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Abstract: Cancer is the primary cause of death in economically developed countries and the second
leading cause in developing countries. Colorectal cancer (CRC) is the third most common cause
of cancer-related deaths worldwide. Risk factors for CRC include obesity, a diet low in fruits and
vegetables, physical inactivity, and smoking. CRC has a poor prognosis, and there is a critical need for
new diagnostic and prognostic biomarkers to reduce related deaths. Recently, studies have focused
more on molecular testing to guide targeted treatments for CRC patients. The most crucial feature of
activated immune cells is the production and release of growth factors and cytokines that modulate
the inflammatory conditions in tumor tissues. The cytokine network is valuable for the prognosis
and pathogenesis of colorectal cancer as they can aid in the cost-effective and non-invasive detection
of cancer. A large number of interleukins (IL) released by the immune system at various stages of
CRC can act as “biomarkers”. They play diverse functions in colorectal cancer, and include IL-4, IL-6,
IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-β, and vascular endothelial growth factor (VEGF),
which are pro-tumorigenic genes. However, there are an inadequate number of studies in this area
considering its correlation with cytokine profiles that are clinically useful in diagnosing cancer. A
better understanding of cytokine levels to establish diagnostic pathways entails an understanding of
cytokine interactions and the regulation of their various biochemical signaling pathways in healthy
individuals. This review provides a comprehensive summary of some interleukins as immunological
biomarkers of CRC.

Keywords: colorectal cancer; immunity; biomarker; interleukins; cytokines; therapy; diagnostics

1. Introduction

Cancer is a condition where cells proliferate uncontrollably [1,2]. It is the leading cause
of death in economically developed countries and the second leading cause of death in
developing countries [3]. Colorectal cancer (CRC) is the third most common cause of cancer
death globally, with an estimated 2.2 million new cases and 1.1 million deaths expected
over the next decade [4]. CRC accounts for 9.2% of cancer-related deaths, making it the
second leading cause of cancer death [5–7]. Both genetic and environmental factors play
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a role in CRC causation [8]. Chronic colitis due to inflammatory bowel disease (IBD) is
also associated with an increased risk of CRC [9]. CRC has a poor prognosis, and there
is a critical need for new diagnostic and prognostic biomarkers to reduce CRC-related
deaths [10,11]. Cytokine networks are largely involved in the prognosis and pathogenesis
of CRC [12]. Tumors express cytokines with both antitumor and pro-tumor properties [13].
Cytokines’ ability to stimulate oncogenic signaling has shifted research focus towards their
role in promoting cell proliferation and survival during tumorigenesis [14]. Immune cells
activated in response to the tumor produce and release growth factors and cytokines to
regulate the inflammatory environment in tumor tissues [15]. These inflammatory cytokines
direct DNA damage in the epithelium [16]. They imply the pathogenesis and prognosis of
CRC [12]. Interleukins have distinct roles in CRC progression through tumorigenesis [14]
and are also involved in tumor growth, cancer cell invasion, and metastasis, while also
inhibiting cancer through complex pathways [15]. In recent years, interleukins have gained
significant attention due to their distinct roles in providing a new and promising strategy
for CRC treatment [17].

Interestingly, interleukins are not the only biomarkers for CRC. Since the gut micro-
biome has been shown to play a crucial role in the development of CRC, several studies
have investigated the use of gut microbes as biomarkers for CRC [18–20]. The presence
of Fusobacterium nucleatum and Bacteroides fragilis in tumors has been reported in 43% and
24% of patients, respectively. The detection of these bacterial species has been found to
correlate with the overall bacterial load, but further analysis of microbial signatures via
diversity profiling suggests that their detection may be indicative of a specific microbial
profile [21]. Consequently, the presence of F. nucleatum and clbA+ bacteria in stool samples
can be used as a predictive marker for CRC with a relatively high specificity and moderate
sensitivity [22]. It is important to note that these non-invasive screening approaches are still
under development and more research is needed to validate their results in larger patient
populations and confirm their efficacy compared to current screening methods. Several
studies have also investigated the use of miRNA as biomarkers for CRC. For example, a
study found that a panel of miRNAs (e.g., miR-21, miR-31, miR-146a, and miR-192) had a
sensitivity and a specificity for detecting CRC [23]. Even though these studies demonstrate
the potential of miRNA as a non-invasive biomarker for CRC, more research is still needed
to validate these findings in larger patient populations [24–26]. The type of cancer and stage
of the disease can impact the miRNA signature. Furthermore, the methods used to detect
miRNA, such as RT-qPCR and microarray analysis, can also contribute to inconsistencies
in results [24,27].

The point-of-care (POC) detection of cancer biomarkers provides an effective means for
early-stage diagnosis. The cytokines, especially IL-6 and IL-8, have been used as potential
biomarkers allowing the diagnosis of various benign oral lesions from malignant ones. Var-
ious electrochemical and optical biosensors have been developed to detect interleukins [28].
Studies on clinical units and mouse models helped to reveal many cytokines that have a
high correlation with specific diseases, overlaying an efficient way to develop Biology Col-
lector (BIOCO) in clinics to promote the research in cytokine development platforms [29].
Cytokines can play a key role in disease management and diagnosis as an immune mediator,
similarly to pathophysiology-based sepsis, where pro- and anti-inflammatory cytokines
have a double-edged function [30]. Recent studies have focused on using molecular test-
ing to guide targeted treatments for CRC patients, but introducing novel molecular tests
into routine clinical practices remains a huge challenge [31]. Interleukins, which can be
detected in blood circulation even in the case of localized tumors, have the potential to
serve as biomarkers for detecting cancers, predicting disease outcomes, and managing
therapeutic choices [32]. The detection of specific cytokines in blood can cost-effectively and
non-invasively assist in the detection of cancer, as well as in determining the appropriate
therapy and monitoring the progression of the disease [31–34]. This review aims to assess
the role of interleukins as biomarkers for the early possible detection of colorectal cancer by
searching advanced published literature and studies regarding immunological biomarkers’
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expressions and roles in colorectal cancer using keywords; colorectal cancer, gastric cancer,
cytokine network, diagnostics, and monitoring.

2. Molecular Pathways and Cytokine Role in CRC

The tumor microenvironment (TME) plays an important role in the initiation and
growth of tumors into metastatic states [35]. Tumor cells secrete cytokines that stimulate
self-proliferation, drug resistance, and activation and differentiation of other cells in the
tumor microenvironment [36,37]. Neutrophils are triggered by complement immunity and
release IL-1β, which can activate myeloid cells to produce IL-6 and increase the IL-17A
response. IL-33 can be secreted by vascular endothelial cells and tumor cells [17]. The
host’s immune response causes chronic inflammation from time to time, which leads to
tumor growth primarily due to interactions between tumors, immune, and other cells
moderated by cytokine [38,39]. Cytokines alert immune cells in the presence of tissue
damage and infections to stimulate the cells to release more cytokine signals leading to
chronic inflammation [38]. Chronic inflammation promotes diverse cytokine secretion
during various stages and types of cancer [32]. It causes DNA damage and DNA mutation
by reactive oxygen and nitrogen species, along with the alteration of the epigenome of the
cells [40,41].

