorithm, called “Intraoperative Data Em-
bedded Analytics” (IDEA), to readjust the preoperative risk by the use of a physiological
time series and other data collected during surgery. The dynamic incorporation of intraop-
erative data resulted in improving the postoperative AKI predictions with high sensitivity
and specificity. ML algorithms also proved useful in recognizing AKI in burn patients, as
demonstrated through studies conducted by Tran et al. [68] and Lin et al. [69].

Another category of nephrological conditions that gathered attention for AI utilization
is represented by chronic kidney disease (CKD) in its various forms, including immunoglob-
ulin A nephropathy (IgAN), diabetic kidney diseases (DKD), and autosomal dominant
polycystic kidney disease (ADPKD) [3].

For instance, Chen et al. [70] used the XGBoost algorithm coupled with a survival
analysis to stratify the risk for kidney disease progression in the setting of IgAN. By using
routinely available characteristics, such as urine protein excretion, global sclerosis, and
tubular atrophy/interstitial fibrosis, the model could accurately predict the outcome. In
comparison, Schena et al. [71] recently developed an ANN prediction model for end-stage
kidney disease in patients with IgAN. Being a retrospective study, the authors could
compare the predicted and observed outcomes, reporting similar results over a 25-year
follow-up period.

A distinct study conducted by Makino and colleagues [72] focused on better under-
standing DKD. The authors developed a predictive model for DKD aggravation by the use
of AI, processing natural language and longitudinal data with big data machine learning.
The proposed model may assist in a more effective and accurate intervention towards
reducing hemodialysis.

AI can also be employed for automatically determining an estimated glomerular filtra-
tion rate (eGFR) and CKD status. In this respect, Kuo et al. [73] used a CNN, called ResNet,
to predict kidney function based on ultrasound images, obtaining good performance for
the model. Alternatively, Li et al. [74] exploited an ANN integrated with more independent
variables for developing an accurate GFR estimation model for the Chinese population. The
authors suggested that such a model could fully utilize the predictive ability of additional
auxiliary variables but requires further validation in more diverse cohort data.

The potential of AI has also been investigated for predicting dry weight in hemodialy-
sis patients [75], predicting the calciphylaxis risk and understanding the disease mecha-
nism [76], analyzing histopathological images towards improving the diagnostic accuracy
of clinicians [77,78], enhancing risk stratification for kidney transplant recipients [79], and
early detecting of acute renal transplant rejection [80].

The studies discussed above are shown in Table 6.
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Table 6. Summary of the recent AI studies in nephrology.

Task/Objective AI Tool(s) Data/Validation Performance Ref.

Prediction of
future acute

kidney injury
DL model

Dataset consisting of all
eligible patients during a

five-year period across the
entire Veterans Affairs

healthcare system in the USA
(703,782 adult patients across

172 inpatient and 1062
outpatient sites)

The test population was a
random selection of 10% of

these, counting 70,681
individual patients and

252,492 unique admissions

Prediction with a lead time of up to 48 h and a
ratio of 2 false alerts for every true alert:

55.8% of all inpatient episodes of acute kidney
disease

90.2% of all acute kidney injuries that
required subsequent administration of

dialysis

[67]

Early detection
and prediction of

acute kidney
injury

XGBoost

Patients whose hospital stays
lasted between 5 and 1000 h

and who had at least one
documented measurement of

heart rate, respiratory rate,
temperature, serum creatinine

(SCr), and Glasgow Coma
Scale (GCS) (48,582 patients

from BIDMC and 19,737
patients from Stanford Medical

Center)

Accuracy | Sensitivity | Specificity of
prediction for stage 2 or stage 3 acute kidney
injury in the BIDMC dataset:
Onset—81% | 81% | 75%

12 h before onset—76% | 77% | 62%
24 h before onset—82% | 83% | 56%
48 h before onset—82% | 83% | 48%
72 h before onset—80% | 82% | 45%

