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† Artur Mamcarz has been added as a mentor author.

Abstract: Background: Properly performed training is a matter of importance for endurance athletes
(EA). It allows for achieving better results and safer participation. Recently, the development of machine
learning methods has been observed in sports diagnostics. Velocity at anaerobic threshold (VAT), respira-
tory compensation point (VRCP), and maximal velocity (Vmax) are the variables closely corresponding
to endurance performance. The primary aims of this study were to find the strongest predictors of
VAT, VRCP, Vmax, to derive and internally validate prediction models for males (1) and females (2) un-
der TRIPOD guidelines, and to assess their machine learning accuracy. Materials and Methods: A
total of 4001 EA (nmales = 3300, nfemales = 671; age = 35.56 ± 8.12 years; BMI = 23.66 ± 2.58 kg·m−2;
VO2max = 53.20 ± 7.17 mL·min−1·kg−1) underwent treadmill cardiopulmonary exercise testing (CPET)
and bioimpedance body composition analysis. XGBoost was used to select running performance predic-
tors. Multivariable linear regression was applied to build prediction models. Ten-fold cross-validation was
incorporated for accuracy evaluation during internal validation. Results: Oxygen uptake, blood lactate,
pulmonary ventilation, and somatic parameters (BMI, age, and body fat percentage) showed the highest
impact on velocity. For VAT R2 = 0.57 (1) and 0.62 (2), derivation RMSE = 0.909 (1); 0.828 (2), validation
RMSE = 0.913 (1); 0.838 (2), derivation MAE = 0.708 (1); 0.657 (2), and validation MAE = 0.710 (1); 0.665 (2).
For VRCP R2 = 0.62 (1) and 0.67 (2), derivation RMSE = 1.066 (1) and 0.964 (2), validation RMSE = 1.070 (1)
and 0.978 (2), derivation MAE = 0.832 (1) and 0.752 (2), validation MAE = 0.060 (1) and 0.763 (2). For
Vmax R2 = 0.57 (1) and 0.65 (2), derivation RMSE = 1.202 (1) and 1.095 (2), validation RMSE = 1.205 (1)
and 1.111 (2), derivation MAE = 0.943 (1) and 0.861 (2), and validation MAE = 0.944 (1) and 0.881 (2).
Conclusions: The use of machine-learning methods allows for the precise determination of predictors of
both submaximal and maximal running performance. Prediction models based on selected variables are
characterized by high precision and high repeatability. The results can be used to personalize training
and adjust the optimal therapeutic protocol in clinical settings, with a target population of EA.

Keywords: velocity; respiratory compensation point; anaerobic threshold; endurance training;
running; prediction models; machine learning

1. Introduction

The benefits of regular physical exercise are widely debated and include reducing the
risk of obesity [1] or cardiovascular diseases [2]. On the other hand, improperly performed
training with excessive intensity may negatively affect the organism’s homeostasis and
increase the risk of injury [3].
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The concept of anaerobic threshold (AT) is widely discussed in exercise physiology [4].
As envisioned by Karlman Wasserman, the AT linked the increase in blood lactate concen-
tration ([La−]b), during a strenuous incremental cardiopulmonary exercise test (CPET),
with an excess arterial CO2 accumulation and its further pulmonary output [5]. Above
the AT, [La−]b increase leads to temporary acidosis. The endurance capacity of the whole
system is usually sufficiently high to cope with the incoming state [6]. During steady-state
exercise with intensity above the AT, an equilibrium in [La−]b appearance and its elim-
ination is observed [6]. Thus, AT is a useful practical indicator to provide personalized
training recommendations (with the aim of adjusting exercise intensity to set goals) and
load monitoring [7].

The respiratory compensation point (RCP) is the intensity at which arterial CO2 begins
to decrease during demanding activity due to breathing capacity [8]. Above the RCP,
the intensity of acidic ion accumulation exceeds their systemic or respiratory elimination
abilities and indicates reduced endurance capacity. This leads to an over-decrease in the
serum pH during graded exercise. This threshold indicates how long a high-intensity effort
can be sustained [9].

The velocity at the anaerobic threshold (VAT), at the respiratory compensation point
(VRCP), and at its maximum (Vmax) play an essential position in the endurance performance
assessment, both for professional and recreational endurance athletes (EA), as well as for
the general population under clinical conditions [10,11].

These variables are the shift points of aerobic exercise to anaerobic metabolism and can
be used as one of the parameters to evaluate the maximum endurance capacity [7]. More-
over, they closely positively correlate with exercise abilities [4]. They could be incorporated
into the prescription for the advancement of training plans [7] or competition strategies [12]
for special and narrow populations (e.g., EA), and in sports diagnostics whenever con-
trolled running intensity is required (i.e., in clinical CPET) [7]. Furthermore, currently, these
variables most closely correspond to the EA critical power sustainability [13,14].

