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Abstract: Fibrotic pulmonary sarcoidosis represents a distinct and relatively uncommon manifestation
within the spectrum of sarcoidosis and has substantial morbidity and mortality. Due to the scarcity of
research focused on this specific disease subtype, our current understanding of pathogenesis and
optimal management remains constrained. This knowledge gap underscores the need for further
investigation into areas such as targeted therapies, lung transplantation, and quality of life of patients
with fibrotic pulmonary sarcoidosis. The primary aim of this review is to discuss recent developments
within the realm of fibrotic pulmonary sarcoidosis to foster a more comprehensive understanding of
the underlying mechanisms, prognosis, and potential treatment modalities.

Keywords: pulmonary fibrosis; advanced pulmonary sarcoidosis; sarcoidosis; fibrotic pulmonary
sarcoidosis

1. Background

Sarcoidosis is a complex multisystem inflammatory disease characterized by the for-
mation of noncaseating granulomas that predominantly affects the respiratory system [1–3].
While over 60% of sarcoidosis patients have resolution of disease in 2–5 years, the remaining
experience chronic disease, including fibrotic change [4]. Sarcoidosis generally exhibits
notable demographic disparities, with the highest incidence and prevalence seen in Black
patients, particularly among females [5]. A population-based study in the United States
found that African Americans with sarcoidosis had a 20% higher rate of pulmonary fibrosis,
and African-American women with sarcoidosis had a higher mortality rate at a younger
age when contrasted with their Caucasian counterparts [6].

The Scadding staging system is used to assess radiographic stages of pulmonary
sarcoidosis, with stage 4 denoting advanced fibrotic changes [7]. Approximately 5.4–19.9%
of patients may present with fibrotic disease initially [7,8]. Patients with chronic disease
experience increased breathlessness and decreased quality of life as radiographic disease
worsens [9]. Advanced pulmonary sarcoidosis (APS) is used to denote the forms of sar-
coidosis that cause significant risk of loss of lung function, respiratory failure, or death, and
include advanced fibrosis and associated complications as well as pulmonary hyperten-
sion [10,11]. Although mortality in sarcoidosis is reported to be less than 5%, mortality in
APS ranges from 11–21% [4,11–15]. Most of the poor outcomes attributed to APS are due to
fibrotic pulmonary sarcoidosis, an entity that needs to be understood better. In this article,
we aim to review recent advances in pathogenesis, clinical presentation, evaluation, and
management of fibrotic pulmonary sarcoidosis.

2. Pathobiology
2.1. Basic Pathophysiology: An Interplay between Genetic and Environmental Factors

The pathobiology underlying sarcoidosis and its development into fibrotic disease
remains a subject of ongoing research. Sarcoidosis is largely believed to result from a
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culmination of abnormal immunologic responses following antigen exposure (Figure 1) in
a genetically predisposed host. Air pollutants, infectious agents such as mycobacteria and
Cutibacterium acnes, and exposure to inorganic dust such as silica have been implicated in
pulmonary sarcoidosis [16–19]. Genetic factors have been implicated in the susceptibility
and manifestation of the disease, such as HLA-DRB1 on chromosome 6, 5q11.2, 1p22, 3p21-
14, 11p15, and 17q21 [5,20–22]. Specific alleles of HLA-DRB1 on chromosome 6 may have
race-specific associations with varying phenotypes and confer protective effects against
disease, while others may be associated with increased disease severity [23,24].
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chromosome 15q13-q15 encodes a glycoprotein, gremlin, that inhibits bone morphogenic 
proteins (BMPs) from the TGF-B family [25]. TGF-B, a cytokine secreted by macrophages, 
T-lymphocytes, and bronchial epithelial cells, promotes extracellular matrix accumulation 
and inhibits matrix degradation [26]. A study examining GREM1 variations among sar-
coidosis patients with and without fibrosis on chest radiography revealed that carriers of 
the GREM1 CC genotype exhibited elevated gremlin levels and were at a 6.4-fold higher 
risk of developing fibrosis [27]. Genetic variations of TGF-B3 are notably greater in fibrotic 
patients, and may be associated with the development of pulmonary fibrosis in sarcoido-
sis [28].  