Accuracy | Sensitivity | Specificity of
prediction for stage 2 or stage 3 acute kidney
injury in the Stanford dataset:
Onset—78% | 77% | 82%

12 h before onset—75% | 75% | 73%
24 h before onset—79% | 79% | 64%
48 h before onset—84% | 85% | 51%
72 h before onset—79% | 78% | 53%

[65]

Postoperative
acute kidney

injury prediction

IDEA (ML
algorithm)

Retrospective single-center
cohort of 2911 adults who
underwent surgery at the

University of Florida Health
between 2000 and 2010

Preoperative model:
Accuracy—76%
Sensitivity—68%

Postoperative stacked model
Accuracy—78%
Sensitivity—80%

Postoperative full model
Accuracy—80%
Sensitivity—81%

[66]

Mortality
prediction for
acute kidney

injury patients in
the intensive care

unit

Several ML
algorithms

Medical information mart for
intensive care (MIMIC) III

database from 19,044 patients
with acute kidney injury
among which 2586 died

With the prediction sensitivity fixed at 85%,
the following accuracies were reported:

Random forest—72.8%
SVM—72.9%
ANN—66.6%

Customized SAPS II—58.0%

[69]

Prediction of
diabetic kidney

disease
progression

CAE EHR of 64,059 type II diabetes
patients Accuracy—71% [72]

Automatic
determination of

the eGFR and
chronic kidney
disease status

ResNet
(CNN)

4505 kidney ultrasound images
labeled using eGFRs derived

from serum creatinine
concentrations

Accuracy—85.6%
Precision—91.3%

Correlation between AI and creatinine-based
GFR estimations—0.741

[73]
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Table 6. Cont.

Task/Objective AI Tool(s) Data/Validation Performance Ref.

GFR estimation ANN

1959 chronic kidney disease
patients (development dataset:
1075 participants from January

2012 to December 2014;
validation dataset: 877

participants from January 2015
to June 2016)

Accuracy—75.8% [74]

Early detection of
acute renal
transplant
rejection

CNN

Diffusion-weighted MRI
dataset of 56 individuals (with
associated clinical biomarkers),
who had renal transplantation

Accuracy—92.9%
Sensitivity—93.3%
Specificity—92.3%

[80]

Multiclass
segmentation of
kidney tissue in
sections stained

by PAS

CNN

Blouin-fixed,
paraffin-embedded

needle-core biopsies from 101
patients who underwent a

kidney transplantation
between 2008 and 2012 in the
Radboud University Medical

Center, Nijmegen, The
Netherlands (Radboudumc);
132 PAS-stained slides from

Radboudumc pathology
archives

Correlation between glomerular counting
performed by pathologists vs. AI—0.94 [77]

ANN—artificial neural network; BIDMC—Beth Israel Deaconess Medical Center; CAE—convolutional autoen-
coder; CNN—convolutional neural network; DL—deep learning; IDEA—Intraoperative Data Embedded Analyt-
ics; ML—machine learning; SVM—support vector machine; XGBoost—extreme gradient boosting.

2.6. Gastroenterology and Hepatology

The fields of gastroenterology and hepatology have also gathered renewed interest
in using AI for improving the prediction, diagnosis, treatment, and prognosis of various
conditions. For instance, Cao et al. [81] comparatively examined DBN, MLR, and CNN for
predicting a long-term postoperative health-related quality of life after bariatric surgery.
Among the tested models, DBN showed the best performance; yet, the authors considered
that a hybrid network is worth investigating in the future.

Significant attention has been drawn to creating better assessment methods for celiac
disease, as this condition may be associated with severe reactions (e.g., pancreatic exocrine
dysfunction, microscopic colitis, and enteropathy-associated lymphoma), despite gluten-
free diet adherence [10]. In this respect, Caetano dos Santos et al. [82] applied an ML
algorithm that enabled a quick and precise endomysial autoantibody (EmA) test analysis
for diagnosing celiac disease. In contrast, Syed and colleagues [83] combined a CNN
with a deconvolutional network in a histopathological analysis model for identifying and
differentiating between duodenal biopsies from children with environmental enteropathy
and celiac disease. Alternatively, Choung et al. [84] aimed to discover celiac disease
biomarkers derived from neoepitopes of deamidated gliadin peptides (DGP) and tTG
fragments. Given the promising results obtained using a SVM, the authors concluded that
this biomarker assay can be employed to detect and monitor patients with celiac disease.