Apart from Vmax, maximal aerobic speed (MAS), which is directly related to VO2max,
is another important aspect of overall performance evaluation. However, as the aim of this
research is to predict Vmax, we recommend that further studies should be performed to
analyze the MAS.

Numerous parameters, such as heart rate (HR), oxygen uptake (VO2), or anthropo-
metric data (i.e., height, age, and gender), are widely discussed in the development of
multivariable prediction models that provide an increasingly more suitable alternatives to
direct CPET measurements [15].

Several studies have attempted to develop and validate various non-invasive pre-
diction equations for different sports performance measurements (i.e., for HR, VO2, and
others) [11,15,16]. However, they were mostly conducted on general populations or on
small athletic samples, and thus, they can only be extrapolated to a low degree [17]. In addi-
tion, their methodology is widely variable, and only a few of them fulfilled recommended
TRIPOD guidelines [18]. Thus, the actual number of VAT, VRCP, and Vmax predictive mod-
els is limited, despite being significant measures of endurance capacity [19,20]. Moreover,
although the variables influencing the running performance are well researched, the au-
thors have not yet assessed how accurately they can be used to estimate running velocity
by further including them in prediction models.

The aims of this study were: (1) to find the somatic and CPET variables that are the
most responsible for running velocity, (2) to develop a prediction method for VAT, VRCP,
and Vmax, in accordance with TRIPOD recommendations [18], (3) to internally validate the
obtained formulae, (4) to assess the accuracy of the current machine-learning abilities to
predict running velocity based on the primarily determined variables, and (5) to evaluate
practical applications of such an approach in sports or clinical conditions based on actual
knowledge regarding exercise physiology.
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2. Materials and Methods

The TRIPOD guidelines [18] have been applied to this research (see Supplementary Ma-
terial S1, TRIPOD Checklist for Prediction Model Development and Validation). This was a
retrospective data analysis from the registry of CPET performed in the years 2013–2021 at a
tertiary care sports diagnostic clinic (SportsLab Clinic, Warsaw, Poland, www.sportslab.pl).

2.1. Ethical Approval

The study protocol was approved by the Institutional Review Board of the Bioethical
Committee at the Medical University of Warsaw (AKBE/32/2021) and met the necessary
regulations of the Declaration of Helsinki. Mandatory written consents to undergo in-
cremental CPET were obtained from each EA before participating in the study. Written
informed consent for participation was not required for this study, in accordance with the
national legislation and the institutional requirements

2.2. Study Design

Participants were endurance runners who underwent CPET on the treadmill (TE).
The tests were performed according to individual requests of the EA as an element of the
training program prescription. Preliminary inclusion criteria were (1) age ≥ 18 years, and
(2) ≤±3 SD from mean for all of the tested variables included in Table 1 (only the lowest or
the weakest extreme outliers were excluded). Exclusion criteria were (1) CPET was not per-
formed on the TE, (2) any acute or chronic medical condition (including the musculoskeletal
system, or addictions), (3) ongoing pharmacological treatment, and (4) smoking. To ensure
that each subject reached maximum effort during the CPET, we applied the additional se-
lection protocol consisting of the fulfillment ≥ 6 of the following criteria: (1) plateau in VO2
(growth < 100 mL·min−1 in VO2 with exercise workload increase), (2) respiratory exchange
ratio (RER) ≥ 1.10, (3) respiratory frequency (fR) ≥ 45 breaths·min−1, (4) reported exertion
during CPET ≥ 18, according to the Borg scale, (5) [La−]b ≥ 8 mmol·L−1, (6) increase in
speed ≥ 10% of its RCP value post-exceeding the RCP, and (7) peak HR ≥ 15 beats·min−1

under predicted maximal HR [21]. For the entire selection procedure, along with the
exclusion data, see Figure 1.

Table 1. Participants’ basic anthropometric characteristics.

Variable (Unit) Male
[n = 3330; 83.23%]

Female
[n = 671; 16.77%] p-Value

Age (years) 35.90 (8.15) 33.86 (7.74) <0.0001
Height (cm) 179.58 (6.22) 167.19 (6.88) <0.0001

BM (kg) 77.72 (9.47) 60.60 (8.73) <0.0001
BMI (kg·m−2) 24.07 (2.44) 21.64 (2.38) <0.0001

BF (%) 15.49 (4.53) 22.04 (5.46) <0.0001
FM (kg) 12.29 (4.71) 13.47 (4.65) <0.0001

FFM (kg) 65.42 (6.47) 47.08 (6.36) <0.0001
Abbreviations: BM, body mass; BMI, body mass index; BF, body fat; FM, fat mass; FFM, fat-free mass. The contin-
uous value is presented as mean (SD), while the categorical value is shown as numbers (%), when appropriate.
Comparisons between subgroups (p-value) were obtained by Student’s t-test for independent variables.

