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Abstract: Glioblastoma multiforme (GBM) remains one of the tumors with the worst prognosis.
In recent years, a better overall survival (OS) has been described in cases subjected to Gross Total
Resection (GTR) that were presenting hypermethylation of Methylguanine-DNA methyltransferase
(MGMT) promoter. Recently, also the expression of specific miRNAs involved in MGMT silencing
has been related to survival. In this study, we evaluate MGMT expression by immunohistochemistry
(IHC), MGMT promoter methylation and miRNA expression in 112 GBMs and correlate the data
to patients’ clinical outcomes. Statistical analyses demonstrate a significant association between
positive MGMT IHC and the expression of miR-181c, miR-195, miR-648 and miR-767.3p between
unmethylated cases and the low expression of miR-181d and miR-648 and between methylated cases
and the low expression of miR-196b. Addressing the concerns of clinical associations, a better OS
has been described in presence of negative MGMT IHC, in methylated patients and in the cases with
miR-21, miR-196b overexpression or miR-767.3 downregulation. In addition, a better progression-
free survival (PFS) is associated with MGMT methylation and GTR but not with MGMT IHC and
miRNA expression. In conclusion, our data reinforce the clinical relevance of miRNA expression as
an additional marker to predict efficacy of chemoradiation in GBM.

Keywords: glioblastoma; MGMT; miRNA; overall survival; progression-free survival; temozolomide

1. Introduction

Among the intracranial pathologies, glioblastoma multiforme (GBM) remains the
most common malignant primary tumor in adult patients. Despite the decades of research
and technological improvements, it is still one of the tumors with the worst prognosis,
with a median overall survival (OS) of 12–15 months from time of diagnosis [1,2]. The
gold standard management remains safe optimal surgical resection followed by adjuvant
partial brain radiotherapy combined with concomitant and adjuvant chemotherapy with
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temozolomide (TMZ) [3]. Recent studies demonstrated significant correlation between
extent of resection (EOR) and OS in patients with GBM, especially in case of Gross Total
Resection (GTR) compared to Subtotal Resection (STR) [3–5].

In more recent years, scientific research focused on the role of Methylguanine-DNA
methyltransferase (MGMT) in the management of GBM. It has been noticed that hyper-
methylation of MGMT promoter (a post-transcriptional mechanism leading to absence
of MGMT protein expression) leads to improved response to TMZ, thus improving the
patients’ outcome [3,6–10].

It has been also observed that there are other factors affecting MGMT expression
in GBM. Some studies have shown that some patients with unmethylated tumors may
experience an unexpected favorable outcome after radio-chemotherapy; in these cases,
mRNA expression was found to be low [11]. One of these mechanisms affecting mRNA
expression seems to be represented by microRNA (miRNA) expression. There are now
data suggesting how changes in miRNA expression may lead to the degradation of MGMT
mRNA, with the result of MGMT gene silencing [11,12]. Indeed, these miRNAs affect
GBM phenotype transition and malignant progression targeting more than 500 targets
responsible for various biological processes such as cell proliferation, division, growth, and
intercellular communication [11–13].

In the study here presented, the relevance of the data regarding the influence, in
GBM, of specific miRNAs (i.e., miR-21, miR-195, miR-767-3p, miR-196b, miR-648, miR-
181d, miR-181c) [14–16] on MGMT and consequently on prognosis, led us to investigate
the pattern of miRNA expression and its correlation to TMZ sensitivity by analyzing a
large cohort of GBM patients. The molecular data have been then correlated with patients’
clinical outcome.

The primary objective of the study is to verify whether a pattern of miRNA expression
correlates with response to the treatment with TMZ and its clinical efficacy, while the
secondary objective is to verify if a cumulative panel of markers may identify a group of
patients experiencing a better outcome after the administration of standard TMZ therapy
combined with radiotherapy.

