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Abstract: In the early 2000s, solid-state lasers emerged as an alternative technology to excimer systems
in refractive surgery. Despite some technological limits at the time, good clinical results could be
achieved with solid-state laser systems. This prospective case series reports clinical outcomes of five
eyes treated with a newly developed solid-state laser system (AquariuZ) in three patients. Patients
underwent preoperative examination, including corneal topo-and tomography, aberrometry, and
confocal microscopy. All patients received a femtosecond LASIK with the Ziemer LDV Z8, a refractive
treatment with the AquariuZ solid-state ablation laser, and were then followed up for a period of
up to 12 months. The applied aspheric optimized profiles did not induce higher-order aberrations
nor spherical aberration in any of these operated subjects. No eye lost BCVA lines throughout the
duration of the follow-up. Six months after surgery, the safety index of patient 1 was 5, and for
patients 2 and 3, it equaled 1. Confocal laser microscopy imaging findings were comparable to those
seen typically for excimer lasers. The obtained results are encouraging and confirm that the new
solid-state laser system is safe.

Keywords: solid-state laser; ablation laser; deep-UV; refractive surgery

1. Introduction

Shortly after the invention of lasers, the concept of an excimer laser was proposed in
1960 by Fritz Houtermans [1]. After some basic research, the first excimer lasers became
commercially available in the late 1970s [2]. Srinivasan discovered the possibility of abla-
tion of materials under intense illumination using ultraviolet laser pulses [3,4]. In 1983,
in collaboration with S. Trokel, the concept of ablative laser vision correction was devel-
oped [5]. There appear to be early records of excimer treatment of human eyes dating back
to the years 1987 and 1988 [6,7]. Clinical prospects combined with mature laser technology
led to rapid development of laser vision correction applications. PRK (Photorefractive
Keratectomy) was first introduced in the early 1990s, and FDA-approved in 1995. LASIK
(Laser-assisted in-situ keratomileusis) followed shortly after and has quickly become the
gold standard of laser vision correction available today.

At the same time as industrial excimer lasers for ophthalmology became available,
a new class of laser crystals was introduced. With these crystals, an array of frequency
conversion schemes was possible, spanning a broad wavelength range from deep UV
to mid-infrared [8].

This led almost immediately to the first attempts to build solid-state deep UV laser
sources. LaserSight developed the first system called LaserHarmonics [9,10], whilst another
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one, called LightBlade, was developed by Novatec [11]. Although their first clinical
outcomes were promising, the technology had to face severe competition from excimer
laser systems. Excimer lasers had the advantage of providing high pulse energies that
enabled large beam ablation for refractive surgery purposes already at low-repetition rates.
The use of a solid-state laser running at 10 Hz indicated that increasing the repetition
rate was necessary in order to meet market expectations related to ablation speed at that
time [9]. Compared to excimer sources, which were available as industrial components
with a sufficiently high output, the ability of solid-state laser sources to produce high pulse
energies in order to achieve reasonable treatment times was limited at that time [12].

In a review paper published in 1995 [13], an overview of contemporarily available re-
fractive surgical lasers, including excimer laser systems and solid-state laser systems under
development spanning a wavelength range from 205 to 220 nm, was provided. A com-
parison of their respective performance parameters revealed that solid-state lasers did not
deliver tens of millijoules of pulse energy required to achieve state-of-the-art large beam ab-
lation for clinical use. At that time, high-repetition-rate lasers combined with scanning spot
technology and eye tracking were proposed for future refractive lasers [13]. Such technology
and systems became only available in the initial years of the current millennium [14].

First clinical results obtained with ablative solid-state lasers were simultaneously
published in 2004 by two independent research groups, i.e., Anderson and co-workers
utilizing a CustomVis Pulzar Z1 (Balcatta, Australia) and Roszkowska et al. with the Laser-
Soft Katana (Kleinmachnow, Germany) [15,16]. Later, Tikhov and co-workers described a
solid-state laser system, OLIMP (Yaroslavl, Russian Federation), introduced in 2009 [17,18].

In these early studies, the researchers pointed out the potential benefits of solid-state
ablation laser technology. They reported excellent beam quality along with stable energy
output, while producing smooth ablation surfaces [15–18]. Furthermore, based on the
work of Hale and Querry on extinction coefficients of radiation over a large area of the
electromagnetic spectrum, Dair and co-workers found less absorption of up to two orders of
magnitude for solid-state lasers in Balanced Salt Solution (BSS) and 0.9% Sodium Chloride
solution compared to an excimer system [19,20]. While for excimer lasers emitting at 193
nm, tissue hydration control was found to be crucial to achieve target ablation [21–23],
solid-state ablation lasers emitting at longer wavelengths would offer the benefits of being
less dependent on the hydration state of the cornea and the humidity of the surgical
environment, as well as not using toxic gas and operating silently [24–28].