www.sportslab.pl
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Figure 1. Flowchart of the preliminary inclusion and exclusion process. Abbreviations: EA, en-
durance athlete; CPET, cardiopulmonary exercise testing; SD, standard deviation; TE, treadmill; RER,
respiratory exchange ratio; VO2, oxygen uptake (mL·min−1·kg−1); [La−]b, lactate concentration
(mmol·L−1); fR, breathing frequency (breaths·min−1); RCP, respiratory compensation point; HRpeak,
peak heart rate (beats·min−1); HRmax, maximal heart rate (bpm). At both stages of the selection, some
participants met several (>1) exclusion criteria.
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2.3. Somatic, [La−]b Measurements, and CPET Protocol

First, body mass (BM) stratified by body fat (BF) and fat-free mass (FFM) measure-
ments were obtained via the bioimpedance method (BIA) using a body composition (BC)
analyzer (Tanita, MC 718, Tokyo, Japan) with the multifrequency of 5 kHz/50 kHz/250 kHz.
Conditions during BC and CPET were the same: 40 m2 indoor, air-conditioned area, 40–60%
humidity, temperature 20–22 ◦C, altitude 100 m ASL, and the subjects had their skin cleaned
before testing. In our standardized laboratory practice, each EA had received recovery
and dietary instructions via email a few days prior to testing to enable them to prepare
appropriately for the CPET and BC tests. Our recommendations included: eating a high
carbohydrate meal 2–3 h before the CPET and staying hydrated with sports drinks, and
female EAs were advised to be well beyond their menstrual phase [22]. They also received
information stating that the CPET would be performed on a mechanical TE and that they
should be familiar with the characteristics of this type of effort, as well as the running
technique involved.

Running tests were performed on a mechanical TE (h/p/Cosmos quasar, Nussdorf-
Traunstein, Germany). CPET indices were measured using the breath-by-breath method
during 15 s intervals [23], utilizing a Hans Rudolph V2 Mask (Hans Rudolph, Inc., Shawnee,
KS, USA), a gas exchange analyzing device Cosmed Quark CPET (Rome, Italy), and spe-
cialized software (Quark PFT Suite powered by Omnia 10.0E). The gas analyzer device
was calibrated prior to the testing protocol (16% O2; 5% CO2; ventilation accuracy ±2% or
100 mL·min−1). The analyzer measurement mode takes into account the manufacturer’s
standard settings, i.e., 3-step smoothing and removing erroneous breaths from the analysis.
HR was measured through the ANT+ and torso belt as a part of the Cosmed Quark set
(accuracy similar to ECG; ±1 beats·min−1). [La−]b was examined using a Super GL2 ana-
lyzer (Müller Gerätebau GmbH, Freital, Germany) employing an enzymatic-amperometric
electrochemical technique. The lactate analyzer was also calibrated before each round of
analysis for each participant.

CPET began with a 5 min preparatory protocol (walking or slow running at a de-
clared “conversation” pace). The primary speed was 7–12 km·h−1 at a 1% inclination (the
differences in the starting pace resulted from the training level of the participants and
were selected on the basis of an interview on their previous sports results). The pace was
increased by 1 km·h−1 every 2 min. VO2 or HR plateau (no increase in VO2 or HR with an
increase in CPET intensity) or volitional inability to maintain intensity was the moment
when the test was terminated [23,24]. Subjects were encouraged verbally to make a maxi-
mum effort. HR was considered the highest value at CPET (not averaged). Maximal VO2
was recorded as an average from stable VO2 in 10 s intervals directly before the termination
of the CPET [23,24]. AT and RCP were assessed via non-direct methods based on the venti-
latory concept. AT was achieved if the following measures were fulfilled: (1) VE/VO2 curve
started to grow with the constant VE/VCO2 curve and (2) end-tidal partial pressure of O2
started to grow with the constant end-tidal partial pressure of CO2 [25]. RCP was achieved
if the following measures were fulfilled: (1) a reduction in partial pressure of end-tidal
CO2 (PetCO2) after attaining a maximal intensity; (2) a fast nonlinear growth in VE (second
deflection); (3) the VE/VCO2 ratio achieved the lowest value and started to grow; and (4) a
nonlinear growth in VCO2 versus VO2 (linearity divergence) was achieved [25]. [La−]b
was assessed by obtaining a 20 µL blood sample from a fingertip: before the test, after
any speed increase, and 3 min after termination. A sample for [La−]b analysis was taken
during running without interruption or pace decrease. Each time, the sample was from the
same initial puncture. The first few drops were drained onto a swab and the proper blood
sample was drawn. In further analysis, the corresponding values of [La−]b for AT, RCP,
and maximal VO2 were determined.
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2.4. Data Analysis and Predictors Selection

Data were saved into an Excel file (Microsoft Corporation, Redmond, WA, USA) and
Python script. Further, they were calculated according to frequency (percentage) and mean
(±standard deviation; SD, or 95% confidence intervals; CI) for continuous variables and the
median for categorical variables. Intergroup differences (each was a continuous variable)
were calculated using the Student t-test for independent variables. If there were lacking
data (only for [La−]b; in 1190 cases for males and 266 cases for females in total), imputation
with the random forest method (RF) was applied to fill in the gaps [26,27].

