
Citation: Trovato, P.; Simonetti, I.;

Morrone, A.; Fusco, R.; Setola, S.V.;

Giacobbe, G.; Brunese, M.C.; Pecchi,

A.; Triggiani, S.; Pellegrino, G.; et al.

Scientific Status Quo of Small Renal

Lesions: Diagnostic Assessment and

Radiomics. J. Clin. Med. 2024, 13, 547.

https://doi.org/10.3390/jcm13020547

Academic Editor: David Ulmert

Received: 1 November 2023

Revised: 5 January 2024

Accepted: 16 January 2024

Published: 18 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Review

Scientific Status Quo of Small Renal Lesions: Diagnostic
Assessment and Radiomics
Piero Trovato 1, Igino Simonetti 1, Alessio Morrone 2, Roberta Fusco 3,4,*, Sergio Venanzio Setola 1,
Giuliana Giacobbe 5, Maria Chiara Brunese 6, Annarita Pecchi 7, Sonia Triggiani 8, Giuseppe Pellegrino 8 ,
Giuseppe Petralia 9, Giacomo Sica 10 , Antonella Petrillo 1 and Vincenza Granata 1

1 Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
piero.trovato@istitutotumori.na.it (P.T.); igino.simonetti@istitutotumori.na.it (I.S.);
s.setola@istitutotumori.na.it (S.V.S.); a.petrillo@istitutotumori.na.it (A.P.); v.granata@istitutotumori.na.it (V.G.)

2 Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy;
alessio.morrone@unicampania.it

3 Medical Oncology Division, Igea SpA, 80013 Naples, Italy
4 Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2,

20122 Milan, Italy
5 General and Emergency Radiology Department, “Antonio Cardarelli” Hospital, 80131 Naples, Italy;

giuliana.giacobbe@unicampania.it
6 Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences,

University of Molise, 86100 Campobasso, Italy; mariachiarabrunese@gmail.com
7 Department of Radiology, University of Modena and Reggio Emilia, 41121 Modena, Italy;

annarita.pecchi@unimore.it
8 Postgraduate School of Radiodiagnostics, University of Milan, 20122 Milan, Italy;

sonia.triggiani@unimi.it (S.T.); giuseppe.pellegrino@unimi.it (G.P.)
9 Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS,

Via Ripamonti 435, 20141 Milan, Italy; giuseppe.petralia@ieo.it
10 Radiology Unit, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy;

giacomo.sica@ospedalideicolli.it
* Correspondence: r.fusco@igeamedical.com

Abstract: Background: Small renal masses (SRMs) are defined as contrast-enhanced renal lesions
less than or equal to 4 cm in maximal diameter, which can be compatible with stage T1a renal cell
carcinomas (RCCs). Currently, 50–61% of all renal tumors are found incidentally. Methods: The
characteristics of the lesion influence the choice of the type of management, which include several
methods SRM of management, including nephrectomy, partial nephrectomy, ablation, observation,
and also stereotactic body radiotherapy. Typical imaging methods available for differentiating
benign from malignant renal lesions include ultrasound (US), contrast-enhanced ultrasound (CEUS),
computed tomography (CT), and magnetic resonance imaging (MRI). Results: Although ultrasound
is the first imaging technique used to detect small renal lesions, it has several limitations. CT is the
main and most widely used imaging technique for SRM characterization. The main advantages
of MRI compared to CT are the better contrast resolution and tissue characterization, the use of
functional imaging sequences, the possibility of performing the examination in patients allergic to
iodine-containing contrast medium, and the absence of exposure to ionizing radiation. For a correct
evaluation during imaging follow-up, it is necessary to use a reliable method for the assessment
of renal lesions, represented by the Bosniak classification system. This classification was initially
developed based on contrast-enhanced CT imaging findings, and the 2019 revision proposed the
inclusion of MRI features; however, the latest classification has not yet received widespread validation.
Conclusions: The use of radiomics in the evaluation of renal masses is an emerging and increasingly
central field with several applications such as characterizing renal masses, distinguishing RCC
subtypes, monitoring response to targeted therapeutic agents, and prognosis in a metastatic context.