Fibrotic pulmonary sarcoidosis has also been linked to specific variants, such as 
caspase recruitment domain 15 (CARD15) 2104T (702W), CARD15 1761G (587R), and C-

Figure 1. Drivers that may be involved in fibrotic pulmonary sarcoidosis. GREM1, gremlin 1; TLR3,
toll-like receptor 3; ANXA11, annexin 11; Tregs, T-regulatory cells; Th17, T-helper 17 cells; mTOR,
mammalian target of rapamycin complex 1; HIF1α, hypoxia inducible factor 1; CCL-18, C-C motif
chemokine ligand 18.

2.2. Evolving Knowledge of Pathophysiology in Fibrotic Pulmonary Sarcoidosis

Several genes have been linked to the pathogenesis of fibrotic disease. GREM1 on
chromosome 15q13-q15 encodes a glycoprotein, gremlin, that inhibits bone morphogenic
proteins (BMPs) from the TGF-B family [25]. TGF-B, a cytokine secreted by macrophages, T-
lymphocytes, and bronchial epithelial cells, promotes extracellular matrix accumulation and
inhibits matrix degradation [26]. A study examining GREM1 variations among sarcoidosis
patients with and without fibrosis on chest radiography revealed that carriers of the
GREM1 CC genotype exhibited elevated gremlin levels and were at a 6.4-fold higher risk of
developing fibrosis [27]. Genetic variations of TGF-B3 are notably greater in fibrotic patients,
and may be associated with the development of pulmonary fibrosis in sarcoidosis [28].

Fibrotic pulmonary sarcoidosis has also been linked to specific variants, such as
caspase recruitment domain 15 (CARD15) 2104T (702W), CARD15 1761G (587R), and C-C
chemokine receptor 5 (CCR-5) [29]. Additionally, a promoter variation in prostaglandin-
endoperoxide synthase 2 (PTGS2), −765G>C, has been identified as another potential risk
factor for fibrotic disease in sarcoidosis. PTGS2 serves as a regulatory enzyme responsible
for synthesizing prostaglandin E2, which is known for its antifibrotic properties. Carriers
of the −765C allele were found to exhibit increased susceptibility to sarcoidosis, poorer
prognosis, and an increased predisposition to fibrotic disease [30].
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The pathogenesis of fibrotic pulmonary sarcoidosis remains unclear, but current inves-
tigations have identified several potential mechanisms that could elucidate both the fibrotic
and inflammatory reactions observed. Pulmonary sarcoidosis is a granulomatous disease
characterized by accumulation of lymphocytes and macrophages, inducing granuloma
formation. An unknown antigen is first presented to CD4+ T-lymphocytes that trigger T-
helper 17 (Th17)-related cytokines, interleukin-17A (IL-17A), regulatory T-cells, and tumor
necrosis factor (TNF), a proinflammatory cytokine, to produce granulomas [31]. Granulo-
mas may spontaneously resolve or persist, and may progress to fibrosis via high levels of
TNF and mononuclear phagocytes (MNPs) and activation of fibroblasts, myofibroblasts,
and collagen formation [32].

Chronic fibrosis is thought to be the culmination of increased Th17 cells and primed
monocyte-derived macrophages (toll-like receptor-3 (TLR3) polymorphism, type 1 inter-
feron signaling) responding disproportionately to an insult [33]. In particular, monomor-
phisms in TLR3 have been implicated in fibrotic pulmonary sarcoidosis, resulting in reduced
TLR3 function in innate immune responses and reduced apoptosis of fibroblasts [33,34].
This response drives production of chemokine ligand 18 (CCL-18), which induces fibrogene-
sis [33]. CCL-18 is associated with fibrotic pathogenesis in IPF, with increased mortality and
fibrotic burden on imaging [35,36]. Another protein, annexin A11 (ANXA11), is a calcium-
dependent protein involved in innate immunity and cell apoptosis. A small study found a
correlation between a minor allele in the ANXA11 gene and African Americans with fibrotic
pulmonary sarcoidosis, and suggested ANXA11 polymorphism may lead to persistence of
Th1 and Th17 cells, resistance to apoptosis, and persistence of granuloma [24,33].

Increased production of CCL-18 from macrophages attracts activated CD4 T-cells and
increases transforming growth factor-beta (TGF-β) secretion, enhancing Th17-mediated
inflammation. Th17 expresses IL-17A, a proinflammatory cytokine that drives fibrosis and
causes corticosteroid resistance [37]. One study found higher bronchoalveolar lavage (BAL)
IL-17 levels in patients with pulmonary sarcoidosis without disease resolution, but this
was not studied in patients with or without fibrotic disease [38]. Another acute phase
reactant is serum amyloid antigen (SAA), which has been shown to induce Th17 response,
chronic inflammation, and fibrosis [39]. It can stimulate the production of Th1-mediated
granulomatous inflammation via TNG, IL-10, and IL-18, and has been shown to correlate
positively with fibrotic disease in chronic fibrotic sarcoidosis [40,41].