The XGBoost machine learning approach was used to select variables with the highest
prediction value [28]. In order to select the variables, the population was divided into
3 groups: 60% for derivation (building group), 20% for testing (testing group), and the
remaining 20% for validation (validation group). After selection, 11 variables were included
in the further analysis: VO2max, VO2RCP, VO2AT, [La−]bRCP, [La−]bAT, VEmax, VERCP, age,
BM, BMI, and BF. Next, selected parameters were input into multiple linear regression
(MLR) modeling. As a result, only significant predictors (with p < 0.05) were included in the
final models. The derived equations are characterized by the coefficient of determination
(R2), root mean square error (RMSE), and mean absolute error (MAE). A 10-fold cross-
validation technique [29] and the Bland–Altman plots analysis [30] were used to establish
the model’s precision and accuracy during internal validation. To clarify, in the 10-fold cross-
validation, the population is divided into 10 random parts. The candidate model is built on
[10 − 1 = 9] training sets; then, the derived model is evaluated on the test set consisting of
the remaining one part. By respectively conducting building procedures on training sets
and validation on the test set 10 times, we chose the final formula with the lowest possible
inaccuracy validation score (defined in this paper as the lowest RMSE and MAE) [29].
Other implemented tests to reach the complete fulfillment of MLR modeling requirements
include Ramsey’s RESET test (for the correctness of specificity in MLR equations), the Chow
test (for stability assessment between different coefficients), and the Durbin–Watson test
(for autocorrelation of residuals). Each model was examined under the above-mentioned
requirements and any irregularities have not been noted.

Our comprehensive machine learning approach enables the evaluation of each formula
according to preliminary variable precision (at the stage of selection), accuracy (during
model building), and recall (in internal validation).

The Ggplot 2 package (version-6.0-90; Available from: https://cran.r-project.org/web/
packages/caret/index.html, accessed on 21 June 2022) in RStudio (R Core Team, Vienna,
Austria; version 3.6.4), GraphPad Prism (GraphPad Software; San Diego, CA, USA; ver-
sion 9.0.0 for Mac OS), and STATA software (StataCorp, College Station, TX, USA; version
15.1) were used for statistical analysis. A two-sided p-value < 0.05 was considered as the
significance borderline.

3. Results
3.1. Somatic Measurements and CPET Results

The participants’ anthropometric data are presented in Table 1. The full population
consisted of 4001 people, of which 3330 (83.23%) were male and 671 (16.77%) were female.
All data showed a normal distribution. The mean age was 35.90 ± 8.15 years for males and
33.86 ± 7.74 years for females and the overall age ranged from 18 up to 74 years. BMI was
24.07 ± 2.44 kg·m−2 for men, while women had 21.64 ± 2.38 kg·m−2. BF percentage was
relatively low, estimate at 15.49 ± 4.53 in males and 22.04 ± 5.46 in females. Significant
differences between genders has been observed for height (p < 0.0001), BM (p < 0.0001),
BMI (p < 0.0001), BF (p < 0.0001), and FFM (p < 0.0001).

CPET results are presented in Table 2. Among other measured variables, VAT was
10.97 ± 1.40 km·h−1 and 9.64 ± 1.36 km·h−1 for males and females, respectively. VRCP
was 14.02 ± 1.74 km·h−1 and 12.29 ± 1.68 km·h−1 for males and females, respectively. The
Vmax obtained during CPET was 16.07 ± 1.93 km·h−1 and 14.12 ± 1.85 km·h−1 for males
and females, respectively. The starting protocol velocity was 8.61 ± 1.28 km·h−1 for males

https://cran.r-project.org/web/packages/caret/index.html
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and 7.60 ± 1.08 km·h−1 for females. When comparing both genders, significant differences
(all p < 0.0001) were found for all the measured variables except [La−]b at AT (p = 0.99),
maximal respiratory exchange ratio (p = 0.77), and maximal HR (p = 0.15).

Table 2. CPET characteristics.