Immunological biomarkers can be predictive, prognostic, or both [42]. Biomarkers are
genes, gene products, cells, enzymes, molecules, or hormones that can be detected in tissues
and body fluids (blood, urine, etc.) [43]. Cancer biomarkers are usually produced by the
tumor or other body cells in response to the tumor [44]. They can be used for early cancer
detection and patient state prediction [45]. Certain biomarkers can reveal genetic changes
in cancerous cells, such as gene rearrangements or amplifications, mutations, and cell
division, enabling cancer detection and response prediction to various treatments [46,47].
Prognostic immune cells include tumor-infiltrating lymphocytes, eosinophils, neutrophilic
granulocytes, macrophages, and dendritic cells [48–51]. The epithelium of a tumor activates
stromal cells to release cytokines, such as transforming growth factor, and cell signaling
factors to develop a microenvironment for tumor progression and metastasis [52–54].

The development of colorectal cancer is also caused by specific mutations in oncogenes,
tumor-suppressor genes, and genes associated with DNA repair mechanisms. However,
approximately 70% of colorectal cancer cases follow a specific mutation and are transformed
into a specific morphological sequence that starts with polyps and abnormal crypts, which
then develop into early adenomas. The adenoma then progresses to advanced adenomas,
eventually leading to colorectal cancer [55]. Therefore, genome instability is a fundamental
feature of CRC. The pathogenic mechanisms leading to this situation can be divided into
three different pathways (Figure 1): chromosomal instability (CIN), microsatellite instability
(MSI), and CpG island methylator phenotype (CIMP) [56].

Mesenchymal cells of the gut, including endothelial cells, smooth muscle cells, mucosal
immune cells, and subepithelial myofibroblasts, are combined with the tumor epithelial
cells to regulate TME for the progression of CRC [57,58]. Table 1 represents main cancer
cell types with the signaling pathways and target cells.



J. Clin. Med. 2023, 12, 3127 4 of 32J. Clin. Med. 2023, 12, x FOR PEER REVIEW 4 of 32 
 

 

 
Figure 1. Molecular alterations and Genetic changes cause various pathways: chromosomal 
instability (CIN), microsatellite instability (MSI), and CpG island methylator phenotype (CIMP,) 
which lead to metastasis, angiogenesis, drug resistance, immunosuppression, and inflammation in 
tumors. 

Mesenchymal cells of the gut, including endothelial cells, smooth muscle cells, 
mucosal immune cells, and subepithelial myofibroblasts, are combined with the tumor 
epithelial cells to regulate TME for the progression of CRC [57,58]. Table 1 represents main 
cancer cell types with the signaling pathways and target cells. 

Table 1. Cancer cell types in TME and the specific soluble factors released by them. Soluble factors 
involved in the promotion of cancer stem ness pathways. 

TME Cells Soluble Factors Target Cells Signaling Pathway Biological Effects Reference 

CD4+ IL-22 CRC 

STAT3/DOT1L 
(Signal transducer and 

activator of 
transcription)/(Disruptor of 
telomeric silencing 1-like) 

Stemness gene 
regulation 

[59] 

CAF 
(Cancer-associated 

fibroblasts) 

HGF/SDF1 
(Hepatocyte growth 
factor)/Stromal cell-

derived factor-1 

Cancer stem 
cells (CSC) 

Wnt/β-catenin 
Clonogenic activity and 

expression of  
CD44v6  

[60] 

Endothelial cells 
JAG1 

(Jagged) 
CRC Notch 

CD133 expression, 
tumorigenicity and 

chemoresistance 
[61] 

MSC 
(Mesenchymal stem 

cells) 

PGE2 
(Prostaglandin E2) 

CRC Wnt/β-catenin 
EMT (Epithelial-to-

mesenchymal transition) 
and invasion 

[62] 

Myofibroblasts HGF CSC Wnt/β-catenin Clonogenicity [63] 

Figure 1. Molecular alterations and Genetic changes cause various pathways: chromosomal instability
(CIN), microsatellite instability (MSI), and CpG island methylator phenotype (CIMP,) which lead to
metastasis, angiogenesis, drug resistance, immunosuppression, and inflammation in tumors.

Table 1. Cancer cell types in TME and the specific soluble factors released by them. Soluble factors
involved in the promotion of cancer stem ness pathways.

TME Cells Soluble Factors Target Cells Signaling Pathway Biological Effects Reference

CD4+ IL-22 CRC

STAT3/DOT1L
(Signal transducer and

activator of
transcription)/(Disruptor

of telomeric silencing
1-like)

Stemness gene
regulation [59]

CAF
(Cancer-associated

fibroblasts)

HGF/SDF1
(Hepatocyte growth

factor)/Stromal
cell-derived factor-1

Cancer stem
cells (CSC) Wnt/β-catenin

Clonogenic activity
and expression of

CD44v6
[60]

Endothelial cells JAG1
(Jagged) CRC Notch

CD133 expression,
tumorigenicity and

chemoresistance
[61]

MSC
(Mesenchymal

stem cells)

PGE2
(Prostaglandin E2) CRC Wnt/β-catenin

EMT (Epithelial-to-
mesenchymal
transition) and

invasion

[62]

Myofibroblasts HGF CSC Wnt/β-catenin Clonogenicity [63]

Many polymorphisms and somatically altered genes in CRC affect the KRAS- (kirsten
rat sarcoma viral oncogene homolog), MYC- (cellular myelocytomatosis oncogene), Wnt-,
mitogen-activated protein kinase (MAPK)-, or TGF-β/bone morphogenetic protein (BMP)-
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signaling pathways. For example, the nuclear factor κB (NF-κB), JNK, AP-1, and p38 MAPK
pathways are activated by IL-1 receptor cytokine in CRC along with the activation of the
Wnt signaling pathway by phosphorylation of GSK3β [12].

3. Advancements in Cytokine Detection and Monitoring Clinically

The study of cytokine secretion can lead to improved understanding of disease mech-
anisms and the development of new treatments. Elevated cytokine levels are a hallmark
of many diseases such as diabetes, sepsis, cardiovascular diseases, neurodegenerative
diseases, and cancers, and can be used as potential biomarkers [64–68]. A study found
that a combination of IFN-γ, IP-10, ferritin, and 25-hydroxyvitamin D can be used to di-
agnose pediatric tuberculosis and to differentiate between TB and latent TB infection [69].
Inflammatory cytokines such as IL-6, IL-10, IL-1, TNF-α, and TGF-β are linked to the
progression of heart failure and chronic kidney dysfunction, which are major global health
problems with significant economic impacts [70]. Furthermore, inflammatory bowel dis-
eases such as ulcerative colitis and Crohn’s disease result from an imbalance in pro- and
anti-inflammatory cytokine interactions [29]. However, excessive cytokine release into the
bloodstream from immune cells can cause cytokine release syndrome during immunother-
apy and infections [71,72]. This makes detecting cytokines challenging due to their low
concentration, instability, and complex networks [73]. Cytokine imbalances can also cause
illnesses and prompt the need for precise and early treatment in severe conditions, so there
is a demand for accurate, fast, and sensitive cytokine screening methods [74,75].