2. Materials and Methods

In order to fulfil the objectives of the paper, data were collected retrospectively from
2 tertiary neurosurgical centers of different European countries (Service of Neurosurgery
of the Neurocenter of Southern Switzerland, EOC, Switzerland and Department of Neu-
rosurgery at Insubria University Hospital, Italy) over a ten-year period (2004–2013). The
study was conducted in compliance with protocol, the current version of the Declaration of
Helsinki, the ICH-GCP or ISO EN 14155 [17] (as far as applicable) as well as all national
legal and regulatory requirements. Data and samples have been collected and analyzed
for the study purpose only after the required authorizations from the competent Ethics
Committees (Cantonal Ethics Committee, Bellinzona, Switzerland) were obtained (Rif. CE
3086-2016-01108).

For each patient, data include gender, age, type of surgery, postoperative outcome,
postoperative complications and general follow-up until the death of the patients. All the
data are obtained from the electronic medical registries of the 2 institutions.

Inclusion criteria were age >18 years, histological diagnosis of IDH1 wt WHO grade IV,
therapy with TMZ according with the Stupp scheme (60 Gray radiotherapy and concomitant
chemotherapy with TMZ, followed by six cycles of maintenance TMZ), death caused by
GBM, tissue availability for biomolecular analyses.

The exclusion criteria were represented by no clear diagnosis of GBM or presence
of low-grade gliomas (LGGs), pediatric patients (<18 years), patients that followed other
schemes of treatment outside the Stupp scheme and those who died for other reasons
than GBM.

The OS, defined as the time from surgery to the date of death, and the progression-free
survival (PFS), defined as the time from the first radio-chemotherapy treatment to the date
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of clinical or radiological progression according with the RANO criteria, were analyzed.
Regarding the type of surgery, three groups were defined according with the postoperative
MRI performed in the first 72 h: GTR (with no contrast-enhancing residual tissue visible on
T1-injected MRI sequences), incomplete STR (with evidence of contrast-enhancing residual
tumor) and Biopsy.

2.1. Histological and Molecular Analysis

The pathological evaluation had been performed at the Institute of Pathology, EOC,
in Locarno (Switzerland) by experienced pathologists. MGMT promoter methylation
evaluation, MGMT immunohistochemistry (IHC) and miRNA analysis have been done for
each sample.

2.2. MGMT Promoter Methylation

Genomic DNA for MGMT analyses were obtained from three 8 µm thick formalin-
fixed, paraffin-embedded (FFPE) tumor sections using automatic extraction (Maxwell,
Promega, Madison, WI, USA). About 100 ng of DNA were subjected to bisulfite treatment
using EZ DNA Methylation-GoldTM kit (Zymo Research, Irvine, CA, USA). Afterwards, the
methylation status was assessed by PCR-pyrosequencing using MGMTPlus kit according
to the recommended protocol (Diatech Pharmacogenetics, Jesi, Italy). This assay evalu-
ates the methylation of six consecutive cytosines of MGMT promoter (chr10:131,265,507–
131,265,556). The presence of methylation was determined applying a cut-off of 10%.
This value was determined by calculating the limit of negative controls (DNA samples
from 15 FFPE healthy brain tissues) for each cytosine (mean of methylation ratio adding
2× the Standard Deviation) assuming a Gaussian distribution of the raw signal from
negative samples.

2.3. MGMT Immunohistochemistry

Three 1–2 µm thick sections obtained from whole FFPE tissue were deparaffinated,
rehydrated and pretreated with citrate buffer pH6 in microwave oven for 20 min. Then
the sections were treated overnight with the primary antibody anti-MGMT, clone MT3.1
(Chemicon International, Temecula, CA, USA) diluted 1/400 and followed by a polymeric
detection system (Ultravision DAB Detection System, LabVision, Fremont, CA, USA)
according to the manufacturer’s protocol. According to the literature, MGMT IHC positivity
was scored when more than 5% of neoplastic cells showed intense nuclear staining [18,19].
Two pathologists scored the IHC independently.