Males [n = 3330] Females [n = 671]
p-Value

Variable (Unit) Mean CI SD Mean CI SD

VO2AT (mL·min−1·kg−1) 38.42 38.25–38.59 4.96 35.69 35.32–36.05 4.83 <0.0001
VO2AT (mL·min−1) 2955.15 2942.04–2968.26 385.79 2137.77 2113.25–2162.29 323.48 <0.0001

RERAT 0.87 0.87–0.87 0.04 0.86 0.85–0.86 0.04 <0.0001
HRAT (beats·min−1) 151.32 150.96–151.68 10.70 156.45 155.66–157.24 10.39 <0.0001

VEAT (L·min−1) 78.26 77.84–78.68 12.02 58.38 57.66–59.09 9.25 <0.0001
fRAT (breaths·min−1) 34.88 34.61–35.14 7.85 34.89 34.31–35.47 7.66 <0.0001
[La−]bAT (mmol·L−1); 1.95 1.92–1.98 0.67 1.86 1.80–1.93 0.66 0.99

VO2RCP (mL·min−1·kg−1) 47.59 47.37–47.81 6.10 43.05 42.56–43.55 6.14 <0.0001
VO2RCP (mL·min−1) 3642.72 3626.90–3658.54 465.70 2576.01 2545.15–2606.87 407.12 <0.0001

RERRCP 1.00 1.00–1.00 0.04 0.99 0.99–1.00 0.04 <0.0001
HRRCP (beats·min−1) 173.43 173.12–173.75 9.33 176.04 175.34–176.73 9.12 <0.0001

VERCP (L·min−1) 113.82 113.25–114.39 16.43 81.15 80.20–82.11 12.34 <0.0001
fRRCP (breaths·min−1) 44.19 43.91–44.48 8.52 43.09 42.49–43.68 7.87 <0.0001
[La−]bRCP (mmol·L−1); 4.53 4.49–4.58 1.07 4.19 4.09–4.29 1.02 <0.0001

VO2max (mL·min−1·kg−1) 54.10 53.87–54.34 6.93 48.73 48.23–49.24 6.67 <0.0001
VO2max (mL·min−1) 4176.37 4157.64–4195.09 551.09 2949.02 2911.51–2986.54 494.89 <0.0001

RERmax 1.12 1.12–1.12 0.04 1.12 1.12–1.12 0.04 0.76
HRmax (beats·min−1) 184.81 184.49–185.13 9.54 185.39 184.69–186.09 9.24 0.15

VEmax (L·min−1) 148.86 148.15–149.57 20.46 103.83 102.60–105.05 15.86 <0.0001
fRmax (breaths·min−1) 57.59 57.28–57.90 9.20 55.46 54.83–56.09 8.30 <0.0001
[La−]bmax (mmol·L−1); 9.91 9.82–10.00 2.02 9.08 8.88–9.28 1.93 <0.0001

VAT (km·h−1) 10.97 10.92–11.02 1.40 9.64 9.53–9.74 1.36 <0.0001
VRCP (km·h−1) 14.02 13.96–14.08 1.74 12.29 12.16–12.41 1.68 <0.0001
Vmax (km·h−1) 16.07 16.01–16.14 1.93 14.12 13.98–14.26 1.85 <0.0001

VS (km·h−1) 8.61 8.56–8.66 1.28 7.60 7.51–7.69 1.08 <0.0001

Abbreviations: CI, 95% confidence interval; SD, standard deviation; VO2AT, oxygen uptake at anaerobic threshold;
RERAT, respiratory exchange ratio at anaerobic threshold; HRAT, heart rate at anaerobic threshold; VEAT, pulmonary
ventilation at anaerobic threshold; fRAT, respiratory frequency at anaerobic threshold; [La−]bAT, lactate concentration
at anaerobic threshold; VO2RCP, oxygen uptake at respiratory compensation point; RERRCP, respiratory exchange
ratio at respiratory compensation point; HRRCP, heart rate at respiratory compensation point; VERCP, pulmonary
ventilation at respiratory compensation point; fRRCP, respiratory frequency at respiratory compensation point;
[La−]bmax, lactate concentration at respiratory compensation point; VO2max, maximal oxygen uptake; RERmax,
maximal respiratory exchange ratio; HRmax, maximal heart rate; VEmax, maximal pulmonary ventilation; fRmax,
maximal respiratory frequency; [La−]bmax, maximal lactate concentration; VAT, velocity at anaerobic threshold; VRCP,
velocity at respiratory compensation point; Vmax, maximal velocity; VS, protocol starting velocity. Comparisons
between subgroups (p-value) were obtained by Student t-test for independent variables.

3.2. Prediction Models for VAT, VRCP, and Vmax

Complete MLR prediction models for males and females are presented in Table 3 (left
columns), while Figure 2 shows their performance in the derivation cohort (illustrated as
an analysis of observed vs. predicted values). The importance of all CPET variables, based
on XGBoost selection, included in the modeling is presented in Figure 3. The following
variables showed the strongest impact in building the models: VO2, [La−], VE age, and
BMI. Model performance is presented as R2, along with RMSE and MAE. Briefly, R2 for
male equations ranged from 0.57 for VAT and Vmax to 0.62 for VRCP. For female formulae,
R2 ranged from 0.62 for VAT to 0.67 for VRCP. The obtained RMSE was the lowest for
the female VAT equation (=0.828) and the highest for the male Vmax (=1.202), while the
observed MAE was the lowest for the female VAT equation (=0.657) and the highest for
male Vmax (=0.944).
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Table 3. Running velocity prediction equations stratified by gender.