Regulatory T-cells (Tregs) are a specialized subset of CD4+ T-cells involved in im-
munosuppression via production of inhibitory cytokines such as interleukin-10 (IL-10),
inhibitory receptors such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and
deplete interleukin-2 (IL-2) [42]. Prior studies have found lower numbers of Tregs in BAL
and Treg dysfunction in patients with active sarcoidosis [43–45]. In both active and fibrotic
sarcoidosis patients compared with IPF patients, a recent study found an imbalance of
Tregs and Th17.1 cells in peripheral blood and BAL fluid, with lower frequency of Tregs but
high Th17.1 in BAL and higher frequency of Tregs but low Th17.1 in peripheral blood [46].
The authors suggest that an increased proportion of circulating Tregs was associated with
fibrotic disease on radiography, and the lung microenvironment may affect immunological
pathogenesis of sarcoidosis [46].

Another pathway that may contribute to granuloma formation and Th17 differentia-
tion is a dysregulation of the mammalian target of rapamycin (mTOR) pathway. mTOR
regulates autophagy and growth in response to stressors [47]. Defects in mTOR-related
pathways may inactivate autophagy, decrease pathogen clearance, and cause granuloma-
tous formation and persistence [48]. In fibrotic pulmonary sarcoidosis, mTOR complex
1 (mTORC1) remains upregulated, impairing antigen clearance and promoting excess
granulomatous formation [33,49,50].

Recently, the hypoxia-induced factor 1-alpha (HIF1α) pathway has garnered attention.
A recent investigation found that when exposed to hypoxic conditions, monocyte-derived
macrophages increase their proinflammatory response and reduce antigen presentation,
leading to a reduction in T-cell response [51]. Through the secretion of profibrotic factor
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plasminogen activator inhibitor-1 (PAI-1), this process may promote development and
persistence of granulomas in active sarcoidosis, reduce fibrinolytic activity, and ultimately
contribute to the development of fibrotic disease [51].

3. Clinical Manifestations

Prior studies have found that the average age of presentation with fibrotic pulmonary
sarcoidosis is in the fourth decade of life [7,12]. Up to 20% of patients can present with
fibrotic disease at initial presentation, but chronic disease may develop in 20–25% of
patients with a prior diagnosis of sarcoidosis [7,52,53]. Clinical symptoms are nonspecific
and include dyspnea (80%), cough (51.4%), hemoptysis (2.8%), sputum production (18.3%),
crackles (28.2%), digital clubbing (6.3%), and wheezing (5.6%) [12].