2.4. miRNA Evaluation

The miRNA extraction was made from three 10 µm formalin-fixed, paraffin-embedded
(FFPE) tumor sections using RecoverAll™ Total Nucleic Acid Isolation Kit for FFPE ac-
cording to the manufacturer’s instructions. (ThermoFisher Scientific, Waltham, MA, USA).
miRNA-specific retrotranscription was performed using TaqMan® MicroRNA Reverse
Transcription Kit and 5X primers included in inventoried TaqMan MicroRNA assays (Life
Technologies, Carlsbad, CA, USA) for miR-21, miR-195, miR-767-3p, miR-196b, miR-648,
miR-181d, miR-181c and RNU6B (used for endogenous control). Each sample was analyzed
in three replicates using Universal Master Mix and assays from TaqMan MicroRNA assays
(Life Technologies) as recommended by the manufacturer. As calibrators, we selected
12 normal brain samples from patients with cerebral arteriovenous malformations. Relative
miRNA expression was calculated with the DDCt method.
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2.5. Statistical Analyses

At first, mean and median values were calculated to summarize the results of each
variable. The relative chi-square, CHI2

rel, describes the statistical association existing
among pairs of variables:

x2
rel =

1
x2

max
∑

i
∑

j

(
ni,j − n̂i,j

)2

n̂i,j

where ni,j indicates the number of patients observed in row i and column j of the contingency
table, hat-n is the expected value of counts given the statistical independence of the two
considered variables, and with

x2
max = N · min(mR − 1, mC − 1)

the maximum value taken by the chi-square statistic when the sample size is N and the
contingency tables has mR rows and mC columns. The relative chi-square takes values in
[0, 1], with 0 indicating the lack of statistical association.

OS and PFS curves for censored data were obtained using the Kaplan–Meier estimator.

Ŝ (t) = ∏
i:ti≤t

(
1 − di

ni

)
which is the estimate of the probability that life is longer than t; furthermore, ti is a time
when at least one event (death) was observed, di is the number of events (deaths) that
happened at time ti, and ni represents the individuals known to have survived up to time
ti. Comparisons of curves given different molecular characterizations were performed
by logrank tests. PFS curves were also estimated and tested within strata defined by the
variable of surgery.

Log-rank tests were performed on hypotheses of no difference among survival curves
of groups defined by an explanatory variable [20].

All the analyses, graphs and reports were performed using the R software and the
following R packages: bootstrap, survival.

For miRNA expression, there are no published cut-offs validated for GBM (nor in other
diseases, nor for real-time experiments in general). Therefore, three different cut-offs for
the evaluation of positive cases have been applied on the basis of similar studies published
in the literature: Cut-off > 3; Cut-off > 1; Cut-off > median value. We present here only
results given cut-off > 3, which represents the stronger methods for evaluating miRNA
expression and which is the cutoff that we have already published in a previous paper [21].
In contrast, with a cut-off > 1 only a slight deviation is considered clinically relevant, while
with a cut-off equal to the median values, the results could be too cohort dependent.

3. Results
3.1. General Consideration

In the ten year period (from January 2004 to December 2013), a total of 112 GBM IDH1
wt WHO grade IV patients were recruited from the centers involved in the study. Out of the
evaluable cases, 39/108 (36.1%) showed a methylation of MGMT, whereas the remaining
69/108 (63.9%) were unmethylated. In addition, out of the evaluable cases, 54/98 (55.1%)
of patients were positive for MGMT IHC and 44/98 (44.9%) were negative (Figure 1).
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Figure 1. MGMT expression evaluated by IHC. (A) An example of a GBM with negative staining
of MGMT protein. The arrows indicate internal positive control, namely inflammatory cells and
endothelial cells. (B) An example of a GBM showing expression of MGMT protein.