Model Category Multiple Linear Regression Equation R2

Derivation Group
Performance

Validation Group
Performance

RMSE MAE RMSE MAE

VAT
Males

8.00 − 0.01 · Age − 0.09 · BMI + 0.04 · VO2max +
0.09 · VO2AT − 0.65 · [La−]bAT + 0.01 · VERCP

0.57 0.909 0.708 0.913 0.710

VAT
Females

7.55 − 0.02 · Age − 0.10 · BMI + 0.15 · VO2AT −
0.70 · [La−]bAT + 0.01 · VERCP

0.62 0.828 0.657 0.838 0.665

VRCP
Males

10.88 − 0.02 · Age − 0.11 · BMI + 0.04 · VO2max −
0.99 · [La−]bAT + 0.10 · VO2RCP + 0.01 · VERCP +

0.10 · [La−]bRCP

0.62 1.066 0.832 1.070 0.835

VRCP
Females

9.24 − 0.02 · Age − 0.11 · BMI − 1.05 · [La−]bAT +
0.15 · VO2RCP + 0.01 · VERCP + 0.19 · [La−]bRCP

0.67 0.964 0.752 0.978 0.763

Vmax
Males

12.41 − 0.03 · Age + 0.01 · BM − 0.12 · BMI + 0.10 ·
VO2max − 0.82 · [La−]bAT + 0.07 · VO2RCP

0.57 1.202 0.943 1.205 0.944

Vmax
Females

9.37 − 0.03 · Age + 0.06 · VO2max − 0.79 · [La−]bAT
+ 0.09 · VO2RCP + 0.01 · VEmax − 0.04 · BF 0.65 1.095 0.861 1.111 0.881

Abbreviations: RMSE, root mean square error; MAE, mean absolute error; R2, adjusted R2; VAT, velocity at
anaerobic threshold; Age, age in years; BMI, body mass index (kg·m−2); VO2max, relative maximum oxygen
uptake (mL·min−1·kg−1); VO2AT, relative oxygen uptake at anaerobic threshold (mL·min−1·kg−1); [La−]bAT,
blood lactate concentration at anaerobic threshold (mmol·L−1); VERCP, pulmonary ventilation at RCP (L·min−1);
VRCP, velocity at respiratory compensation point; VO2RCP, relative oxygen uptake at respiratory compensation
point (mL·min−1·kg−1); [La−]bRCP, blood lactate concentration at respiratory compensation point; BM, body mass;
Vmax, maximal velocity; VEmax, maximal pulmonary ventilation (L·min−1). RMSE and MAE are explained in
km·h−1. Model performance at the stage of derivation has been shown in the left columns. Briefly, our equations
showed high accuracy and explained approximately 60–70% of the differences between participants. The results
of internal validation via the 10-fold cross technique are presented in the right columns, and they showed a precise
transferability, despite a limited sample size for internal validation. We are presenting one R2 because of the
10-fold cross-validation for the same group of participants as the derived validation.

3.3. Internal Validation

The evaluation of each model is also presented in Table 3 (right columns). In summary,
the performance of our prediction equations was similar to that observed in the derivation
cohort. A slightly higher RMSE and MAE were noted. Overall, RMSE values are located
between 0.838–1.205 km·h−1 and MAE between 0.665–0.944 km·h−1. The best working
model (defined as having the highest replicability and the lowest risk of inaccuracies in the
test set) was for VAT for females (RMSE = 0.838, MAE = 0.665), and the worst was for males
Vmax (RMSE = 1.205, MAE = 0.944). The most and least accurate models were the same in
regards to the derivation and validation. Figure 4 illustrates the Bland–Altman plots, with
a comparison of observed vs. predicted velocity using newly derived prediction models at
the stage of validation.
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Figure 3. Heat map showing the importance variables regarding predicted velocity based on XGBoost
selection. Abbreviation: VO2max, maximal oxygen uptake; VO2RCP, relative oxygen uptake at
respiratory compensation point; VO2AT, relative oxygen uptake at anaerobic threshold; [La−]bRCP,
blood lactate concentration at respiratory compensation point; [La−]bAT, blood lactate concentration
at anaerobic threshold; [La−]bmax, maximal blood lactate concentration; VEmax, maximal pulmonary
ventilation; VERCP, pulmonary ventilation at respiratory compensation point; VEAT, pulmonary
ventilation at anaerobic threshold; RERmax, maximal respiratory exchange ratio; RERRCP, respiratory
exchange ratio at respiratory compensation point; RERAT, respiratory exchange ratio at anaerobic
threshold; HRmax, maximal heart rate; HRRCP, heart rate at respiratory compensation point; HRAT,
heart rate at anaerobic threshold; BF, body fat; FFM, fat-free mass; BMI, body mass index; VAT, velocity
at anaerobic threshold; VRCP, velocity at respiratory compensation point; Vmax, maximal velocity.
Panel (A) presents data for males, while panel (B) shows the data for females. The cross means that
the variable has not fulfilled preliminary selection-stage requirements (only in HR). The maps present
a variable’s importance regarding the predicted velocity during the model-building stage. In the final
prediction models, only the variables with significant impact (p < 0.05) were included.
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4. Discussion