Common methods for cytokine quantification in clinical practice include ELISA and
ELISpot [76]. Due to their crucial role in disease and human health, researchers are striv-
ing to develop tools for sensitive, multiplex cytokine detection [77]. For instance, recent
studies have explored deployable devices with immunosensors on fiber optics [78] and
stainless steel [79] for cytokine monitoring in mouse brain and spinal cords at pg/mL
levels. An impedance aptasensor was developed for a highly sensitive detection of IL-6,
with a detection limit of 1.6 pg/mL and a linear response of 5 pg/mL to 100 ng/mL [80].
A microfluidic technology based on single plex was designed to eliminate cross-reactivity
and detect chemokines and cytokines in human and mouse samples [81]. Another chemi-
luminescent nanozyme immunoassay was developed for simultaneous detection of two
chicken cytokines (IL-4 and IFN-γ) in serum samples with a range of 0.01–60 ng/mL for
IFN-γ and IL-4, respectively, and detection limits of 2.9 pg/mL for IFN-γ and 3.2 pg/mL
for IL-4 [82]. Clinical detection of serum biomarkers such as CA 19–9 and CA724 has
a low specificity and sensitivity in gastric cancer diagnosis [83]. Studies show that the
sensitivity, accuracy, and specificity of interleukins are as good as that of other markers
such as carcinoembryonic antigen (CEA) and CA 19–9 [84]. This suggests that IL-6 may be
a reliable biomarker for gastric cancer detection and diagnosis.

IL detection is commonly used as a biomarker for infections in clinical applica-
tions [85,86]. The most widely used tumor marker is a combination of ILs and CEA [87].
Tumor markers, found in body fluids, are widely used for early diagnosis, prognostic
evaluation, and treatment monitoring of tumors [88,89], but CEA lacks specificity [90].
Combining inflammatory factors and tumor markers has shown a high potential in diag-
nosing pancreatic and CRC [91,92]. IL detection has also been analyzed for its individual
role in the diagnosis of lung cancer and predicting lymph node metastasis [93]. They have
shown promising results as a cancer biomarker in various types of cancer including gastric
cancer, pancreatic cancer, and CRC. The use of ILs combined with other tumor markers
such as CEA has the potential to enhance the accuracy of cancer diagnosis. In the case
of thyroid cancer, the combination of IL-13 and IL-8 has been found to be effective in
identifying the disease [94]. However, further research is needed to fully understand the
genetic basis of interleukin levels as a cancer risk factor and to account for other factors
that can impact the levels of interleukins in the body [95].

Alternation in the expression of interleukins such as IL-17, IL-22, and IL-1ß has been
associated with various types of cancer [96,97]. Interleukins regulate the tumor microenvi-
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ronment and are involved in tumor development and progression [98,99]. Not only locally,
but their actions also occur distantly through circulation [100]. Interleukins promote cancer
development by counteracting the immune response, mobilizing stromal, and immunosup-
pressive cells that support the tumor, inducing angiogenesis, and altering the response to
therapeutic agents [101,102]. Their production is also triggered due to changes induced by
cancer, alterations in metabolism, cell death, oxygen deficiency, and usage of anticancer
drugs [102]. Figure 2 shows the immune response of cancer with cytokine release. The
control of widespread cancer includes effective tools for the betterment of cancer burden
by knowledge, early detection, suitable therapy along with a regular follow-up, and fore-
cast measures by using cancer biomarkers [103]. The analysis of cytokines along with
cancer-specific biomarkers has been put forward to improve cancer detection [32].
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Figure 2. Immune cells influencing the tumor, leading to acute and chronic inflammation. Many
cytokines (shown in form of colored dots in the figure) play their roles in this regard to either suppress
or progress the tumor.

4. Cytokines’ Role in CRC

Some cytokines (other than interleukins) are also associated with the immune regu-
lation of tumor cells and are highly expressed as compared to normal cells. They include
forkhead box P3 (FOX P3), tumor necrosis factor-α (TNF-α), and interferon-gamma (IFN-γ).

4.1. Forkhead Box P3 (FOXP3)

The FoxP3 gene is expressed in regulatory T cells and is associated with cell develop-
ment, transcription regulation, and DNA repair [104–106]. In addition to its basic role in
immune responses, FOXP3 also plays a significant role in cancer development [107]. A high
level of FOXP3 expression was observed in tumor cells compared to tumor-surrounding
tissues, as detected through an immunohistochemistry assay [108]. FOXP3 levels are also
higher in colorectal cancer tissues than in normal colorectal tissues [109], and its expression
is associated with a poor prognosis compared to patients with low FOXP3 expression [110].
However, a high level of FOXP3 in tumor cells is associated with longer and disease-free
survival [108]. Intra-tumoral CD4+ and FOXP3+ cell infiltration can be the most mean-
ingful predictive factor in CRC patients [111]. Studies show that FOXP3 expression by
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cancer cells results in the secretion of cytokines such as IL-10 and TGFβ into the tumor
microenvironment, which suppresses immunity [112].

4.2. Tumor Necrosis Factor-α (TNF-α)

Tumor necrosis factor-α (TNF-α) is a cytokine produced by macrophages and involved
in various immune regulations [113]. It promotes the process of epithelial-to-mesenchymal
transition (EMT) in colorectal cancer, thus promoting the metastasis of colorectal can-
cer [114–116]. Single-nucleotide polymorphisms in TNF-α genes are reportedly associated
with the prognosis, therapy response, and survival of cancer patients [117]. High TNF-α
gene expression is associated with Stage III and IV neoplasms compared to earlier tumor
stages, and TNF-α expression is increased in the serum of CRC patients [118,119]. Statis-
tical analysis shows that TNF-α mRNA expression levels are significantly higher in CRC
compared to normal CRC tissue, and CRC patients with low TNF-α serum levels have a
significantly higher survival rate compared to patients with high levels of TNF-α [118,120].
The examination of TNF-α levels in plasma can be used as a diagnostic factor for CRC
instead of using other invasive tests [121].

4.3. Interferon-Gamma (IFN-γ)

The genetic variations in interferon-gamma (IFN-γ) and its receptor (IFN-γR) subunits
are strongly associated with the risk of colorectal cancer and patient survival after diag-
nosis [122]. IFN-γ is a major activator of macrophages and an inducer of Class II major
histocompatibility complex (MHC) molecules [123], with immune regulatory, antiviral,
and antitumor properties [124,125]. Studies have shown that the deficiency of IFN-γ or its
receptor promotes the development of colorectal cancer, whereas its specific expression
activates innate immunity and inhibits tumorigenesis [122,124]. The specific expression of
IFN-γ activates innate immunity and inhibits tumorigenesis [124] However, IFN-γ signal-
ing can also compromise antitumor immunity by inducing immune checkpoint inhibitory
molecules on T and tumor cells [125]. Furthermore, IFN-γ acts as a cytotoxic cytokine
and initiates apoptosis in tumor cells [126]. The IFN-γ/Janus Kinase 2 (JAK)/signal trans-
ducer and activators of transcription (STAT) signaling pathway has been shown to induce
programmed death-ligand 1 (PD-L1) expression in myeloid leukemia cells, pancreatic,
and gastric cancer [127,128]. Increased PD-L1 expression levels have been found to be
associated with a poor prognosis in patients with CRC [129]. Previous studies have also
reported that PD-L1 expression on tumor-infiltrating immune cells is correlated with the
survival of patients with CRC [130].

5. Interleukins in Colorectal Cancer

There are various interleukin families involved in CRC progression that have been
studied as biomarkers (Table 2). They play different roles in colorectal cancer. For example,
IFN-γ, interleukin-12 (IL-12), IL-15, IL-17F, and IL-18 inhibit CRC development [131–134].
On the other hand, IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-β, and vascu-
lar endothelial growth factor (VEGF) are pro-tumorigenic genes [135,136]. The contribution of
IL-1, IL-9, IL-10, IL-21, and granulocyte-macrophage colony-stimulating factor and sargramostim
(GM-CSF) to intestinal cancer remains unclear [135]. Figure 3 shows certain cytokines and
their role in CRC.
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Table 2. Major interleukins involved in CRC progression and studied as biomarkers.