3.1. Imaging

On chest radiography (CXR), Scadding stage 4 is defined by the presence of pulmonary
fibrosis, as mentioned above (Figure 2) [7]. Patients may have upper-lobe-predominant linear
opacities projecting from the hilum with dilated airways [54]. High-resolution computed
tomography (HRCT) gives a more comprehensive understanding of anatomic changes. Three
major patterns of fibrotic sarcoidosis can be identified: central bronchial distortion, peripheral
upper zone honeycombing, and diffuse hilar linear opacities (Figure 2) [11,55,56]. Fibrocystic
opacities may track along the airways from the hilum to peribronchovascular and fissural
regions [11]. HRCT may show subpleural honeycombing, fibrocystic lesions larger than
traditional honeycombing, paracicatricial emphysema, and development of mycetomas [11,57].
Granulomatous infiltration of the airways will cause airway distortion, airway angulation,
and diffuse wall thickening [7,56]. HRCT can also help screen for sarcoidosis-associated
pulmonary hypertension by using a ratio of main pulmonary artery diameter/ascending aorta
diameter (MPAD/AAD) greater than 1, evaluating for a dilated pulmonary artery greater
than 30 mm (Figure 2), and using a ratio of the diameter of the main pulmonary artery/body
surface area (MPA/BSA) greater than 16 [3,11,58].
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In the context of disease activity monitoring, a limited number of studies found that 
patients who exhibited reductions in SUVmax values following glucocorticoid therapy 
experienced lower rates of relapse, in contrast to individuals without reduction in SU-
Vmax, who notably had higher relapse rates (Figure 3) [65,66]. To date, there is no SU-
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Figure 2. Images of three patients with advanced pulmonary sarcoidosis: patient 1 with biapical
cavities and mycetoma (asterisk) on chest X-ray (A), large biapical bronchiectatic cavities (arrows)
on coronal image of CT chest (B), right apical mycetoma (asterisk) and extensive left-sided upper-
zone predominant fibrosis (arrow head) of anterior lung on axial image of CT chest (C); patient 2
with enlarged pulmonary artery diameter (45 mm) on axial image of CT chest (D); patient 3 with
bilateral irregular reticular and nodular fibrosis (arrow head) on coronal image of CT chest (E) with
air trapping (arrow) on axial image of CT chest (F).
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Fluorodeoxyglucose positron emission tomography integrated with computed to-
mography (FDG-PET/CT) in combination with cardiac MRI is predominantly used for
the diagnosis and management of cardiac sarcoidosis [3,59]. In pulmonary sarcoidosis,
FDG-PET/CT has exhibited a high sensitivity rate ranging between 94% and 100% in
identification of ongoing inflammatory processes (Figure 3) [60,61]. Few studies have
investigated its diagnostic use in pulmonary sarcoidosis [62–64]. One retrospective study
involving 95 patients, with 85% demonstrating signs of fibrotic disease, found that the
severity of pulmonary involvement as assessed by HRCT and lung function parameters was
associated with increased FDG uptake at a threshold standardized uptake value (SUVmax)
of greater than or equal to 2.5 [63]. Another study assessed the role of FDG-PET/CT in com-
parison with HRCT to identify sarcoidosis activity, and found a discordance rate of greater
than 50% between FDG uptake and pathologic changes on HRCT. The presence of active
nodal disease, active parenchymal changes, and disease recurrence in extrapulmonary
regions were additional findings noted on FDG-PET/CT not discernible on HRCT [64].
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In the context of disease activity monitoring, a limited number of studies found that
patients who exhibited reductions in SUVmax values following glucocorticoid therapy
experienced lower rates of relapse, in contrast to individuals without reduction in SUVmax,
who notably had higher relapse rates (Figure 3) [65,66]. To date, there is no SUVmax
threshold that is validated to denote disease activity or recommendations for use of FDG-
PET/CT in determining anti-inflammatory treatment for fibrotic pulmonary sarcoidosis.
Future studies are needed to determine optimal utility of FDG-PET/CT imaging in fibrotic
pulmonary sarcoidosis.

3.2. Pulmonary Function Testing

On pulmonary function testing (PFT), fibrotic sarcoidosis presents with varying de-
grees of gas-exchange, airflow-obstruction, ventilatory-restriction, and mixed defects [12].
One study found associations between HRCT anomalies and pulmonary function testing,
revealing a connection between restrictive defects and reduced diffusion capacity with
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interstitial fibrosis and subpleural honeycombing, while airflow obstruction correlated with
bronchial distortion. Linear opacities without septal changes were found to have the least
functional impairment [55]. Patients with fibrotic disease were shown to have a higher
prevalence of mixed ventilatory defects, lower diffusion capacity for carbon monoxide, and
higher mortality in another study [67]. A recent study characterizing different pulmonary
function phenotypes in sarcoidosis found that fibrocystic patterns on chest imaging (n = 22)
were more commonly seen in Black individuals, and patients with fibrocystic patterns had a
greater degree of restriction and mixed pulmonary function phenotypes than patients with
nonfibrotic pulmonary sarcoidosis [68]. The findings of this study emphasize that fibrotic
disease is linked to a higher prevalence of restrictive and mixed defects [68]. On 6-min
walk tests, individuals with fibrotic sarcoidosis may have reduced walk distance, which has
been associated with increased mortality, sarcoidosis-associated pulmonary hypertension,
reduced forced vital capacity, and exertional hypoxia [69,70].

3.3. Serum Biomarkers

Inflammatory biomarkers have been proposed as a method to monitor disease activity
and treatment response in pulmonary sarcoidosis. These biomarkers have not been studied
in the setting of fibrotic disease, and larger prospective studies are needed to assess clinical
utility. Nevertheless, research indicates promising results for a few of these biomarkers,
such as serum angiotensin-converting enzyme (ACE), human chitotriosidase, C-reactive
protein (CRP), and Krebs von den Lungen-6 (KL-6).