Interesting recent developments have also been envisaged for procedures like en-
doscopy and colonoscopy. Yang et al. [85] used AI image recognition to obtain digestive
endoscopy images, judge the disease type, and decide the treatment plan. Their 5G DL edge
algorithm exhibited a high accuracy and speed, being considered promising for assisting
in a medical diagnosis. On a different note, Zhou et al. [86] aimed to improve the bowel
preparation needed for an effective colonoscopy through AI tools. The authors developed
an objective and stable DCNN-based system, called ENDOANGEL, whose performance
recommends it for application in clinical settings.
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Numerous studies have investigated the application of AI tools for detecting, enhanc-
ing decision support, and quantifying the treatment response in patients with liver diseases.
For instance, Mostafa et al. [87] proposed the use of ML classification methods for the
prediction of liver disease in blood donors. Obtaining promising performance metrics, the
tested methods (i.e., ANN, random forest, and SVM) could assist healthcare workers in
distinguishing between healthy and diseased individuals. A different study conducted by
Taylor-Weiner et al. [88] applied machine learning to characterize the disease severity and
heterogeneity and quantify the treatment response in nonalcoholic steatohepatitis (NASH).
The use of a DCNN led to encouraging results, paving the way for further advances in
understanding the disease heterogeneity in NASH, risk stratifying the affected patients, and
facilitating the development of therapies. Alternatively, Roy and colleagues [89] introduced
a deep learning-based region–boundary integrated network for precise steatosis quantifica-
tion that can enhance liver disease decision support using whole slide liver histopathology
images. In another study, Gawrieh et al. [90] evaluated the role of AI in the detection and
quantification of hepatic fibrosis in nonalcoholic fatty liver disease (NAFLD) biopsies. The
automated quantification of a collagen proportionate area (CPA) was in good agreement
with the pathologist score of the fibrosis stage, demonstrating reliability in accomplishing
the set task.

Important works have also been reported in the subfield of liver transplantation, as
the many decisions that need to be accomplished for such a procedure could benefit from
the integration of AI [9]. Pérez-Sanz et al. [91] recently developed a computer vision-based
application for the quantification of macrovesicular steatosis in histopathological liver
section slides in pretransplant liver biopsies. The use of a Sudan stain was reflected in a
reliable contrast and the facilitation of fast and accurate quantification through the tested
ML algorithms. A similar approach was also proposed by Narayan et al. [92], who used a
computer vision AI platform to score donor liver steatosis and compared its capability for
predicting early allograft dysfunction. This method resulted in slightly better calibration
than pathologist steatosis, paving the way for more accurate and reliable predictions of the
post-transplantation outcomes.

The discussion on the clinical applications of AI in gastroenterology and hepatology is
summarized in Table 7.

Table 7. Summary of the recent AI studies in gastroenterology and hepatology.

Task/Objective AI Tool(s) Data/Validation Performance Ref.

Prediction of
long-term

health-related
quality of life and
comorbidity after
bariatric surgery

DBN
MLR

6542 patients registered in the
Scandinavian Obesity Surgery

Registry between 2008 and
2012 operated on with primary

Roux-en-Y gastric bypass

Accuracy | Sensitivity | Specificity of DBN for
predicting 5-year comorbidities:

Sleep apnea syndrome—91% | 64% | 92%
Hypertension—84% | 83% | 83%

Type 2 diabetes—90% | 96% | 89%
Depression—87% | 51% | 95%

Dyslipidemia—90% | 78% | 91%
Accuracy | Sensitivity | Specificity of MLR for
predicting 5-year comorbidities:

Sleep apnea syndrome—73% | 90% | 73%
Hypertension—68% | 73% | 67%

Type 2 diabetes—69% | 78% | 68%
Depression—57% | 66% | 55%

Dyslipidemia—68% | 76% | 67%

[81]
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Table 7. Cont.