From the neurosurgical point of view, a GTR has been achieved in 79 patients (70.5%),
an STR was reached in 17 patients (15.2%), while in the remaining 16 cases (14.3%) the
attending neurosurgeons opted for a biopsy (Table 1). All the clinicopathological and
molecular data are summarized in Table 1.

Table 1. Patients’ characteristics.

Patient’s Characteristics

Age

28–85 years

no. (%)

Sex

Male 57/112 (50.9%)

Female 55/112 (49.1%)

Stage of disease at diagnosis

IV 112/112 (100%)

Histologic Type

GBM IDH1 wt WHO grade IV 112/112 (100%)

MGMT promoter methylation

M 39/108 (36.1%)

UM 69/108 (63.9%)

MGMT IHC

pos 54/98 (55.1%)

neg 44/98 (44.9%)

Neurosurgery

GTR 79/112 (70.5%)

STR 17/112 (15.2%)

BIOPSY 16/112 (14.3%)
Patients’ clinicopathological characteristics and molecular data. Abbreviations: GBM, glioblastoma multiforme;
GTR, gross total resection; IHC, immunohistochemistry; M, methylated; neg, negative; pos, positive; STR, subtotal
resection; UM, unmethylated.
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3.2. miRNA Expression

As mentioned before, we report here the data obtained using a cut-off value >3, but the
results with the two other values were superimposable (Table 2). In general, we observed
strong miRNA overexpression (values > 3) for miR-21 and miR-196b, while downregulation
(values < 0.33) was essentially observed for miR-767.3. The four remaining miRNAs showed
normal expression (values between 0.333 and 3) in the majority of cases.

Table 2. miRNA distribution.

miRNA
miRNA Expression Values

<0.333 0.333–3 >3

miR-181c 39/112 (34.8%) 62/112 (55.4%) 11/112 (9.8%)

miR-181d 38/112 (33.9%) 71/112 (63.4%) 3/112 (2.7%)

miR-21 1/112 (0.9%) 20/112 (17.9%) 91/112 (81.2%)

miR-195 19/112 (17%) 69/112 (61.6%) 24/112 (21.4%)

miR-196b 7/112 (6.2%) 10/112 (9%) 95/112 (84.8%)

miR-648 28/112 (25%) 77/112 (68.7%) 7/112 (6.3%)

miR-767.3p 47/86 (54.6%) 17/86 (19.8%) 22/86 (25.6%)
miRNA expression distribution considering as threshold the value 3. Abbreviations: miRNA, microRNA.

A multivariate analysis was performed between the level of miRNA expression and
the positivity of MGMT IHC. A statistically significant correlation has been found between a
positive MGMT IHC and the low expression of the following miRNAs: miR-181c (p = 0.001),
miR-195 (p = 0.003), miR-648 (p = 0.03) and miR-767.3p (p < 0.001) (Table 3).

Table 3. MGMT IHC and miRNA bivariate analysis.

IHC MGMT
p

neg pos

miR-181c

<0.333 10/98
(10.2%)

22/98
(22.5%)

0.00150.333–3 24/98
(24.5%)

31/98
(31.6%)

>3 10/98
(10.2%)

1/98
(1%)

miR-181d

<0.333 11/98
(11.2%)

22/98
(22.4%)

0.05600.333–3 30/98
(30.6%)

32/98
(32.7%)

>3 3/98
(3.1%)

0/98
(0%)

miR-21

<0.333 0/98
(0%)

1/98
(1%)

0.78460.333–3 7/98
(7.1%)

11/98
(11.2%)

>3 37/98
(37.8%)

42/98
(42.9%)
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Table 3. Cont.