Cytokine Functional Effect in CRC Expression Patterns Reference

IL-1α Promotes metastasis and the chemosensitivity
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Figure 3. Cytokine networks in the pathogenesis of colorectal cancer. Cytokines expressed by tumor
and/or stromal cells cluster to form networks with antitumor, pro-tumor, or bivalent properties.
IFN-γ, interleukin-12 (IL-12), IL-15, IL-17F, and IL-18 inhibit CRC development. IL-4, IL-6, IL-8, IL-11,
IL-17A, IL-22, IL-23, IL-33, TNF, TGF-β, and VEGF are pro-tumorigenic. The contribution of IL-1,
IL-9 IL-10, IL-21, and GM-CSF to intestinal cancer remains unclear.
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5.1. Interleukin-1β

IL-1β is activated by immune response receptors to induce inflammatory responses [177].
As a pro-inflammatory cytokine, IL-1β is secreted by macrophages to promote cell pro-
liferation [178,179]. Together with TNF-α, IL-1β is considered an “alarm cytokine” that
triggers inflammatory responses by inducing other pro-inflammatory genes [180]. Poly-
morphisms in the IL-1β gene increase the risk of colon cancer development [181], while
single-nucleotide polymorphisms (SNPs) associated with a high expression of IL-1Ra lead
to better survival in patients with advanced CRC [182]. Mutations in the Nucleotide Binding
Oligomerization Domain (NOD2) are also linked to severe forms of Cluster of Differentiation
(CD) that secrete IL-1β, indicating its potential role in CRC progression [183]. Studies
suggest that IL-1β promotes colon tumor growth by activating cancer stem cell (CSC)
self-renewal and epithelial-to-mesenchymal transition (EMT) through the transcription
factor Zinc Finger E-box binding homeobox 1 (Zeb1) [184]. Therefore, IL-1β and Zeb1 could
be potential therapeutic targets for colon cancer treatment. In one study, IL-1β was found
to be significantly increased in CRC tissues compared to normal tissues, leading to the
hypothesis that IL-1β plays a tumorigenic role in CRC and is associated with a higher rate
of survival [185].

5.2. Interleukin-17

The identification of only six members of the IL-17 family has been achieved, i.e.,
IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F [186]. However, the extensive study of
only IL-17A and IL-17F has been performed related to CRC development [187]. IL-17 is
being considered a promoter in the progression of colorectal cancer [188]. Studies show
that the serum levels of IL-17A were elevated in CRC patients in comparison to healthy
individuals [189] or in the circulating tumor cells which also predicted poor survival [190].
Furthermore, its gene expression is reported to be higher in tumor tissues compared to
normal mucosa [171]. IL-17A expression heightens the adenoma-to-carcinoma sequence
(mutational activation of cancer genes) in the intestinal epithelium of CRC patients [191].
Poor prognosis has been shown when there is a high expression of these genes associ-
ated with Th17 in CRC tissues [171]. In vitro, IL-17 and TNF-α synergistically promote
carcinogenesis by stimulating glycolysis and growth factor production by CRC cells [192].
The study showed that CD4+ T-cell-derived IL-17 promotes tumorigenesis in the intestine
of mice [193]. IL-17-producing cells may facilitate the development of CRC by assisting
angiogenesis through the stimulation of VEGF production by cancer cells [194]. These cells
have seen an increase in the intestinal mucosa of CRC patients due to microbial misbalance,
which indicates that they can be a sensitive prognostic indicator for CRC [195]. In an
experiment on serum and tissues of 99 samples and 37 controls, high IL-17 expression was
seen, predicting IL-17 as a valuable tumor marker in CRC patients [196]. The variant of
IL-17A can be utilized as a screening marker to assess CRC risk while its expression can
be used as a biomarker for early CRC detection [197]. Moreover, an elevated level of Th17
cells was found in almost 80% of sporadic colon cancer tissues of humans, which indicates
that IL-17 expression can be among potential biomarkers as prognostic entities for future
developments in sporadic CRC [198].

5.3. Interleukin-22

Interleukin-22 has recently arisen as a novel part of CRC advancement as Th22 ag-
gregation in patients showed relatedness with CRC advancement [199]. IL-22 in CRC
tissue and serum or CRC tissue can be a prediction for the poor endurance of patients [14]
elevating resistance to chemotherapy [200]. The polymorphisms in the IL-22 promoter
are also linked with CRC risk [59]. Results of many studies suggest that IL-22 is involved
in colon tumor maintenance as the analysis of IL-22 in human colon cancer showed that
IL-22 mRNA expression in tumor tissue was more than two-fold higher than in normal
tissue [201]. Their enhanced expression is related to the inflammation of colon mucosa in
patients with gut infection or bowel diseases [202]. Excessive IL-22 in the cancer microenvi-



J. Clin. Med. 2023, 12, 3127 10 of 32

ronment leads to tumor growth with the activation of the STAT3 pathway [203], and the
epigenetic activation of genes with a STAT3-dependent pathway maintains the CRC stem
cells [59]. Levels of IL-22 in tumor tissues and blood are associated with chemoresistance
and indicate a poor prognosis for patients having chemotherapy, so IL-22 may be a useful
prognostic biomarker for CRC patients [200]. RORγt (necessary for IL-22 expression) and
IL-17A expression (co-expressed with IL-22 sometimes) are associated with a bad prognosis
of human CRC [171]. Modulation of IL-22 expression can also be due to various dietary
components such as high fatty diet, and cruciferous vegetables; along with the microbiome,
which has a substantial influence on IL-22 forming cells in CRC [14].

5.4. Interleukin-6

Interleukin-6 (IL-6) is rapidly produced in response to tissue sprains and infections,
contributing to host defense through immune reactions [201]. Studies on mice with colitis-
associated cancer have found that treatment with anti-IL-6 receptor antibodies reduces
the incidence of cancer, suggesting that IL-6 may be a therapeutic target for colorectal
cancer (CRC) [202]. IL-6 plays a central role in the development of colonic cancer [58], with
its expression significantly elevated in CRC tissues compared to non-cancerous cells and
associated with an increased risk of relapse [202,203]. Several meta-analyses have indicated
that serum IL-6 may be a potential biomarker for the diagnosis of CRC, and circulating IL-6
in plasma is also increased in patients with CRC [154,204,205]. Targeting the IL-6/STAT3
pathway has been proposed as a possible strategy for CRC therapy, as its expression can be
an important factor in establishing prognostics for clinical decisions [206–208]. Recently,
many therapeutic strategies have been developed that target the IL-6/STAT3 pathway for
the treatment of CRC [209]. The IL-6/JAK/STAT3 signaling pathway drives the metastasis,
proliferation, survival, and invasiveness of tumor cells in the tumor microenvironment by
suppressing the antitumor immune response. Thus, targeting this pathway can directly
inhibit cancer cell growth and stimulate the antitumor immunity [210]. Cancer-associated
fibroblasts (CAFs) induce IL-6 to activate the Jak1-STAT3 pathway in gastric cancer cells by
paracrine signaling. This allows tumor cells to progressively resist apoptosis, increasing
their survival and resistance to chemotherapy. The humanized monoclonal anti-IL-6R
antibody Tocilizumab (an FDA-approved drug) inhibits the activation of the Jak1-STAT3
signaling pathway, increasing the effectiveness of chemotherapeutic drugs [211]. Figure 4
illustrates its activity.
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5.5. Interleukin-23