Task/Objective AI Tool(s) Data/Validation Performance Ref.

Assessment of
bowel preparation

ENDOANGEL
(DCNN)

5583 clear and unambiguous
colonoscopy images

retrospectively collected from
over 2000 patients (for training

dataset)
20 retrospectively and

randomly collected
colonoscopy videos,

independent of the images (for
testing dataset)

Accuracy:
Human-machine contest with 120

images—93.33%
100 images with bubbles—80.00%

20 colonoscopy videos—89.04%

[86]

Automatic
assessment and

classification of the
EmA test for celiac

disease

SVM

2597 high-quality IgA class
EmA images collected in

2017–2018 in the celiac disease
service laboratory at the

Tampere University, Tampere,
Finland

Accuracy—96.80%
Sensitivity—82.84%
Specificity—99.40%

[82]

Identification of
immunogenic
epitopes of the

tTG-DGP complex
for use in detection

and monitoring
patients with celiac

disease

SVM

Serum samples from 90
patients with biopsy-proven
celiac disease and 79 healthy
individuals for the training
dataset and 82 patients with

newly diagnosed CeD and 217
controls for the validation

dataset

Identification of patients with celiac disease:
Sensitivity—99%
Specificity—100%

Identification of patients with mucosa healing
status:

Sensitivity—84%
Specificity—95%

[84]

Detection of
pathologic

morphological
features in diseased

vs. healthy
duodenal tissue

CNN

3118 segmented images from
121 H&E-stained duodenal
biopsy glass slides from 102
patients collected between

November 2017 and February
2018

Accuracy—93.4% [83]

Prediction of liver
disease

Several ML
algorithms

615 patients (blood donors and
non-blood donors with

Hepatitis C) data collected
from the University of

California Irvine Machine
Learning Repository

ANN
Accuracy—88.89%
Precision—94.84%
Sensitivity—95.23%
Specificity—82.88%

Random forest
Accuracy—98.14%
Precision—99.08%
Sensitivity—99.04%
Specificity—97.29%

SVM
Accuracy—96.75%
Precision—96.42%
Sensitivity—96.19%
Specificity –97.29%

[87]

Quantification of
steatosis,

inflammation,
ballooning, and

fibrosis in biopsies
from patients with

NAFLD

ML
algorithm

Data from 246 consecutive
patients with biopsy-proven
NAFLD and followed up in

London from January 2010 to
December 2016; biopsy

specimens from the first 100
patients were used for training,
while the other 146 were used

for validation

Correlation between manual annotation and
software results:

Steatosis: r = 0.97 (p < 0.001)
Inflammation: r = 0.96 (p < 0.001)
Ballooning: r = 0.94 (p < 0.001)

Fibrosis: r = 0.92 (p = 0.001)

[93]



J. Clin. Med. 2022, 11, 2265 21 of 33

Table 7. Cont.

Task/Objective AI Tool(s) Data/Validation Performance Ref.

Detection and
quantification of

hepatic fibrosis and
assessment of its

architectural
pattern in NAFDL

biopsies

Supervised
ML models

A set of digital images of
trichrome stained slides of 18

unique liver biopsies

Precision of fibrosis patterns:
Normal—85.6%

Pericellular—76.6%
Periportal—72.1%

Portal—77%
Bridging—84.9%

Nodule—89.8%

[90]

Automatic objective
quantification of
macrovesicular

steatosis in
histopathological
liver section slides
stained with Sudan

Several ML
and DL

algorithms

Eight micrometer-thick
sections obtained from 20

donor liver samples

Accuracy | Sensitivity | Specificity of
KNN—99.6% | 84.4% | 99.9%
SVM- 99.6% | 96.2% | 99.7%