IHC MGMT
p

neg pos

miR-195

<0.333 6/98
(6.1%)

10/98
(10.2%)

0.00250.333–3 21/98
(21.4%)

39/98
(39.8%)

>3 17/98
(17.4%)

5/98
(5.1%)

miR-196b

<0.333 2/98
(2%)

4/98
(4.1%)

0.82160.333–3 4/98
(4.1%)

4/98
(4.1%)

>3 38/98
(38.8%)

46/98
(46.9%)

miR-648

<0.333 4/98
(4.1%)

17/98
(17.3%)

0.02300.333–3 37/98
(37.8%)

35/98
(35.7%)

>3 3/98
(3.1%)

2/98
(2%)

miR-767.3p

<0.333 12/98
(15.8%)

28/98
(36.8%)

0.00050.333–3 11/98
(14.5%)

5/98
(6.6%)

>3 15/98
(19.7%)

5/98
(6.6%)

Relative frequencies and p values obtained from bivariate analysis between miRNA expression, based on the
cut-off value > 3 and MGMT IHC results. Level of significance: p < 0.05 (in bold). Abbreviations: IHC, immuno-
histochemistry; neg, negative; p, p value; pos, positive.

The general expression pattern, when matched to MGMT promoter methylation status,
showed interesting correlations. Indeed, the multivariate analysis performed between the
level of miRNA expression and MGMT methylation found a significant association between
unmethylated cases and the low expression of miR-181d (p = 0.02) and miR-648 (p = 0.004)
(Table 4), while miR-196b high expression seems to be associated with methylated cases
(p = 0.006) (Table 4). The four remaining miRNAs did not show any statistical association
with MGMT promoter hypermethylation.

3.3. Overall Survival

The OS has been considered for both groups of patients included in the study (methy-
lated vs. unmethylated GBM). As summarized in Figure 2A, the OS for methylated patients
is significantly better (p = 0.006). The same statistical consideration has been performed
for MGMT IHC (Figure 2B). The results show that a negative MGMT IHC is significantly
correlated to a longer OS (p = 0.01).
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Table 4. MGMT methylation and miRNA bivariate analysis.

Met MGMT
p

M U

miR-181c

<0.333 10/108
(9.3%)

26/108
(24.1%)

0.42880.333–3 24/108
(22.2%)

37/108
(34.3%)

>3 5/108
(4.6%)

6/108
(5.5%)

miR-181d

<0.333 9/108
(8.3%)

26/108
(24.1%)

0.02450.333–3 27/108
(25%)

43/108
(39.8%)

>3 3/108
(2.8%)

0/108
(0%)

miR-21

<0.333 0/108
(0%)

0/108
(0%)

1.00000.333–3 6/108
(5.6%)

12/108
(11.1%)

>3 33/108
(30.6)

57/108
(52.8%)

miR-195

<0.333 3/108
(2.8%)

13/108
(12%)

0.29840.333–3 26/108
(24.1%)

42/108
(38.9%)

>3 10/108
(9.3%)

14/108
(12.9%)

miR-196b

<0.333 0/108
(0%)

4/108
(3.7%)

0.00600.333–3 0/108
(0%)

10/108
(9.3%)

>3 39/108
(36.1%)

55/108
(50.9%)

miR-648

<0.333 3/108
(2.8%)

23/108
(21.3%)

0.00350.333–3 34/108
(31.5%)

41/108
(37.9%)

>3 2/108
(1.9%)

5/108
(4.6%)

miR-767.3p

<0.333 14/83
(16.9%)

31/83
(37.3%)

0.85910.333–3 6/83
(7.2%)

10/83
(12.1%)

>3 8/83
(9.6%)

14/83
(16.9%)

Relative frequencies and p values obtained from bivariate analysis between miRNA expression based on the
cut-off > 3 and MGMT methylation results. Level of significance: p < 0.05 (in bold). Abbreviations: M, methylated;
Met, methylation; p, p value; U, unmethylated.
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Figure 2. OS curves representing the survival of patients (in terms of months) on the basis of MGMT.
(A) OS evaluated on MGMT methylation status. Dashed vertical lines: median survival times are
19.5 months for M and 14.0 for U. (B) OS evaluated on MGMT expression by IHC. Dashed vertical
lines: median survival times are 18 months for neg and 13 months for pos groups. Abbreviations:
IHC, immunohistochemistry; M, methylated; neg, negative; OS, overall survival; pos, positive;
U, unmethylated.