IL-23 is a heterodimeric type 1 cytokine composed of IL-12/p40 and p19 subunit,
which is chiefly secreted by macrophages, monocytes, and activated dendritic cells and
is vital in mucosal immunity [212,213]. Elevated levels of IL-23 have been found in colon
adenocarcinoma, and it promotes tumor growth by blocking cytotoxic T cells and initiating
pro-inflammatory responses [214]. IL-23 mRNA has been reported to be increased in
various human tumors, correlating with a poor prognosis [214,215]. IL-23 influences
tumor cells via T-cell responses by positively affecting the STAT3 activity in tumor growth,
elevating TH17 activity and regulatory T cells (Tregs) [216]. Reports showed that IL-23
is highly expressed in tumor tissues of humans from other organs, and its expression
is correlated with a poor prognosis [171,214]. IL-23R protein has been detected in the
cancerous colorectal cell line SW-480, and its expression is progressively elevated from
normal to colorectal cancer tissue [217–221]. The equilibrium between the cytokines IL-23
and IL-12 is a significant shift from inflammation to tumorigenesis [216,222].

5.6. Interleukin-33

IL-33 is a member of the IL-1 superfamily of cytokines expressed in various organ
systems, including the gastrointestinal tract [222]. It was identified as a receptor ST2
ligand in 2005, and its mRNA processing forms multiple isoforms of proteins, including a
secreted soluble form (sST2), a transmembrane receptor (ST2L), and a variant form [223].
Myofibroblasts, smooth muscle cells, fibroblasts, epithelial cells, adipocytes, and endothelial
cells (non-hematopoietic cells) are the main sources of IL-33 production [224,225]. IL-33
is highly expressed in the serum of cancer patients and is also found in cancer cells and
cancer-associated fibroblasts (CAFs) [226]. Many studies have reported its role in metastasis
and tumorous cell invasion, and inhibiting it in colon cancer cells resulted in reduced tumor
growth, migration in vitro, and fewer tumor cells in vivo [147,227]. Overexpression of IL-33
in cancer can increase the antitumor immune response by activating CD8+ T and natural
killer cells [228]. Similar studies have depicted an increase in IL-33 in colorectal cancer
compared to normal tissues, and its antitumorigenic effect in CRC [147]. There is a positive
correlation reported between human CRC development and IL-33/IL-1RL1 expression
levels [147,229], which reduces tumor growth in skin cancer and CRC models [230,231].

5.7. Interleukin-15

IL-15 is a cytokine that can activate CD8+ T cells and natural killer cells, leading
to cytolytic activity [232]. This cytokine has shown the potential to enhance antitumor
responses in cancer models [233,234]. The presence of IL-15 expression in the tumor
microenvironment (TME) is crucial for optimal antitumor responses [235,236]. Its loss in
expression is associated with low T cell proliferation, low T cell density, and decreased
survival [235]. The mRNA expression of IL-15 has been detected in colorectal cancer cells of
humans, such as Colo320, WiDr, TCO, and DLD1, through reverse transcriptase-polymerase
chain reaction (RT-PCR) [237]. IL-15 may have the potential to be used in cancer therapy, as
it exhibits strong immune stimulatory functions in addition to its role as a growth factor
that regulates homeostasis and lymphocyte function [238]. IL-15 has antitumor effects by
activating the cytotoxicity of natural killer cells and producing other cytokines such as TNF-
α and IFN-γ [239]. Deletion of IL-15 from CRC tissues results in fewer T cells compared to
tumors where IL-15 is not deleted, as IL-15 induces T cell proliferation. Therefore, IL-15
deletion can be utilized as a prognostic biomarker in CRC [240].

5.8. Interleukin-18

The expression of IL-18 is reported to be low in colon cancer tissues and may be
associated with tumor size, while also suppressing the proliferation of colon cancer [133].
Known as the “IFN-γ-inducing factor,” IL-18 induces IFN-γ expression in mice when
treated with lipopolysaccharide [241]. The protein encoded by the IL-18 gene, located
at 11q23.1, is responsible for pathogenic response and activation of host defense mecha-
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nisms [242]. IL-18 is mainly secreted by dendritic cells and macrophages, stimulating the
production of interferon-γ (IFN-γ) by thymus-dependent lymphocytes (T cells) and natural
killer cells (NK) [243]. IL-18 expression is elevated in the blood serum of CRC patients
and is associated with tumor size, histological grade, and cancer cell metastasis, making
it a potential indicator to predict CRC patients’ prognosis and survival time [143]. Gene
expression of IL-8 is elevated (p < 0.05) in CRC patients compared to healthy individuals,
detected using ELISA and real-time PCR [143].

5.9. Interleukin-13

IL-13 and IL-4 receptors may become attractive targets for the treatment of colorectal
cancer [244,245]. High levels of IL-13Rα2 were detected by immunoblotting in metastatic
colon cancer cell lines, and 66% of tumor samples in patients showed clear overexpression
of IL-13Rα2 [246]. High levels of IL-13 and IL-13R expression are seen in 50% of Stage I–III
CRC patients and are associated with longer survival time [244]. Its appearance is also
related to high tumor stage and poor human CRC outcomes [246]. A study showed that IL-
13 serum levels were significantly lower in advanced-stage patients, which are associated
with a poorer prognosis [247]. Yet, another study with fecal samples showed higher IL-13
levels in 20 CRC patients compared to 20 healthy individuals [248]. IL-13 enhances the
expression of EMT-promoting factor ZEB1 with a positive correlation between IL-13Rα1 and
ZEB1 at mRNA levels in human CRC samples. Hence, the IL-13/IL-13Rα1/STAT6/ZEB1
pathway plays a critical role in promoting EMT and CRC aggressiveness [249]. Reports
showed that IL-13R is involved in the local metastases process of colorectal cancer, while
expression of IL-13 has an impact on survival. These interleukins and their receptors may
become attractive targets for the treatment of colorectal cancer. [244]. Both expression level
of IL-13Rα2 and IL-13Rα2-mediated signaling has been reported to cause cell survival,
tumor proliferation, tumor progression, invasion, and metastasis [250].

5.10. Interleukin-4

Interleukin-4 (IL-4) is an anti-inflammatory and immunomodulatory cytokine that
promotes cancer-directed immune surveillance [244]. IL-4R is expressed in human gastric
cancer cell lines, such as CRL1739, and its expression contributes to local metastasis in
colorectal cancer, making it an attractive target for CRC therapy [244]. IL-4 and IL-13 are
cytokines that are structurally and functionally related, sharing common receptor subunits.
They regulate immune responses and play a role in various human cancer pathogenesis,
chemosensitivity, and prognosis [245–247]. The T allele of IL-4 rs2070874 is associated with
a higher risk of gastrointestinal cancer [248]. IL-14 activates tumor-associated macrophages
and suppressor cells containing tumor-promoting functions [251]. IL-4 is involved in the
promotion of epithelial-to-mesenchymal transition (EMT) in CRC [146], while it inhibits
the growth of GC cells, and its growth inhibitory effects are positively related to IL-4R
expression in cell lines [252]. Moreover, IL-4 promotes EMT in CRC cell lines “HCT 116”
and “RKO” through the STAT6 pathway [146].