Random forest 99.6% | 95.6% | 99.7%
NB—99.7% | 91.0% | 99.9%

Simple NN—99.7% | 96.3% | 99.8%
Keras—99.5% | 97.2% | 99.6%

[91]

ANN—artificial neural network; CNN—convolutional neural network; DBN—discrete Bayesian network;
DCNN—deep convolutional neural network; KNN—K-nearest neighbors; ML—machine learning;
MLR—multivariable logistic regression; NB—Naïve Bayes; NN—neural network; SVM—support vector machine.

2.7. Orthopedics and Rheumatology

The use of AI has also reached the interconnected fields of orthopedics and rheumatol-
ogy, being studied for a variety of applications. For example, Diaz-Rodriguez et al. [94]
focused on developing a novel intraarticular (IA) injection for osteoarthritis management.
The authors proposed the combination of poloxamers with hyaluronic acid in produc-
ing suitable beta-lapachone-loaded IA formulations. With the use of AI, an optimized
formulation was developed based on the experimental results of a broad range of hydro-
gels. According to an ex vivo evaluation, the as-designed formulation exhibited excellent
rheological properties and significantly decreased the secretion of degradative and proin-
flammatory molecules, being a promising candidate for osteoarthritis treatment.

A recent study proposed by Bayramoglu et al. [95] tackled the potential of analyz-
ing patellar bone texture to predict patellofemoral osteoarthritis. Using knee lateral view
radiographs, a ML model, and DCNNs, the authors obtained promising results, demon-
strating that the analyzed texture features contained useful information of the patellar bone
structure and could be used as additional imaging biomarkers in osteoarthritis diagnostics.

Another possible application of AI is the detection and characterization of a meniscus
tear based on MRI examinations of the knee. In this respect, Roblot et al. [96] proposed
the use of a fast region CNN for a meniscus tears diagnosis, demonstrating its accuracy in
detecting the positions of the two meniscal horns, the presence of a meniscal tear, and the
orientation of the tear. Similarly, Couteaux et al. [97] trained a mask region-based CNN
with MR images to explicitly localize normal and torn menisci and classify the orientation
of the tear. The model had a satisfactory performance; yet, the authors concluded that
further extension of the database or the inclusion of 3D data could improve the results,
especially for nontypical cases of extensively damaged menisci or multiple tears.

Rouzrokh et al. [98] studied the potential of a CNN model for assessing the risk of
dislocation following total hip arthroplasty. Based on postoperative anteroposterior pelvis
radiographs, the model could be coupled with clinical risk factor information for the rapid
and accurate assessment of the risk of dislocation.

Interesting studies have also reported the use of genetic backgrounds for training AI
tools, as genetic or epigenomic datasets can be employed in developing new biomarkers and
finding new disease patterns and abnormalities [7]. In this context, Patrick et al. [99] utilized
data from patients with genotyped psoriatic arthritis (PsA) and cutaneous-only psoriasis
(PsC) to train ML algorithms for identifying differences in the genetic architecture between
the two groups and assess the PsA risk before the appearance of symptoms. The authors
demonstrated that the combination of statistical and ML techniques accurately identified
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the underlying genetic differences between the psoriasis subtypes, being of potential use in
an individualized subtype risk assessment. Alternatively, another research group focused
on differentiating rheumatoid arthritis (RA) from osteoarthritis (OA). Specifically, by means
of ML algorithms, Long and colleagues [100] found a 16-gene signature, including TMOD1,
POP7, SGCA, KLRD1, ALOX5, RAB22A, ANK3, PTPN3, GZMK, CLU, GZMB, FBXL7,
TNFRSF4, IL32, MXRA7, and CD8A, that could effectively differentiate RA from OA. Given
the model’s good performance, the authors concluded that the proposed genetic signature
coupled with complex classification methods holds promise for improving the diagnosis
and management of RA patients.