The above-stated advantages, although proven, required a company with no legacy in
excimer laser products to make a new start and conceive a laser system with technology
not available in the early days of solid-state lasers. This prompted Ziemer Ophthalmic
Systems to choose solid-state over excimer laser technology for the development of a new
ablation laser.

In this case series, we report the clinical outcomes of three patients receiving LASIK
with a new solid-state UV laser (AquariuZ, Ziemer Ophthalmic Systems AG, Port, Switzer-
land) developed in compliance with the new European Medical Device Regulations (MDR).

2. Materials and Methods

This was a prospective observational case series including 5 eyes of 3 patients con-
ducted in accordance with the Declaration of Helsinki and all applicable regulatory re-
quirements. All patients provided their written consent for the publication of their surgery-
related data. Patients were included according to the device’s approved indications for use.
All surgical procedures were performed by the same surgeon (B.P.).

A detailed ophthalmological status was obtained in all patients, including manifest
refraction, cycloplegic refraction, UDVA, CDVA, slit lamp microscopy of the anterior
segment, dilated fundoscopy, and ocular pressure measurement. Topography was obtained
using the Galilei system (GALILEI G2, Ziemer Ophthalmic Systems, Switzerland) and
aberrometry using Zywave (Bausch & Lomb, Rochester, NY, USA). All patients underwent
confocal laser microscopy (HRT3 RCM, Heidelberg Engineering, Germany) of the interface
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during the postoperative period. Preoperatively, no patient was found to have a dry
eye syndrome.

All patients underwent refractive surgery using the AquariuZ solid-state laser (Ziemer
Ophthalmic Systems AG, Port, Switzerland). LASIK flaps were created with the FEMTO
LDV Z8 femtosecond laser platform (Ziemer Ophthalmic Systems AG, Port, Switzerland)
with a superior hinge and a target flap thickness of 110 µm. Ablations were performed with
the AquariuZ solid-state UV laser, which obtained European conformity in March 2020.
This laser system produces nanosecond UV pulses in the wavelength range of 205–215
nm by frequency conversion of an infrared (IR) seed laser. The output repetition rate is
up to 500 Hz. It comprises a 6-dimensional eye-tracking system (including XY, Gaze, and
Z-tracking) and optimized aspheric profiles, while using a small (<1 mm) spot. Figure 1
shows the beam path scheme of the AquariuZ, while Figure 2 shows a typical configuration
during a refractive surgery with the AquariuZ, comprising a patient, surgeon, and assistant.
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The ablative solid-state laser has different treatment dynamics than the excimer laser
due to the different laser wavelength applied. Figure 3a shows the condition of the cornea
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before treatment. Figure 3b depicts the status after the femtosecond laser flap creation.
Figure 3c illustrates a dry stromal bed once the flap has been lifted. The ablative solid-state
laser is then applied. Figure 3d shows the stroma bed after the application of the first
pulses with Aquariuz. At the end of the treatment, the stroma is covered with a liquid
film suggesting that the stroma stayed wet during the whole process (Figure 3e). The latter
observation differs significantly from that characteristic of excimer lasers, where water is
evaporated in the process leaving back an opaque surface in the ablated area.
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In all patients, Tobradex (Alcon Laboratories, Inc., Fort Worth, TX, USA) was applied
postoperatively three times daily for a total of seven days. In addition, topical hyaluronic
acid 0.15% was applied three times daily for a total of at least one month.

3. Results

Within the scope of the study, a total of five (n = 5) eyes were treated in three (n = 3)
patients. The mean age of patients was 37 ± 17 years. Preoperative corrected distance
visual acuity (CDVA) was L (left eye L) 0.01 in patient 1, OD (right eye R) 1.0 and L 1.0
in patient 2, and R 1.0 and L 1.0 in patient 3 (Table 1). Preoperative Manifest Refraction
Spherical Equivalent (MRSE) was L −7.00 D in patient 1, R 0.00 D and L −1.00 D in patient
2 and R −1.00 D and L −1.50 D in patient 3 (Table 2).

Table 1. Preoperative and postoperative CDVA up to six-month follow-up and safety indices of
all patients.