Serum ACE is a glycoprotein produced by alveolar macrophages that converts an-
giotensin I to angiotensin II in the renin-angiotensin pathway and degrades bradykinin.
Granulomas express alveolar macrophages, and serum ACE levels may reflect granulo-
matous burden [71]. ACE levels are currently the most frequently used laboratory testing
in sarcoidosis as a marker for disease activity, although they are neither sensitive nor
specific [12,72–74]. High serum ACE levels may be seen in patients with greater HRCT
abnormalities, including ground-glass opacities, interlobular septal thickening, nodularity,
and consolidation [75]. They may be used to monitor treatment effects in sarcoidosis
patients. An observational cohort study assessing treatment response with methotrexate
by measuring serum ACE and soluble IL-2 receptor (sIL-2R), a marker of T-cell activation,
found high baseline levels of ACE correlated with lung function improvement after treat-
ment; and decreases in ACE and sIL-2R after treatment correlated with improved lung
function, especially with change in DLCO [73]. In addition, T-helper type 1 cells secrete
IL-2 and bind to IL-2R, stimulating T-cell proliferation [76]. sIL-2R is a marker of T-cell
activation, whereas ACE reflects total body granulomas. In this study, ACE had a greater
correlation with lung function change after methotrexate therapy than sIL-2R [73]. CRP
is a proinflammatory acute phase reactant elevated in chronic sarcoidosis, and elevated
baseline values may correlate with disease severity, physiologic progression of disease, and
treatment response [77,78]. CRP may be useful in monitoring disease activity but requires
validation. Further research of serum biomarkers is needed on the clinical utility of these in
sarcoidosis in general as well as fibrotic pulmonary sarcoidosis.

4. Prognosis

The presence of fibrosis on high-resolution computed tomography (HRCT) scans indi-
cates a poorer prognosis, disease progression, and an elevated risk of mortality [13,55,58,79].
One study proposed a clinicoradiological staging system using HRCT patterns and com-
posite physiological indices (CPI, a weighted index of lung function variables) to determine
prognosis in pulmonary sarcoidosis [58]. The staging system was composed of CPI, main
pulmonary artery diameter to ascending aorta diameter ratio (MPAD/AAD), and fibrosis
threshold of ≥20% [58]. The staging system was found to be straightforward yet reliable for
identifying patients with increased risk of mortality [58]. The results further emphasized
that CPI was the strongest predictor of mortality [58].
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A prospective study in fibrotic pulmonary sarcoidosis evaluated the feasibility of
employing percent fibrosis on HRCT, reduced DLCO, or increased CPI score to predict a
clinal worsening event over an 18-month study period [80]. A clinical worsening event was
defined as death, lung transplant, or greater than absolute 10% drop in percent predicted
FVC [80]. Though the study was underpowered at 16 participants due to poor enrollment,
it found that individuals with at least 20% fibrosis on HRCT and DLCO less than 30%
predicted were more likely to experience a clinical worsening event [80].

In a recent study, HRCT features of fibrotic pulmonary sarcoidosis and its impact on
pulmonary function and survival were assessed [81]. The study found that the presence
of over 20% fibrosis and basal subpleural honeycombing were predictive of deteriorating
pulmonary function and worse survival in fibrotic pulmonary disease [81]. Moreover, the
researchers found that independent predictors of poor survival included basal subpleural
honeycombing, DLCO < 40%, and White race [81]. This is the first study to assess patterns
of fibrosis with mortality.

Associations between race and survival have been made by prior studies. As men-
tioned earlier, a United States population-based study found increased rates of pulmonary
hypertension and pulmonary fibrosis in African Americans, and a significantly dispropor-
tionate increase in mortality amongst young African-American women compared with
their Caucasian counterparts [6]. The recent finding of higher mortality in White race as
noted above was shown after controlling for extent of fibrosis, fibrotic pattern on HRCT,
presence or absence of sarcoidosis-associated pulmonary hypertension, age, and study
location. The uncertainty surrounding the relationship between race, sex, and mortality in
fibrotic pulmonary sarcoidosis underscores the need for additional research.