Studies with at least one of the accuracy, precision, sensitivity, or specificity perfor-
mance metrics available are summarized in Table 8.

Table 8. Summaries of the recent AI studies in orthopedics and rheumatology.

Task/Objective AI Tool(s) Data/Validation Performance Ref.

Automatic knee meniscus
tear detection and

orientation classification
RCNN

A total of 1128 images, with an
imbalanced number of

horizontal posterior tears,
vertical posterior tears,

horizontal anterior tears, and
vertical anterior tears

Accuracy—83%
Precision—86% [97]

Assessment of the risk of
hip dislocation based on

postoperative
anteroposterior pelvis

radiographs

YOLO-V3
ResNet18 (CNNs)

Retrospective radiographs of
13,970 primary THAs with 374

dislocations after 5 years of
follow-up, accounting for 1490

radiographs from dislocated and
91,094 from non-dislocated

THAs

Accuracy—49.55%
Sensitivity—89.02%
Specificity—48.77%

[98]

Prediction of PsA among
psoriasis patients

Several ML
algorithms

Data from six cohorts with more
than 7000 genotyped PsA and

PsC patients

For the top 5% of patients
predicted as having PsA:

Precision—>90%
Specificity—100%

[99]

Differential diagnosis of
rheumatoid arthritis and

osteoarthritis

Several ML
algorithms

Affymetrix and Illumina
microarrays on gene expression

in rheumatoid arthritis and
osteoarthritis healthy control
synovial tissues curated from

Gene Expression Omnibus

Rheumatoid arthritis:
Accuracy—86%

Sensitivity—100%
Specificity—77%

Osteoarthritis:
Accuracy—85%
Sensitivity—90%
Specificity—80%

[100]

CNN—convolutional neural network; ML—machine learning; RCNN—region convolutional neural network;
PsA—psoriatic arthritis; PsC—cutaneous-only psoriasis; THA—total hip arthroplasty.

2.8. Other Applications

Unlike AI in medicine, which uses autonomously functioning algorithms for analyzing
patient data towards improving patient outcomes, AI can also be employed in surgery with
the involvement of movement. Through the latest developments in DL and DCNNs, AI
enables object detection and tracking, making surgical resection easier and safer [101,102].
AI may also be engaged in surgical education for the assessment of surgical competencies,
yet further evidence is required concerning its implementation and applicability [103].

The use of AI technologies also paves the way for creating patient-specific devices that
can meet the exact requirements of each individual. Interest has been raised in constructing
customized devices with distinct designs compared to the commercially available ones that
match the anatomic particularities, physiological conditions, and pathological status of
patients [104,105]. Specifically, advances have been reported in developing a broad range of
personalized devices, including bioprosthetic heart valves [106], cardiovascular stents [107],
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tissue-engineered vascular grafts [108], prostheses for tumor reconstruction [109], cranial
implants [110–112], and dental implants [113].

Another potential use of AI consists of contributing to clinical trial designs and ex-
ecution towards enhancing the participation and diversity within the trial populations.
Specifically, the ingenious use of data in the EHR, medical literature, and trial databases
can improve patient–trial matching and recruitment, subsequently increasing trial success
rates [114,115].

Promising perspectives also arise from the involvement of AI in the pharmaceutical
industry [116–119]. Various techniques can assess the severity of a disease and predict
whether a certain treatment will be effective for an individual patient even before its admin-
istration. Moreover, AI can be employed in developing or extrapolating new applications
of instruments or chemicals. Particularly, through active learning, ML-based tools can
overcome concerning issues in drug design due to their ability to adapt surplus amounts of
data available for generating meaningful insights [14] (Figure 3). In addition, introducing
AI in studies of polypharmacology, drug design, drug screening, and drug repurpos-
ing (Figure 4) can significantly improve the efficiency and reduce the necessary time for
generating treatments for various diseases, including new outbreaks like COVID-19 [120].
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3. Challenges in AI Clinical Integration

Despite the recent advances in AI technology and the benefits it may bring to clin-
ical care, there are many challenges that impede its translation into practice (Figure 5).
One issue is related to the legal regulation of the conditions and features of development,
functioning, applicability, integration into other systems, and control over the utiliza-
tion of end-to-end digital AI technology. As there is no common legal framework yet,
this challenge is overcome in each country by considering the particularities of the local
legal system [5].