Patient No. Eye CDVA Pre CDVA 1d CDVA 1W CDVA 1M CDVA 3M CDVA 6M SI 6M

1 L 0.01 0.01 0.05 0.05 0.05 0.05 5

2
R 1.0 1.0 1.0 1.0 1.0 1.0 1
L 1.0 0.8 1.0 1.0 1.0 1.0 1

3
R 1.0 0.8 1.0 1.25 1.25 1.0 1
L 1.0 0.8 1.0 1.25 1.25 1.0 1

Table 2. Preoperative UDVA versus postoperative UDVA up to six-month follow-up. HM indicates
that UDVA was not measurable on the Snellen scale, yet the patient perceived hand motion at
50 cm distance.

Patient No. Eye UDVA Pre UDVA 1d UDVA
1W

UDVA
1M

UDVA
3M

UDVA
6M

1 L HM HM HM HM HM HM

2
R 0.63 1.0 1.0 1.0 1.0 1.0
L 0.5 0.8 1.0 1.0 1.0 1.0

3
R 0.25 1.0 1.0 1.25 1.0 0.8
L 0.32 1.0 1.0 1.25 1.0 0.8

In patient 1, diagnosed with severe amblyopia, the preoperative refraction was
−4.50 D cyl. −5.00 D/140◦. For this patient, the postoperative planned target refrac-
tion was −1.00 D cyl. −2.00 D/140◦. In patients 2 and 3 the postoperative target refraction
was plano.

The amblyopic patient (patient 1) reached a CDVA of 0.05, measured on the Snellen
scale, indicating a substantial improvement in visual acuity compared to his preoperative
visual performance (Figure 4). The visual outcomes of patient 1 are summarized in Table 3.
CDVA remained stable during the entire follow-up period. Postoperatively, patient 1
showed a refraction of −1.00 D cyl. −2.50/130 and an MRSE of −2.25 D, which remained
stable up to and including the third postoperative month. After six months, a slight
regression to −1.25 D cyl. −2.50/130 with an MRSE of −2.50 D was observable (Figure 4).
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Table 3. Summary of visual outcomes of patient 1.

Patient 1 Eye Sph/D Cyl/D A/◦ SEQ/D

PreOp R −4.50 −5.00 140 −7.00
Target R −1.00 −2.00 140 −2.00

1 Week R −1.00 −2.50 130 −2.25
1 Month R −1.00 −2.50 130 −2.25
3 Months R −1.00 −2.50 130 −2.25
6 Months R −1.25 −2.50 130 −2.50

In patient 2, UDVA and CDVA improved from 0.63 to 1.0 in the right eye from the
first postoperative day and from 0.5 to 1.0 in the left eye from the first postoperative week
(Figure 5) and remained constant in both eyes until the sixth postoperative month. The
visual outcomes of patient 2 are summarized in Table 4. Patient 2 had a cross-cylinder in
the right eye with refraction on +0.25 D cyl −0.50/10 and MRSE of 0 D. After one month, a
slight myopic shift of −0.25 D in MRSE was observed due to very mild transient dry eye
but was no longer present at three- and six-month follow-up (Figure 5).
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Table 4. Summary of visual outcomes of patient 2.

Patient 2 Eye Sph/D Cyl/D A/◦ SEQ/D

PreOp R +0.25 −0.50 10 0.00
L −0.75 −0.50 0 −1.00

Target R plano
L plano

1 Week R 0.00 0.00 0 0.00
L 0.00 0.00 0 0.00

1 Month R 0.00 −0.50 170 −0.25
L 0.00 −0.50 0 −0.25

3 Months R 0.00 0.00 0 0.00
L 0.00 0.00 0 0.00

6 Months R 0.00 0.00 0 0.00
L 0.00 0.00 0 0.00

In patient 3, UDVA and CDVA improved from 0.25 to 1.0 from postoperative day 1 and
from 0.32 to 1.0 in the left eye, respectively (Figure 6), and remained constant in both eyes
until postoperative month six. However, there were small fluctuations with a UDVA at one
month of OU 1.25 and a UDVA at six months of 0.8 in a mild dry eye. The visual outcomes
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of patient 3 are sumamrized in Table 5. Patient 3 had a preoperative MRSE of −1.50 D in
the right eye and −1.00 D in the left. Over the first three postoperative months, the MRSE
remained at 0.00 D, but by the sixth postoperative month, a slight regression occurred
with MRSE R of −0.75 D and L of −0.375 D (Figure 6), which was due to a transient slight
dry eye.
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Table 5. Summary of visual outcomes of patient 3.