5.11. Interleukin-8

Interleukin-8 (IL-8) is a chemokine that belongs to the CXC cytokine family and is
markedly upregulated in colorectal cancer (CRC), contributing to enhanced invasion, tumor
growth, and metastasis [253,254]. IL-8 has diverse biological actions, including promoting
inflammation, infectious diseases, invasion, migration, angiogenesis, and proliferation [255].
Serum IL-8 levels are a promising biomarker for detecting CRC and identifying high-risk
patients [256]. IL-8 induces CRC cell migration and proliferation through the ADAM-
dependent pathway and disintegrin, where heparin-binding epidermal growth factor (EGF)
acts as a major ligand [257]. IL-8 has a multifunctional role in CRC progression, including
enhancing the survival of cancer cells, promoting tumor cell proliferation, and regulating
adhesion and invasion [258–260]. Excessive expression of IL-8 in the cancer microenviron-
ment promotes colon cancer growth and metastasis, but the absence of its receptor CXCR2
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prevents cell growth [261]. The autocrine properties of IL-8/CXCR2-mediated activation
facilitate the intrinsic mechanism of tumor cells to avoid stress-induced apoptosis [262].
Increased plasma levels of IL-8 are associated with a single-nucleotide polymorphism (SNP)
in IL-8 at 251 bp upstream [263], with the IL-8T–251A polymorphism being individually
associated with tumor reappearance risk [264]. IL-8 also regulates chemosensitivity and
angiogenesis (in vitro and in vivo) in models of colon cancer [265]. Stage IV CRC shows
almost 10-fold higher serum levels of IL-8 than normal individuals [265]. Enhanced serum
expression of IL-8 is also found in liver and lung tissue damage along with metastatic
CRC [265], suggesting that the systemic increase in IL-8 can be more important for prog-
nosis than the local and cancer cell-derived IL-8 levels. IL-8 is highly expressed in CRC
tissues but is differentially produced by tumor components depending on the genetic back-
ground of CRC. As IL-8 is a strong prognostic factor in CRC, it may be used for prognostic
assessment and tailoring of therapeutic strategies in individual CRC patients [266].

5.12. Interleukin-11

Interleukin-11 (IL-11) belongs to the IL-6 family and has a wide range of functions, in-
cluding hematopoiesis, bone development, tissue repair, and tumor development [267,268].
In some cancer cells, the IL-11 receptor (IL-11R) has been identified, which contains IL-
11Rα1. When bound to IL-11 and gp130, this receptor transmits signals to the nucleus
through Janus kinase (JAK) activation [269,270]. JAKs subsequently phosphorylate STAT3,
which then enters the nucleus and activates the transcription of numerous target genes
involved in the suppression of cell proliferation and apoptosis [158,271]. IL-11 produc-
tion is regulated by various cytokines, such as TGFβ, IL-1β, IL-17A, and IL-22 [272–275].
A human study has suggested that a polymorphism of the IL-11 gene is linked to an in-
creased susceptibility to ulcerative colitis (UC) in patients [276]. While mild UC patient’s
exhibit increased IL-11 expression, severe UC patients show a decrease in expression [277].
A study using a human cancer database found that genes enriched in IL-11+ fibroblasts
were elevated in human colorectal cancer, and the high expressions of several of these
genes correlated with a reduced disease-free survival rate in colorectal cancer patients [278].
Previous studies have demonstrated that IL-11+ cells are derived from stromal or epithelial
cells [53,158]. There is substantial evidence that IL-11 regulates tumor progression, cellular
growth, and differentiation. While IL-11 has been suggested to become a therapeutically
important molecule in the supportive care of cancer patients receiving chemotherapy [278],
the study indicates that IL-11 may upregulate colorectal carcinoma cell growth and/or
invasion, necessitating cautious attention to the therapeutic use of IL-11 [279]. Table 3
contains detailed description of interleukin families involved in CRC and their potential
therapeutic strategies.

Table 3. Interleukin families in colorectal cancer.

Interleukin
Family Receptors Cytokine Potential Effect in CRC Therapeutic Strategy Reference

IL-1R1
IL-1R2 IL-1α

Metastasis promotion with
chemosensitivity. Promotes

antitumor immunity and
carcinogenesis (inflammatory)

Therapeutic
neutralization in order
to tackle severe illness

in clinical trials

[102,139,140,280]

IL-2R1
IL-1R2
ILR3

sIL-IR2
sIL-IR3

IL-1β

Proliferation of cancer cells of
colon and promotion of

tumorigenesis. Altering the
tumor microenvironment

Therapeutic
neutralization to
manage cytokine
release syndrome

(CRS) in clotting time
and the prevention of

cancer

[102,140,141]
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Table 3. Cont.

Interleukin
Family Receptors Cytokine Potential Effect in CRC Therapeutic Strategy Reference

IL-1 super
family

IL-1R4
(ST2) IL-33

Protumor, maintenance of
intestinal microbiota, tumor

microenvironment change, TH2
polarization, Treg cell function,

promotion of
Angiogenesis and enhancement

of colon cancer cell stemness,
maintain intestinal microbiota.

Preclinical
neutralization [15,281–284]

IL-18
subfamily

IL-1R5–IL-1R7
IL-18BP
IL-1R5

(IL-18Rα
IL-18Rβ)

IL-18

Antitumor, activates lymphocytes
to produce IFN-γ, improve the

integrity of intestinal barrier and
induces apoptosis to

act on NK cells

Preclinical engineered
rIL-18 or by combined
with activated clotting

time, hindered by
IL-18BP

[140,285]

IL-1R8–IL-1R5 IL-37
Antitumor attributes, inhibit the
colon cancer cell development by

stopping β-catenin.
Not explored [135,286]

IL-1R6 IL-36α Antitumor [287]

IL-36
subfamily IL-1R6 IL-36γ

Antitumor, inflammatory
immune infiltrates promotion,

promote inflammation (TH1-type)
inhibited by IL-36Ra

Preclinical rIL-36γ as
an alternative to IL-1 [287]

IL-38 IL-1R6–IL-
1R9 Immunosuppressive Not explored [288,289]

IL-2Rα, IL-
2Rβ/IL-2Rγ,
IL-2Rα/IL-

2Rβ/IL-2Rγ
sIL-2RαIL-

2/IL-15Rβ–γc
IL-2Rα–IL-

2/IL-15Rβ–γc

IL-2

Antitumor, NK and T cell growth
factor, inhibit T cell responses by
maintaining Treg cells and AICD

induction

rIL-2 approved for
monotherapy.

Engineered to avoid
side effects and to be

used in ACT

[147,148,290]

Type
(IL-4Rα/γc)

and Type
(IL-4Rα/IL-

13Rα1)

IL-4

Promote
epithelial-to-mesenchymal

transition (EMT), metastasis and
invasion. Promotes inflammation
of TH2-type and polarization of

TH9. Promotes cancer cell growth
upon overexpression of IL-4R.

IL-4R- targeting to
bear cancer cells and

block signaling.
Antitumor TH9 cells
production for ACT

[146,291]

IL-2 family IL-7R
(IL-7Rα/γc) IL-7

Metastasis promotion
Antitumoural: NK growth factor

and T cell production

rIL-7 in combination
with interleukins or

ACT
[145,292,293]

IL-9R
(IL-9Rα/γc) IL-9 Antitumor action

Pleiotropic
Preclinical TH9 cells in

ACT [15,109,294]

IL-15R
(IL-15Rα/IL-

15Rβ/γc)
IL-15

Proliferation and angiogenesis
inhibition, Antitumor activity by

activating lymphocytes to
produce IFN γ,

Promote apoptosis

rIL-15 or analogues in
combination with

interleukins or ACT
[295,296]

IL-21R–γc
heterodimers
of IL-21R and

γc

IL-21 Enhances cytotoxicity of CTLs,
Antitumor activity

Combination therapies
with rIL-21 in clinical

trials
[296]
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Table 3. Cont.