In a retrospective study conducted in France, individuals with fibrotic pulmonary
sarcoidosis displayed a mortality rate of 11.3% over an average follow-up period of
seven years [12]. Respiratory complications accounted for 75% of patient deaths, while
31.2% were attributed to pulmonary hypertension, and 25% were linked to chronic respira-
tory failure [12]. Other complications as contributory causes of death included extrapul-
monary cardiac involvement, immunosuppressive therapy, and aspergilloma infection [12].
On univariate analysis, the authors found New York Heart Association [82] (NYHA) func-
tional class, forced expiratory volume in 1 s (FEV1) below 63% predicted, forced vital
capacity (FVC) below 72% predicted, total lung capacity (TLC) below 74% predicted, diffu-
sion capacity of carbon monoxide (DLCO) below 58% predicted, room-air arterial oxygen
tension (PaO2) below 81 mmHg, and the presence of pulmonary hypertension exhibited a
significant association with increased risk of mortality [12].

5. Management

Management of fibrotic pulmonary sarcoidosis is challenging, largely due to the lack
of standardized therapy and variability in presentation and evolution of the disease and
needs long-term studies into treatment options. Treatment decisions are often guided by
clinical experience and expert opinion. In general, a comprehensive approach involves the
integration of various diagnostic tools, including serum biomarkers, PFT, 6MWT, imaging
studies, and echocardiography. These assessments can be used to monitor disease progres-
sion, identify exacerbations and new complications such as pulmonary hypertension, and
progressive respiratory failure. A personalized and multidisciplinary treatment strategy is
necessary to address the complexities of the disease, manage comorbidities, deliver sup-
portive care, and consider the possibility of lung transplantation (Figure 4). The next few
paragraphs cover the basics of management of patients with fibrotic pulmonary sarcoidosis,
but details can be found in corresponding sections of this series.
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5.1. Anti-Inflammatory Therapy

Anti-inflammatory agents may preserve or improve lung function, aid in symptom
management, and prevent progression of disease in certain patients with fibrotic pulmonary
sarcoidosis [12,83]. However, identifying which patients would benefit from treatment
remains uncertain. Due to a lack of evidence-based therapies in fibrotic pulmonary sar-
coidosis, the Delphi consensus and the ERS clinical practice guidelines on treatment of
pulmonary sarcoidosis have not focused on this subset [83,84]. Currently, anti-inflammatory
therapy in the setting of fibrotic pulmonary sarcoidosis is done in a case-by-case scenario.

In patients with acute or chronic disease, the primary method for managing inflam-
mation involves the use of glucocorticoids (prednisone 20–40 mg daily) as the initial
treatment [83,84]. As clinical symptoms resolve, glucocorticoids are rapidly tapered to
doses less than 10 mg or to the lowest effective dose. In cases where glucocorticoids are
unable to be tapered, the addition of antimetabolites with methotrexate or azathioprine
as second-line agents is considered [83–85]. In the context of progressive fibrotic disease,
prior use of methotrexate may pose a challenge by raising concerns about pulmonary
toxicity, necessitating a thorough evaluation of patients for potential adverse effects. If
feasible and without financial barriers, FDG-PET/CT may be useful in identifying areas
of inflammation. If unavailable, other disease-modifying agents may have to be chosen.
Anti-TNF-alpha agents such as infliximab can also be considered and have been shown
to improve or maintain FVC [86,87]. In certain situations with ongoing disease progres-
sion, repository corticotrophin injections, rituximab, and JAK inhibitors can be explored,
although a consensus is yet to be established [83]. The potential for adverse effects induced
by chronic glucocorticoids and chronic immunosuppressive agents requires frequent moni-
toring and vigilance in identifying drug-induced toxicities. Relapse after discontinuation
of therapy can occur, and patients require clinical monitoring. Use of anti-inflammatory
agents in the setting of fibrotic pulmonary sarcoidosis needs more evidence. While there
are multiple agents being studied in the management of pulmonary sarcoidosis, most
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of these studies exclude patients with fibrosis >20%. It would be intriguing to see how
these agents potentially impact the course of chronic pulmonary sarcoidosis and fibrotic
pulmonary sarcoidosis.

5.2. Sarcoidosis-Associated Bronchiectasis

Patients with advanced pulmonary sarcoidosis can develop granulomatous infiltration
of the airways, causing fibrotic changes with airway distortion and traction bronchiectasis.
Airway abnormalities, along with chronic inflammatory treatments and poor mucociliary
clearance, create optimal environments for infections and mycetomas [88–90].