In the current study, we applied advanced machine-learning properties in a com-
prehensive evaluation of running physiology. The obtained equations include several
physiological-only measures (both anthropometric and directly measured during CPET)
to provide a feasible utility for the prediction of VAT, VRCP, and Vmax with substantial
accuracy. The availability of this type of machine-learning tool in exercise diagnostics
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enables better training recommendations for EA and facilitates rehabilitation prescriptions
for patients suffering from cardiovascular or respiratory diseases [7,31]. The novelty and
main advantage are that there are no comparable studies that first select the variables with
the strongest predictive abilities, and then directly evaluate their accuracy in the derived
prediction models. An additional attribute is a relatively large group of healthy adult
EA (n = 4001) who have undergone the CPET under an identical protocol, by which the
maximum precision and similarity of the collected data were obtained. This enabled us
to better examine whether parameters such as age [32], BC and BF [33] or VO2max [16]
exerted a possible significant impact on the predictive performance of the model (as they
were previously classified as relevant variables in the literature. Moreover, the inclusion
criteria enable us to avoid the disturbing influence of factors such as smoking [34] or
medications [35].

4.1. Model Performance and Physiological Properties

Performance measurements show precise prediction abilities which were fairly repli-
cable between the training and test sets (see Figures 2 and 3). The obtained R2 explained
approximately 60% to 70% of the differences, while errors were moderate-to-low, under
1 km·h−1 for most cases. With additional internal validation, they were both still located
in the upper sensitivity range. Thus, the model accuracy was only minorly reduced. In
previous publications, such as that by Petek et al. for VO2peak [36], similar results were
observed. However, usually, previous researchers have not carried out an initial selection
of the most suitable variables, and so far, studies have been based on previously established
parameters, only changing their proportions. Our study showed that VO2 at RCP and
maximal VO2 were the most important parameters responsible for the prediction of middle-
to long-distance running velocity (a lower impact of VO2 at AT was noted). This confirms
previous findings by Thompson et al. and Lanferdini et al. [16,37] that the VO2 can be
described as the universal and comparable performance measure, and that it is strongly
related to running speed. Moreover, according to the physiological relationship between
exercise performance and [La−]b at AT, at RCP, and maximal VO2, they also significantly
influence the predicted velocities (but in the varied order compared with VO2, with more
impact from sub-maximal levels at AT or RCP than maximal [La−]b values). This is con-
firmed in studies by Tanaka and Matsuura [12] and Schabort et al. [19], as growing [La−]b
and training intensity were positively correlated in both. Thus, of greater improtance seems
to be the ability to rapidly utilize and prevent excess growth in [La−]b by EA than working
at maximal value for a prolonged time. Our study confirmed the previous findings by
Farrell et al. [38] on this point. Another important variable was pulmonary ventilation. The
majority of the influence was created by VERCP, and only for Vmax, was there a significant
impact of VEmax. The higher it was, the better running velocity was observed. Thus, it can
be concluded that the higher oxygen (O2) supply and better carbon dioxide (CO2) utiliza-
tion yielded an improvement in running performance. This is a well-documented concept
that was stated by Sjodin and Svedenhag in the 1980s [32]. Our insights on both VO2 and
VE also confirmed that performance at RCP is strongly correlated with other running and
general exercise indices [15]. When it comes to somatic parameters, they also showed a
relevant effect on velocity. Higher BMI [19] and increasing age [39] were associated with
lower endurance performance. On the other hand, BC, described as a percentage of BF and
FFM, showed some effect on the predicted velocity, despite their impact on males being
not enough to be included in the modeling for this gender. It is worth mentioning that
the influence of BF was more noticeable in females, perhaps because they naturally have a
higher level of BF [40]. HR was one of the variables with the lowest impact on velocity (see
Figure 3). Moreover, we emphasize that HR, which shows high inter-individual variability
and is difficult to precisely estimate for EA [21], was not included in any of our equations.
To summarize, the degree of the relationships between the variables is interesting. It is
very promising to assess how precisely we can estimate VAT, VRCP, and Vmax based on the
above-mentioned parameters.
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4.2. Clinical Considerations