Patient 3 Eye Sph/D Cyl/D A/◦ SEQ/D

PreOp R −1.25 −0.50 162 −1.50
L −0.75 −0.50 10 −1.00

Target R plano
OS plano

1 Week R 0.00 0.00 0 0.00
L 0.00 0.00 0 0.00

1 Month R 0.00 0.00 0 0.00
L 0.00 0.00 0 0.00

3 Months R 0.00 0.00 0 0.00
L 0.00 0.00 0 0.00

6 Months R −0.50 −0.50 0 −0.75
L −0.25 −0.25 25 −0.375
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In all patients’ eyes, higher-order aberration (HOA) RMS and spherical aberration
(Z400) were measured and analyzed over a 6 mm zone up to six-month follow-up. Preoper-
atively, an average HOA RMS value over all five eyes of 0.20 µm (range 0.10–0.28 µm) was
determined. Postoperatively, the average value increased to 0.28 µm (range 0.23–0.36 µm)
after the first postoperative week, leveled off at 0.27 µm (range 0.16–0.34 µm) after one
month. It decreased to an average of 0.192 µm (range 0.08–0.39 µm) after three months and
further to 0.16 µm (range 0.08–0.29 µm) after six months (Figure 7).
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Confocal laser microscopy revealed a slight interface edema on the third postoperative
day (Figure 8a), which regressed slightly by the tenth postoperative day but was still
present (Figure 8b). In the tissue adjacent to the interface oedema, no necrotic changes
are observable, and keratocytes seem intact. After one month postoperatively, edema
regressed completely, revealing only a visible cut line and completely intact keratocytes.
These observations are comparable to those made with recent excimer lasers (Figure 8c).
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4. Discussion

Within the scope of the case series at hand, the eye which was treated as first using
AquariuZ solid-state laser system was a severely amblyopic eye of patient #1, with a CDVA
of 0.01. The amblyopia was due to congenital anisometropia and high astigmatism. We
aimed to reduce myopic refraction by 3.50 D of sphere and 3.00 D of astigmatism. After
six months, we could observe a small undercorrection of 0.25 D for sphere and 0.50 D for
astigmatism. However, we were able to observe a clear cornea at all postoperative time
points with no haze and no other side effects. Postoperatively, the patient had a CDVA
increase of 0.05, which he subjectively considered to be a beneficial gain. Following this
initial case, further patients were considered for treatment with the AquariuZ laser.

In the other two patients, a very good uncorrected visual acuity was observed postop-
eratively, but also along with a slight refractive regression of 0.25 and 0.5 D, respectively.
The slight shift is due to a slight dry eye at the time of measurement. Here, too, no haze
could be detected at any time point. Again, the patients were subjectively satisfied with the
visual outcome.

No CDVA lines were lost in any of the operated eyes at any follow-up visit. At six-
month follow-up, the safety index of patient 1 was 5, and those for patients 2 and 3 were
1, respectively.

Analysis of the Higher-Order Aberration RMS (HOA) revealed that the applied as-
pheric optimized profiles did not induce higher-order aberrations nor spherical aberration
in these three individual patients. These results are also consistent with recently reported
outcomes of induced Higher-Order Aberrations (HOA) and spherical aberration after
LASIK in low to moderate myopia [29,30].

Lastly, confocal laser microscopy imaging showed a slight edema present in the
interface postoperatively, which resolved after one month. Furthermore, no avital cells
were observed in the interface and adjacent tissue. The reported observations, based on
the surgeon’s vast refractive experience, closely resemble those seen in the typical LASIK
refractive surgery using excimer lasers.

It should be pointed out that the initially obtained good results described above could
be achieved without a nomogram and match the previously reported good safety and
efficacy profiles reached with solid-state lasers of other research groups [17,18,24–28].

In addition, previously reported characteristics of solid-state laser sources, such as
silent operation and the wet ablation process, suggesting a lower susceptibility to corneal
hydration, could be reproduced [24–28]. The wet procedure potentially means less thermal
stress and consequently less tensile stress in the irradiated tissue, which as an advantage
resulting in a faster healing process [24,31,32].

5. Conclusions

The first clinical results with a new solid-state ablation laser are encouraging and
underline the potential benefits of this technology. Solid-state lasers at a new performance
level are both realizable and capable of meeting expectations in the refractive surgery
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domain. The presented results demonstrate that with the latest technological advancements,
the historically determined developmental gap between excimer lasers and solid-state lasers
can finally be overcome.
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