Another important problem faced by AI tools is skepticism, especially given by the
lack of understanding of the methodology of the algorithms [14]. Found in the literature
as the “black box” phenomenon, this challenge can be defined as the “human inability
in explaining the precise steps leading to the AI tools’ predictions” [11]. Hence, clini-
cians may preferentially opt for highly transparent models in which the risk factors are
handled in a comprehensible way from a pathophysiological point of view. Examples
of “black box” techniques are neural networks, random forests, and gradient boosting
models, while, at the opposite end, “white box” algorithms can be found, such as logistic
regression and decision trees. Nonetheless, there is a tradeoff between the accuracy and in-
terpretability of these methods, causing an ongoing debate of choosing the best options for
clinical applications [4].
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In addition to the rule of law, nonlegal instruments also set important guidelines in
medical activities. Hence, AI technology must also be seen from the perspective of the
psychological, ethical, and moral aspects of treating patients [5,121].

Although there is a positive attitude towards engaging AI technology in clinical
practice, it has been reported that there is a lack of training in students and medical doctors
who are supposed to work with these innovative methods. This aspect represents an
important drawback, as running AI procedures by inexperienced users may lead to biased,
subjective outcomes. This problem can be solved by expanding and improving medical
school training in AI through familiarizing healthcare workers and taking full advantage
of these emerging technologies without disregarding ethical considerations [121].

Special consideration must be given to the standardization of the metrics used in
AI-based studies, as researchers present their findings in quite a heterogeneous manner.
In more detail, numerous performance metrics, including accuracy, sensitivity, specificity,
precision, F1 score, the area under the receiver operating curve, and more, are alternatively
used for demonstrating the quality of a model, yet they are difficult to compare and
correlate. Additionally, the outstanding results of exclusive in silico studies may not be
reflected with the same success in clinical practice [10,11].

In comparison to business and industry, the medical sector also faces technological
limitations in acquiring and analyzing data. As the extent of the resources required to store
and analyze data can be prohibitive, it imposes additional limitations on translating AI into
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clinical investigations and practices. Moreover, the poor organization and management of
big data in healthcare may lead to the production of inaccurate models in which erroneous
data is inappropriately included [1,122].

Furthermore, ML algorithms are dependent on a predefined set of data to learn from,
being restricted by the information that a dataset can provide. When there is a dispropor-
tionate number of features in comparison to the amount of data in the training set, the
ML model may result in overfitting, compromising the reliability of future predictions and
leading to poor generalizability of the findings. Thus, for an AI system to be effectively used
in medicine, sufficient data must be provided in the training stage [10,123,124]. Generally,
70% of the available dataset is allocated for training, while the remaining 30% is used for
validation. Concerning the data amount, the rule is “the more data, the better”; however,
a clear minimum acceptable dataset size has not been indicated. Nonetheless, learning
curves (the model performance as a function of the training sample size) may provide an
indication of the sample size required for effective training of the model [125,126]. In addi-
tion, an algorithm applied in one environment will not automatically be suitable in another
environment, requiring careful development, testing, and evaluation in each new context
before implementing AI systems for patient care [127]. Intense debate has also arisen from
the fact that AI studies tend to compare algorithm performances to clinicians when, instead,
realistic applications would involve a combination of human and artificial intelligence [128].
This has raised concerns on whether human clinicians will become redundant with the
advancements of AI technology or lose the skills they do not regularly use. Moreover,
automation bias means that humans tend to agree with AI decisions, even when they are
incorrect. However, as machines cannot be held responsible for their decisions, the legal
liability will still be on the shoulders of physicians [10,127,128].