Our results also have important clinical applications for patients from the general
and athletic populations. The development of sports cardiology has resulted in a higher
number of EA patients, including former cardiac patients or those suspected of having
exertional cardiac abnormalities. TE CPET is often performed to some level of submaximal
intensity or until refused. However, those who are less experienced may quit earlier, before
reaching their optimal diagnostic intensity level, because they are not mentally adapted
to perform such demanding activities [31,41]. The calculation (MET × running velocity)
is used by medical professionals to provide personalized recommendations for cardiac
rehabilitations [31]. Selection of the most important variables and additional comparison
of those directly achieved with the predicted velocity verify whether an optimal level of
intensity was achieved.

4.3. Practical Applications

The characteristics of selected variables and prediction models could be used in the
preparation of exercise recommendations for both professional and recreational EA as
patients in clinical settings [7]. The highest accuracy of the observed repeatable values
would be for EA, mainly for running activities (i.e., during long-distance running or
football), due to the characteristics similar to those in the derivation cohort [36]. Thanks to
the use of VAT, VRCP, and Vmax prediction models, there would be no need to run the full
CPET protocol and measure all parameters, but only the most significant and contributing
ones [19]. This is a matter of importance, as CPET is often impossible to perform according
to the full protocol due to the limited availability of specialized clinics and equipment or the
high cost of the procedure [42]. This model can also be used to verify/assess whether the
athlete obtains sufficient running speed on the basis of the directly measured parameters.
Of course, it currently would not be the gold standard or method of choice. Thus, results
should be generalized carefully. However, they could be used as a valuable supplement to
direct measurements in the present. We encourage other researchers to test our velocity
prediction models and evaluate the proportion of the obtained variables using different
populations to assess to what extent the results can be extrapolated and transferred.

4.4. Limitations

A possible limitation is that participants underwent CPET in different phases of the
day (circadian rhythm), month (menstrual cycle for female athletes), or season [43,44].
Moreover, we did not evaluate the training volume of the EA. The participants received
dietary and preparation tips, but we cannot be sure that they were rigorously implemented;
thus, some BIA results for BC should be analyzed with caution. Some data in [La−]b were
missed (not all participants decided on the [La−]b test because it was an optional variable
in the clinic’s CPET portfolio) and RF imputation was applied. RF is recognized as the
best method for filling data gaps, and our imputation did not cause a significant negative
effect on the [La−]b data precision. The models still showed high prediction abilities at
the building and validation (i.e., out-of-bag error) stages. A comparison of both datasets
(first set only with directly measured [La−]b and second only with imputed [La−]b) did not
show significant differences between them (p = 0.4) [26]. Volunteers individually declared
the intensity level on the Borg scale, and the evaluation could differ between participants.
The above limitations result from the specifics of the study, which is population-based, and
not a controlled trial. In order to minimize their importance, the above-described internal
validation was applied, which revealed the high data precision and replicability of the
derived equations.

4.5. Future Directions

We advise that future prediction models used to estimate running velocities should be
applied in cohorts with comparable characteristics to those from which they were primarily
created (similar to other prediction models used in sports diagnostics) [36]. It is especially
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important in narrow and specified populations, including well-trained EA or cardiology
patients [36]. We underline that there is a significant necessity for more accurately adjusted
contributing factors and the development of new, advanced machine-learning prediction
algorithms using unified TRIPOD recommendations [18]. This will enable the subsequent
choice of the appropriate protocol to use in medical diagnostic and training prescriptions,
depending on the participant’s disease type or fitness level [7]. We recommend assessing
our methods in an external environment, such as the 3000 m distance run, to cover all
evaluation sites [45,46]. It is worth mentioning that, as stated by Figueiredo et al., the critical
speed showed a better predictive value for the 5 km running results regarding a steady run
than the peak velocity. Although our research focuses mostly on CPET performed in the
clinical settings on the mechanical treadmill, we recommend further studies which will
investigate the effect of critical speed compared to peak velocity [47].

5. Conclusions

In summary, (1) we found the strongest predictors of running velocity, (2) we derived
novel prediction models for running velocities in accordance with TRIPOD guidelines, and
(3) we established their fair validation.

Currently, with the use of a machine-learning approach, we can accurately estimate
VAT, VRCP, and Vmax based only on somatic and exertion variables (the precision and
repeatability in the study subgroups were comparable to the test-retest error). VO2, [La−]b,
VE, and somatic characteristics were the greatest contributing factors. We anticipate that our
findings will improve the personalization of training and rehabilitation programs. Models
should be primarily applied in disciplines where running is the main form of activity, due
to the similar characteristics to those regarding the specificity of the derivation cohort.
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