Then we calculated the association of miRNA expression and OS. A significant correla-
tion was found for miR-21 (p = 0.006) (Figure 3A), miR-195 (p = 0.02) (Figure 3B), miR-196b
(p = 0.008) (Figure 3C) and miR-648 (p = 0.02) (Figure 3D).
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7, [1/3, 3]: 12, [3, inf]: 17. (B) OS evaluated on miR-195. Dashed vertical lines: median survival times
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3.4. Progression-Free Survival

Data have been analyzed also to define any significant relation with the PFS. A sta-
tistical correlation has been found between MGMT methylation status and PFS (p = 0.03)
(Figure 4A) but also between GTR and PFS (p = 0.04) (Figure 4B). Contrary to the cor-
relation with OS, we found no correlation between PFS and MGMT IHC, in addition,
miRNA expression showed a trend, but never reached a statistically significant correlation
with PFS.
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4. Discussion

The possibility to predict the efficacy of therapeutic options today available for the
management of GBMs, mainly chemotherapy and radiotherapy after surgery, is of primary
relevance for clinicians and researchers.

The last decade of research proved that specific molecular alterations may help in the
early identification of patients who can be assigned to specific chemotherapies. The analysis
of MGMT promoter hypermethylation (an alteration occurring in about 40% of GBMs)
permits identifying GBM patients who can benefit from TMZ administration [3,6,10,22,23].
Indeed, it has been shown that the presence of MGMT promoter hypermethylation is a
positive prognostic factor in GBMs treated with TMZ [3,6,10,22,23]. However, it has been
reported that a group of non-methylated tumors may still be addressed, with good success,
to the treatment with TMZ and, consequently, the identification of this subgroup of patients
is of particular interest [23].

The present research proposal is inscribed in this context. Recent data pointed out
that small molecules of RNA (named miRNA) can globally downregulate the expression
of MGMT protein (not by a direct interaction but through one or several intermediate
molecules [24], reaching a result comparable to the presence of promoter hypermethyla-
tion [11,25,26]. Furthermore, it has been demonstrated that the presence of these miRNAs
may be associated with a good response to TMZ treatment [11]. At the moment, in the
literature, these works have usually investigated a single miRNA in a single cohort of
patients or in vitro experiment, with possible bias on the basis of the different cohorts. The
information on this topic is very fragmented and preliminary. Consequently, our aim was
to confirm these very promising and relevant data by analyzing several miRNA molecules
in a cohort of patients with confirmed GBMs and treated with chemo radiotherapy after
surgery according to the Stupp Protocol [3].

The present research analyzes seven different miRNAs and their possible implication
in the modulation of MGMT.
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With regard to the miRNAs, we observed that not all the miRNAs, selected on the basis
of the clinical relevance reported in the literature, have similar trends. Two miRNAs (miR-21
and miR-196b) are generally overexpressed in GBMs, while one is usually downregulated
(miR-767.3) and the four remaining do not have a particular pattern of expression.

The first interesting result is the significant correlation between the low expression of
four out of seven miRNAs (miR-181c, miR-195, miR-648 and miR-767.3p) and the positivity
for MGMT expression evaluated through IHC. These data correlate with the ones in the
literature reporting that these miRNAs are downregulated in patients not responding to
TMZ, which are generally the ones with high MGMT expression by IHC [27]. In addition,
these miRNAs, in general, inhibit MGMT expression so it is reasonable that their low
expression is associated with normal MGMT expression by IHC [15].