Interleukin
Family Receptors Cytokine Potential Effect in CRC Therapeutic Strategy Reference

IL-3 family IL-3Rα–βc IL-3 Promotes malignancy as a
haematopoietic factor

Target CD123-bearing
cells by fused to toxins [297–299]

IL-6 family

gp130 IL-6R
IL-6Rα–gp130

(classic)
sIL-6Rα–gp130

(trans)

IL-6

Mitosis promotion, metastasis,
proliferation, making the

microenvironment for metastasis,
activates tumor outgrowth and

carcinogenesis, mediates cytokine
release syndrome (CRS), Cachexia

promotion

Neutralization to
manage CRS in ACT,

cachexia
[300–303]

gp130 IL-11Ra
IL-11Rα–gp130

(classic) sIL-
11Rα–gp130

(trans)

IL-11

Proliferation of CRC
Promotes inflammation by

inducing carcinogenesis and
cancer progression

Preclinical
neutralization and

gp130 common
receptor blockade

[158,304]

IL-31Rα–
OSMRβ IL-31 TH2-type cytokine, evidently

tumorigenic Unexplored [287]

IL-10 family IL-10RA and
IL-10RB IL-10 Promotes cytotoxicity, inhibits

antitumor responses
rIL-10 to increase

cytotoxicity in trials [163,165,305,306]

IL-10RB and
IL-22R

/IL-22BP
IL-22

Promote tumorigenesis,
antiapoptosis and cell

proliferation
Peritumoral: promotion of

carcinoma progression

Preclinical
neutralization [114,306–308]

IL-20Rα–IL-
20RβIL-

22Rα1–IL-
20Rβ

IL-24 Induces autophagy of cancer and
apoptosis

Preclinical rIL-24
combined with
oncolytic virus

[309,310]

IL-20Rα–IL-
10Rβ IL-26 Pro-tumoral through TH17 cells

and neutrophils
Preclinical

neutralization [311,312]

IL-12Rβ1–IL-
12Rβ2 IL-12

Antitumoral: the main driver of
TH1-type immunity, amplification

and initiation of production

Engineered or
combined with other
interleukins in trials

[286,313]

IL-12 family IL-23R–IL-
12Rβ1 IL-23

Mainly pro-tumoral: direct and
indirect effect via TH17 cells and

TH22 cells

Neutralization in trials,
enhances CAR T cell

cytotoxicity
[314,315]

IL-27Rα IL-27 and
IL-30

Pleiotropic: induces cytotoxicity
and NK cell yet enhances T cell

and Treg cell activity

Neutralization and
engineered rIL-27 in

trials
[316–319]

IL-12Rβ2–
gp130gp130–

gp130IL-27Rα–
IL-12Rβ2

IL-35
Treg cell-mediated suppression of
T cell responses and promotion of

metastatic colonization

Preclinical
neutralization with

checkpoint inhibitors
and other therapies

[320,321]

IL-17 family IL-17RA–IL-
17RC IL-17A/F

Cell cycle progression and
angiogenesis, facilitate the

development indirectly and
change the tissue environment

and microbiota of CRC

Neutralization in
clinical trials [169,322]

IL-17RIL-17RB IL-17b Carcinogenesis,
immunosuppression, EMT [170,323]
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Table 3. Cont.

Interleukin
Family Receptors Cytokine Potential Effect in CRC Therapeutic Strategy Reference

IL-17RA–IL-
17RE IL-17c Mostly pro-tumoral, but

antitumoral properties Not explored [324]

Unknown IL-17 D [325]

IL-17R IL-17e [170]

IL-17RA–IL-
17RB IL-25

IL-17R IL-17f Tumor suppression effect possibly
by inhibiting tumor angiogenesis [326]

IFN-γ family

IL-28A and
IL-28B

IL-28Rα–IL-
10Rβ

IL-28Rα
IL-10Rβ

IL-29

Antitumoral: induces apoptosis
of malignant cells

Preclinical gene
therapy using IL-28

and IL-29
[327]

CXCR1,
CXCR2ACKR1/DARCIL-8 Attracts neutrophils and mediates

the suppressive environment

Therapeutic
neutralization in

clinical trials
[328]

IL-13Rα1–IL-
4RαIL-13Rα2 TH2-type cytokine Targeting or blocking

IL-13R [291]

IL-14α and
IL-14β IL-14R Growth factor in B cell and in

lymphoma Not explored [329]

CD4 IL-16 Pro-tumoral: proliferation of
lymphoma and chemoattractant

Scarce preclinical
evidence [330]

Other
interleukins Unknown IL-32 Pleiotropic in action but depends

on cancer type and isoform.
Preclinical antitumor
effects in combination [331]

CSF1R IL-34
Pro-tumoral: immune

suppression, cancer progression,
and resistance of therapy

Preclinical
neutralization to

lessen the pro-tumor
effects

[332,333]

6. Discussion

Despite significant advances in treatment, mortality from colorectal cancer remains
high, and 40–50% of patients eventually die due to the disease. The most significant
impact on its incidence and mortality will come from extensive population screening [334].
Colorectal cancer is a complex and diverse group of disorders at the molecular level,
involving signaling pathways with different patterns of genetic mutations [335]. Epigenetic
modifications cause the progression of the disease along with the responses to specific
therapies. As it is caused by the activation of multiple signaling pathways and cannot be
targeted with a single treatment, combinations of conventional therapies with advanced
inhibitors are immediately needed to target dysregulated pathways. It has been extensively
recognized that immune system dysfunction, including abnormally expressed cytokines,
is strongly associated with the progression and pathogenesis of colorectal cancer [336].
Diagnostic tests have many limitations. For example, fecal blood test screening suffers from
low sensitivity for polyps, and colonoscopy is invasive [337,338].

The most important feature of activated immune cells is the production and release
of growth factors and cytokines that modulate the inflammatory conditions [339–346].
Cancer-associated inflammation is a determining factor in disease progression and survival
in CRC, contributing to invasion, tumor angiogenesis, and metastatic spread [347,348].
CRC biomarkers can be divided into two groups based on clinical criteria: “diagnostic
biomarkers” for the detection or confirmation of the presence of the disease, and “clin-
ical biomarkers” for the prediction of patients’ response to a specific treatment or their
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prognosis [349]. Although many novel therapeutic improvements have been anticipated
to treat colon cancer, the survival rate is still unsatisfactory due to metastasis and tumor
reappearance [44]. Molecular biomarkers are being explored for implementation in clinical
practice in this period of precision cancer medicine [350]. These prognostic biomarkers are
desired to assist patients and predict survival. A deeper understanding of CRC is required,
and the efficiency of targeted therapies and the development of more efficient biomarkers
provide an encouraging prospect for the future management of CRC [349]. We believe that
with the discovery of more novel targeted therapeutics, the disease burden of CRC can
be decreased in the future [351]. However, there have been only a few studies on point-
of-care cytokine detection due to challenges such as low concentration, complex secretion
process, thermal instability, and others [29,74]. Yet, studies have investigated the use of
ILs as biomarkers for monitoring the response to treatment in CRC patients [12,352,353].
These studies demonstrate the potential of ILs as biomarkers for the diagnosis of CRC
and these findings are based on studies that have been conducted on a small number of
patients and more research is needed to confirm the accuracy of these results in larger
patient populations.