5.3. Acute Pulmonary Exacerbations of Sarcoidosis

There is no consensus on the definition of acute exacerbations in sarcoidosis. Exacer-
bations have been described in the literature as new or worsening pulmonary symptoms
with a decline in FVC or FEV1 for greater than one month, and exclusion of alternative
causes [91,92]. Exacerbations may be related to bronchiectasis, infection, and impaired
immune response, and require treatment with antibiotics and/or glucocorticoids [88]. In
patients with fibrotic sarcoidosis, a small trial (n = 38) found that patients with greater than
two exacerbations who were treated with roflumilast, a phosphodiesterase-4 inhibitor, had
improved FEV1 in subsequent visits and quality of life than those treated with placebo [93].
A larger prospective trial confirming these results would provide valuable insights into the
efficacy of roflumilast and could help establish a more standardized approach in identifying
and managing acute exacerbations.

5.4. Infections

Infections such as aspergillus, mycobacteria, cryptococcus, nocardia, and histoplasma
can complicate clinical course and increase morbidity and mortality in patients with sar-
coidosis [94,95]. Mycetomas, particularly chronic pulmonary aspergillosis, have been
reported in 3–12% of patients with APS [96]. Though frequently asymptomatic, they can
cause life-threatening hemoptysis and may require long-term antifungal therapy, bronchial
artery embolization, and surgical resection [97].

5.5. Sarcoidosis-Associated Pulmonary Hypertension

Sarcoidosis-associated pulmonary hypertension (SAPH) is classified into World Health
Organization (WHO) group 5 and has been noted to be in 73.8% of patients with advanced
pulmonary sarcoidosis awaiting lung transplantation [98]. It is a major cause of morbidity
and mortality in APS and a predictor of lung transplant waitlist mortality [13,79,98,99]. Not
all pulmonary vasodilator therapies may be appropriate, and treatment decisions regarding
pulmonary vasodilator therapy should be made by experts with clinical experience in
SAPH due to the multifactorial nature of SAPH and limited double-blind placebo-control
trials in patients with precapillary SAPH.

5.6. Antifibrotic Therapy

There are no established guidelines for the use of antifibrotic therapies in the context
of fibrotic pulmonary sarcoidosis. Targeted treatments are considered on an individualized
basis and continue to be investigated. Insights from the INBUILD trial demonstrated
that nintedanib decreased the rate of decline in FVC in progressive pulmonary fibrosis.
However, the trial was underpowered for fibrotic sarcoidosis (n = 12), and nintedanib
needs to be examined in a larger cohort [100]. Similarly, the RELIEF trial showed that
pirfenidone had a slower decline in percent predicted FVC, but the study was terminated
prematurely due to challenges related to slow recruitment in non-IPF progressive fibrotic
lung disease [101]. Moreover, the study excluded patients with sarcoidosis, and the results
limit the applicability to this cohort [101]. The PirFS trial, initially designed as a double-
blind placebo controlled trial to assess the antifibrotic effect of pirfenidone on fibrotic
pulmonary sarcoidosis, was subsequently converted to a phase-4 feasibility trial due
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to poor enrollment during the COVID pandemic [80]. Preliminary results suggested the
potential use of DLCO < 40% predicted as an inclusion criterion for evaluating the efficacy of
antifibrotic agents as these patients reached the defined time to clinical worsening [80]. Due
to the inflammatory basis of fibrosis in pulmonary sarcoidosis and potential improvement
in symptomology and physiologic parameters, the exact role of antifibrotic therapy in
fibrotic pulmonary sarcoidosis is unclear at this time. Currently, there is no consensus
on whether antifibrotic therapy should be used alone, in conjunction with, or after anti-
inflammatory therapy has failed to slow the progression of fibrosis in patients with fibrotic
pulmonary sarcoidosis. This needs to be decided on an individual basis.