The second important result is the confirmation of the above-cited correlation looking
at the methylation of the MGMT. In fact, analyzing miR648, the only one that has a
statistically significant association with both MGMT IHC and MGMT methylation, we
found that it is associated with the absence of MGMT methylation. The correlation of the
expression of this miRNA and MGMT methylation has been reported in the literature, and
logically confirms the data aforementioned for IHC because MGMT IHC and methylation
are opposite situations [14,15]. Indeed, both low expression of miRNAs and the absence of
MGMT methylation should bring about an expression of MGMT protein, and consequently,
a positivity for MGMT protein. All the other miRNAs that present a statistically significant
association between their low expression and positive MGMT IHC (i.e., miR181c, miR195
and miR767.3) do not present a significant association with MGMT methylation. This
discrepancy could be due to the fact that the miRNAs analyzed in this study do not interact
directly with MGMT but regulate MGMT indirectly through other mediators; this could
result in different behavior towards MGMT. The same explanation can justify the fact
that miR181d and miR196b expression associate with MGMT methylation (miR181d low
expression with unmethylated cases and miR196B with methylated cases) but not with
MGMT IHC.

Salient results have been found in terms of OS and PFS. At first, we confirmed the
positive correlation of better OS and PFS (p = 0.006 and p = 0.03, respectively) and MGMT
promoter hypermethylation, a finding indicating that our cohort is fully representative.
Furthermore, the study also takes into account the different outcome in relation to the type
of surgery performed. In consonance with our previous published work and the evidence
in the literature, patients undergoing a GTR show a more favorable clinical outcome in
terms of PFS (p = 0.04) [28]. The better clinical outcome is also noted in patients with
negative IHC (OS p = 0.01), thus confirming the reliability of the analysis and the inverse
correlation between negative IHC and presence of methylation.

Finally, and notably, the present work tried to find a significant relation between
miRNA expression and OS. Indeed, in four out of seven of the miRNAs analyzed, this
relation has results that were statistically discernible (miR-21, miR-195, miR-196b and
miR-648 with p = 0.006, p = 0.02, p = 0.008 and p = 0.02, respectively), confirming that
miRNAs play a pivotal role in the modulation of the MGMT and, consequently, in the
clinical outcome of patients with GBM.

5. Conclusions

The present study represents, to the best of our knowledge, one of the first scientific
attempts to investigate the expression of several miRNAs in the same cohort. As there are
no firmly established methods for the assessment of miRNA expression in cancer (not only
in GBM), it is possible to assume a bias when different miRNAs are evaluated in different
cohorts. We believe that the real clinical relevance of miRNA expression may emerge in
studies similar to the present one, when multiple miRNAs are evaluated simultaneously.
The same can be hypothesized for the assessment of MGMT promoter methylation analysis.
Indeed, the MGMT evaluation method applied in our study (pyrosequencing) is reliable,
robust and applied in routine diagnosis as well. However, other methods are available on
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the market for the evaluation of such a marker, and pyrosequencing, compared to other
methodologies such as the quantitative MGMT methylation-specific PCR (qMSP) MGMT
test, has a limitation; it does not permit differentiation between the true unmethylated form
from the MGMT “grey zone”. This could bring to an imprecise evaluation of the response
to therapies because the grey zone, defined by specific cut-offs by Hegi and colleagues, has
a behavior more similar to the methylated cases than the unmethylated ones [29]. However,
we must emphasize that all methods for assessing the methylation status of the MGMT
promoter are valid and can be used confidently.

Returning to miRNA evaluation, our data are superimposable when different cut-offs
were used to assess miRNA expression, thus strengthening our conclusions. Our data
reinforce the notion of the clinical relevance of miRNA expression as an alternative method
to assess promoter methylation in the regulation of MGMT expression. If confirmed in
other cohorts, possibly including a larger series of GBMs, our data open the door to a future
diagnostic role of miRNA expression in predicting the efficacy of chemoradiation in GBM.
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