Finding more effective prognostic markers and therapeutic targets for patients with ad-
vanced colorectal cancer [354] is important because the majority of patients with advanced
colon cancer cannot undergo surgery. Subsequently, due to the widespread adoption of
CRC screening in the population, many patients would be diagnosed at the preclinical stage
through screening [355]. Given the rise in treatment costs, screening for colorectal cancer is
a cost-saving tool in many countries [356]. Various genomic projects have acknowledged
new potential molecular markers and targets for colorectal cancer to guide more specific
treatments for patients [357]. Oncogenes involved in CRC are mainly well characterized;
nevertheless, the effects of additional environmental factors in this disease are undefined.
Molecular biomarkers have been investigated for the last 20 years with promising results.
However, many drawbacks affect the consistency of the conclusions [358–361]. More
detailed research is needed on the relationship between diet, microbiota, and CRC.

There is high heterogeneity and complexity in CRC; therefore, standard treatments
including radiation/chemotherapy are only effective in only a few patient populations.
Tumors can also have various core genetic causes which makes the protein expressions
different in each patient along with their responses to generic treatments [362]. This intrinsic
changeability of cancer lends to the growing field of precision and personalized medicine
(PPM). Many steps are being taken in order to attain PPM data to distinguish molecular
differences between tumors. These include “immunotherapy” to utilize the patient’s own
immunity against cancer, containing cytokines, vaccines, checkpoint inhibitors, monoclonal
antibodies (mAbs), and hematopoietic stem cell transplants (HSCTs) [363]. There is a
growing category of PPM products known as “companion diagnostics (CDx)”, molecular
assays that assess proteins, genes, or specific mutation levels to diagnose and suggest a
specific and effective therapy for an individual’s condition [364].

7. Future Perspective

Extensive population screening is expected to have the most significant impact on col-
orectal cancer incidence and mortality. By developing and implementing new, more specific
and sensitive biomarkers, clinicians can improve diagnostic strategies and detect CRC cases
early in the disease, thereby improving the prognosis of thousands of patients. Several new
potential molecular targets and markers for colorectal cancer have been identified through
various genomic projects, providing guidance for more specific treatments. Although most
of the major oncogenes involved in CRC are well characterized, the effects of additional
environmental factors in this disease are still undefined. While molecular biomarker studies
over the past two decades have shown promising results, some drawbacks limit the reliabil-
ity of the conclusions. Therefore, further research is needed to investigate the relationship
between diet, microbiota, and CRC in greater detail.
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8. Conclusions

Previously, scientists have reported significant information on the various genes and
proteins that contribute to cancer. Mutated genes and the identification of related environ-
mental factors are key discoveries. Using molecular methods, important gene expressions
can be determined and used as novel biomarkers to reduce cancer complications and
treatment. Further studies are required to explore the pathways and mechanisms involved
in the expressions of immunological biomarkers and their involvement in the development
and progression of colorectal cancer. Detecting cytokines at the required detection limit
for reliable results is challenging, but many efforts have been made to develop cytokine
assays with more sensitivity. Research into cytokine quantification is still developing
to find effective solutions for the accurate and real-time detection of multiple cytokines
in vivo. The effects of promising targets on different immune cell populations are still
poorly understood. Therefore, improving antitumor responses and suppressing immune
cells that support tumor growth are the prospects for cytokine-based cancer treatment.
However, identifying all environmental factors, pivotal genes, immune responses, and
cytokine release at the cancer stage provides a comprehensive map for further efforts to
reduce cancer in the future.
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52. Terzić, J.; Grivennikov, S.; Karin, E.; Karin. M. Inflammation and colon cancer. Gastroenterology 2010, 138, 2101–2114.e5. [CrossRef]
53. Calon, A.; Espinet, E.; Palomo-Ponce, S.; Tauriello, D.V.; Iglesias, M.; Céspedes, M.V. Dependency of colorectal cancer on a

TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 2012, 22, 571–584. [CrossRef] [PubMed]
54. Guo, S.; Deng, C.X. Effect of Stromal Cells in Tumor Microenvironment on Metastasis Initiation. Int. J. Biol. Sci. 2018, 14,

2083–2093. [CrossRef] [PubMed]
55. Nguyen, L.H.; Goel, A.; Chung, D.C. Pathways of Colorectal Carcinogenesis. Gastroenterology 2020, 158, 291–302. [CrossRef]
56. Pino, M.S.; Chung, D.C. The chromosomal instability pathway in colon cancer. Gastroenterology 2010, 138, 2059–2072. [CrossRef]
57. Powell, D.W.; Adegboyega, P.A.; Di Mari, J.F.; Mifflin, R.C. Epithelial cells and their neighbors I. Role of intestinal myofibroblasts

in development repair and cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 289, G2–G7. [CrossRef]
58. Koliaraki, V.; Pallangyo, C.K.; Greten, F.R.; Kollias, G. Mesenchymal Cells in Colon Cancer. Gastroenterology 2017, 152, 964–979.

[CrossRef]
59. Kryczek, I.; Lin, Y.; Nagarsheth, N.; Peng, D.; Zhao, L.; Zhao, E.; Vatan, L.; Szeliga, W.; Dou, Y.; Owens, S.; et al. IL-22(+) CD4(+) T

cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L.
Immunity 2014, 40, 772–784. [CrossRef]

60. Todaro, M.; Gaggianesi, M.; Catalano, V.; Benfante, A.; Iovino, F.; Biffoni, M.; Apuzzo, T.; Sperduti, I.; Volpe, S.; Cocorullo, G.;
et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 2014,
14, 342–356. [CrossRef]

61. Lotti, F.; Jarrar, A.M.; Pai, R.K.; Hitomi, M.; Lathia, J.; Mace, A.; Rich, J.N. Chemotherapy activates cancer-associated fibroblasts to
maintain colorectal cancer-initiating cells by IL-17A. J. Exp. Med. 2013, 210, 2851–2872. [CrossRef] [PubMed]

62. Chen, K.; Liu, Q.; Tsang, L.L.; Ye, Q.; Chan, H.C.; Sun, Y.; Jiang, X. Human MSCs promotes colorectal cancer epithelial–
mesenchymal transition and progression via CCL5/β-catenin/Slug pathway. Cell Death Dis. 2017, 8, e2819. [CrossRef] [PubMed]

63. Vermeulen, L.; De Sousa, E.M.F.; van der Heijden, M.; Cameron, K.; de Jong, J.H.; Borovski, T.; Tuynman, J.B.; Todaro, M.; Merz,
C.; Rodermond, H.; et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol.
2010, 12, 468–476. [CrossRef] [PubMed]

64. Schulte, W.; Jürgen, B.; Richard, B. Cytokines in sepsis: Potent immunoregulators and potential therapeutic targets—An updated
view. Mediat. Inflamm. 2013, 2013, 165974. [CrossRef] [PubMed]

65. Sprague, A.H.; Khalil, R.A. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem. Pharmacol. 2009, 78,
539–552. [CrossRef] [PubMed]

66. Rea, I.M.; Gibson, D.S.; McGilligan, V.; McNerlan, S.E. Alexander HD, Ross OA. Age and Age-Related Diseases: Role of
Inflammation Triggers and Cytokines. Front. Immunol. 2018, 9, 586. [CrossRef]
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