5.7. Supportive Management

Supportive management, including pulmonary rehabilitation, preventative vaccina-
tions, and supplemental oxygen therapy, may improve overall wellbeing for individuals
affected by fibrotic pulmonary sarcoidosis. Pulmonary rehabilitation is a comprehensive
program tailored to each patient’s needs, and involves personalized evaluations, exercise
training, educational sessions, and behavioral modifications aimed at enhancing overall
wellbeing [102]. Studies primarily conducted among patients diagnosed with chronic
obstructive pulmonary disease (COPD) have demonstrated significant improvements in
mortality, exercise capacity, overall quality of life, and efficient utilization of healthcare
resources [103–106]. Emerging evidence suggests that individuals with interstitial lung dis-
ease, pulmonary hypertension, and those undergoing evaluation for lung transplantation
derive benefit as well in exercise tolerance and decreased dyspnea [107–109]. According to
the latest guidelines from the European Respiratory Society, pulmonary rehabilitation for a
duration of 6–12 weeks is conditionally recommended for managing fatigue in patients with
chronic sarcoidosis [84]. One observational pilot study evaluated the impact of a 12-week
physical training program in 24 patients with IPF and fibrotic pulmonary sarcoidosis. Upon
finishing the program, over 50% of patients had improvements in exercise capacity as
assessed by 6-min walk distance, while others maintained their initial levels [110]. Another
systematic review found that pulmonary rehabilitation may enhance exercise capacity and
alleviate dyspnea in individuals with sarcoidosis, irrespective of stage of the disease [111].
These results highlight the potential in enhancing overall functional status among patients
with sarcoidosis in general and with fibrotic pulmonary sarcoidosis.

Patients with sarcoidosis have dysregulated immune responses caused by underlying
granulomatous inflammation and concurrent use of immunosuppressive agents, which can
affect the efficacy of vaccinations [112]. Considering this, the timing of immunosuppressive
treatments must be taken into account when administering inactivated and live vaccines. In
the case of live vaccinations, the benefits should be carefully weighed against the associated
risks, and therapy should be temporarily delayed before and after administration of live
vaccinations [112]. Especially with B-cell depleting therapies such as rituximab, vaccination
dosing and frequency require careful consideration of scheduling [112,113].

Though the ERS treatment guidelines on sarcoidosis do not make specific recommen-
dations regarding oxygen supplementation, patients with chronic hypoxemic respiratory
failure due to pulmonary sarcoidosis should be supported with supplemental oxygen
therapy [114]. Non-invasive ventilation may be used as supportive therapy in cases of
respiratory failure. Currently, there is limited evidence regarding the potential benefits or
risks associated with the use of supplemental oxygenation in pulmonary sarcoidosis, par-
ticularly concerning aspects such as nocturnal hypoxemia, exertional hypoxemia, dyspnea,
and exercise endurance. Further studies in this area are essential for a comprehensive un-
derstanding of the implications and appropriate management strategies for these patients
with chronic hypoxemic respiratory failure due to APS.

5.8. Lung Transplantation

Lung transplantation serves as a final option for patients with fibrotic pulmonary
sarcoidosis suffering from respiratory failure and pulmonary hypertension. According to
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International Society for Heart and Lung Transplantation (ISHLT) registry data, sarcoidosis
accounts for 2.4% of all lung transplantations, and has a median survival of 6.1 years fol-
lowing transplantation [115,116]. There are no guidelines specifically tailored to sarcoidosis
for lung transplantation; they currently follow those for ILD [117,118]. Following the im-
plementation of the lung allocation score (LAS) in 2005, a greater percentage of sarcoidosis
patients received lung allografts, leading to reduced waitlist mortality [119]. However,
recent studies have found that, compared with patients with COPD and IPF, individuals
with sarcoidosis continue to face disproportionately higher waitlist mortalities [120]. The
several factors contributing to waitlist mortality were identified as pulmonary hyperten-
sion, poorer functional status, oxygen dependence, lower reduced output, and female
sex [121,122]. Moreover, waitlisted patients’ percent predicted FVC was found to be sig-
nificantly lower than the thresholds recommended by ISHLT lung transplant referrals,
underscoring potential delays in referral for lung transplant [122]. Following transplanta-
tion, patients may experience increased perioperative morbidity and mortality attributed to
higher rates of primary graft dysfunction, hemothorax, and prolonged dependence on ven-
tilatory support [116,123–125]. Despite these initial risks, long-term survival rates appear
to be comparable to those observed in other chronic lung conditions with a risk for disease
recurrence [116,123,126]. Further research and development of more specific guidelines on
selection and post-transplant management for patients with fibrotic pulmonary sarcoidosis
are needed.

6. Conclusions

Patients suffering from fibrotic pulmonary sarcoidosis experience higher morbidity
and mortality compared with those without chronic and/or advanced disease. This may
be due to the progressive nature of the disease with variable complications. Factors
such as age, imaging findings, respiratory failure, and pulmonary hypertension may
assist in prognostication, but this needs refinement and validation. The variability in
disease presentation and progression makes determining the best approach for management
challenging, and the approach should be individualized for each patient. There is a critical
need to evaluate management strategies and continue research efforts aimed at improving
patient outcomes and quality of life.
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