4. Conclusions

To summarize, artificial intelligence holds great promise for revolutionizing clinical
care. By the ingenious use of big data in healthcare, ML algorithms, and neural networks,
better options can be envisaged for the triage, diagnosis, prognosis, monitoring, and treat-
ment of various challenging diseases. Numerous studies have tackled the potential use of
AI in medical fields, such as cardiology, neurology, oncology, hematology, nephrology, gas-
troenterology, hepatology, orthopedics, and rheumatology, and in auxiliary areas, including
drug design and the fabrication of patient-specific medical devices.

Nonetheless, several limitations have impeded the translation of AI developments into
clinical practices. Thus, prompt solutions and clarifications are required before integrating
these emerging technologies into medical protocols. Moreover, the idea that AI should be
viewed as a complementary tool to the expertise of clinicians and not as a replacement
alternative must be reinforced.

In conclusion, AI is a source of tremendous opportunity in clinical care, deserving
considerable attention from the scientific community in order to fully understanding its
benefits and develop novel tools. Through the proper exploitation of AI advantages,
personalized medicine may soon become a worldwide reality.
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Abbreviations

1D one-dimensional
2D two-dimensional
aCLL accelerated chronic lymphocytic leukemia
ADNI Alzheimer’s Disease Neuroimaging Initiative
AI Artificial Intelligence
AIBL Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing
AIS acute ischemic stroke
AF atrial fibrillation
ANN artificial neural network
AS aortic stenosis
ASAP atypical small acinar proliferation
AVB atrioventricular block
AZA azacitidine
BIDMC Beth Israel Deaconess Medical Center
CAE convolutional autoencoder
CDA congenital dyserythropoietic anemia
CLL chronic lymphocytic leukemia
CNN convolutional neural network
CPCT chest-pain computed tomography
CRISP-DM cross-industry standard process for data mining
CWT continuous wavelet transform
DBN discrete Bayesian network
DCNN deep convolutional neural network
DHS dehydrated hereditary stomatocytosis
DL deep learning
DNN deep neural network
EAR ectopic atrial rhythm
ECG electrocardiogram
EEG electroencephalogram
eGFR estimated glomerular filtration rate
EHR electronic health record
EmA endomysial autoantibody
FCD focal cortical dysplasia
FCN fully convolutional network
FFRCT computed tomography-derived fractional flow reserve
FHS Framingham Heart Study
FM Formal Methods
GENFI Genetic Frontotemporal dementia Initiative
GFR glomerular filtration rate
H&E hematoxylin and eosin
HS hereditary spherocytosis
IC intensive chemotherapy
IDEA Intraoperative Data Embedded Analytics
IED interictal epileptiform discharges
IRIDA iron-refractory iron-deficiency anemia
IVR idioventricular rhythm
KNN K-nearest neighbors
LightGBM light gradient boosted machine
LSTM long short-term memory
LV left ventricle
MFCCs Mel-frequency cepstral coefficients
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ML machine learning
MLR multivariable logistic regression
MRI magnetic resonance imaging
NACC National Alzheimer’s Coordinating Center
NAFLD nonalcoholic fatty liver disease
NB Naïve Bayes
NLP multilayer perceptron
NN neural network
MR magnetic resonance
PAS periodic acid-Schiff
PCs proliferation centers
PsA psoriatic arthritis
PsC cutaneous-only psoriasis
RCNN region convolutional neural network
RNN recurrent neural network
RT Richter transformation
RV right ventricle
SAPS simplified acute physiology score
SCA sudden cardiac arrest
STFT short-time Fourier transform
SuStaIn Subtype and Stage Interference
SVM support vector machine
SVT supraventricular tachycardia
THA total hip arthroplasty
TNM tumor, nodes, and metastases
tTG-DGP tissue transglutaminase-deamidated gliadin peptides
VF ventricular fibrillation
XGBoost extreme gradient boosting
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