Keywords: small renal masses; ultrasound; contrast-enhanced ultrasound; computed tomography;
magnetic resonance imaging; Bosniak classification; radiomics
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1. Introduction

Small renal masses (SRMs) are referred to as contrast-enhanced kidney lesions with
a maximum diameter less than or equal to 4 cm, which can usually be consistent with
stage T1a renal cell carcinomas [1–4]. Over the last few years, the detection of small and
asymptomatic renal lesions (and consequently also of cancers) has increased globally partly
due to the increased use of cross-sectional imaging [1,5]. Currently, 50–61% of all renal
tumors are incidentally found, in comparison with only 13% in the 1970s [6,7].

Renal masses can be distinguished into two broad categories: tumors and pseudo-
tumors. The latter are lesions that consist in non-neoplastic tissues, although at imaging
could simulate cancer lesions [8]. There are many examples of renal pseudotumors, which
include developmental abnormalities (prominent Bertin’s column, persistent fetal lobula-
tion, dromedary hump, splenorenal fusion, renal cross ectopia, and renal hilar labrum),
infectious and inflammatory processes (renal abscess, pyelonephritis, scarred kidney, renal
granulomatous disease, renal tuberculosis, xanthogranulomatous pyelonephritis, renal
sarcoidosis, and renal malacoplakia), vascular processes (extramedullary hematopoiesis,
renal arteriovenous malformation, and renal hematoma), and miscellaneous lesions (regen-
erating nodules after reflux and post partial nephrectomy) [9–12]. For a correct differential
diagnosis between tumors and pseudotumors, it is critical to refer to the patient’s medical
history: an accurate history allows, in most cases, to lean toward the inflammatory nature,
or the vascular or post traumatic nature of the renal lesions [13,14].

Lesion features influence the choice of management, such as nephrectomy, partial
nephrectomy, ablation, surveillance, and also stereotactic body radiotherapy [15–19]. In
addition, it should be considered that up to 20% of SRMs are benign [15] and that the
risk of malignancy rises with increasing size [20–22]. For these reasons, an adequate
characterization of renal lesions through the different imaging techniques is critical to
optimize SRM management and to improve patient outcomes, preserving renal function in
the best viable way and avoiding the risk of overtreatment [23–30].

Typical imaging methods for differentiating benign from malignant renal masses
include ultrasound (US), contrast-enhanced ultrasound (CEUS), computed tomography
(CT), and magnetic resonance imaging (MRI) [31–34].

The purpose of this narrative review is to report the state-of-the-art methods of imag-
ing in SRM evaluations, including the indications, diagnostic possibilities, limits, and
advantages of the different methods and typical findings researched, as well as future,
prospective studies.

2. Ultrasound Assessment

Usually, ultrasound is the initial imaging tool used to detect small (and usually inciden-
tal) renal lesions [35]. US is a widely accessible, inexpensive, and noninvasive method [36]
and is a very sensitive technique for detecting renal masses, being generally reliable in
differentiating between solid and cystic lesions [37,38]. In fact, simple and uncomplicated
renal cysts have a typical US appearance: well-confined anechoic lesions with thin walls
and without septa and vascularity; posterior acoustic shadowing may be present [39].
Sometimes, there may be a few thin septa (5% of cases) or lesser amounts of intracystic
hemorrhage/debris (5% of cysts) [40]. On the other hand, when the cystic lesions have
thickened and irregular walls or septa with or without vascularization are observed on
color and spectral Doppler imaging, they are defined as complicated cysts; these findings
are suggestive of renal cell carcinomas (RCCs) and require further evaluation [41]. There-
fore, it is evident how conventional US has some limitations in evaluating complex cystic,
especially if small [42,43]. Furthermore, B-mode US has significant limitations also in the
evaluation of solid lesions (especially in cases of small masses), except for angiomyolipomas
(AMLs), which generally appear as hyperechoic and homogenous cortical lesions with
sharp margins and with posterior acoustic shadowing [42,43]. However, in several cases,
AMLs may also be atypical, appearing hypoechoic or mildly hyperechoic [35]. In addition,
it should be noted that conventional US is not always able to differentiate AMLs from
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RCCs. In fact, although RCCs typically appear as hypoechoic, in 32% of cases, RCCs are
hyperechoic, homogeneous, and with defined margins, thus being indistinguishable from
small ALMs [37].

Another critical lesion is oncocytoma, which is generally a well-circumscribed mass
in which a central scar may sometimes be visible [44]. In US studies, oncocytomas show
variable echogenicity: several studies report a hypoechogenic appearance in 46% of cases,
hyperechogenic in 23% of cases, iso-hyperechogenic in 8% of cases, and iso-echogenic in 8%
of cases [45]. According to other case reports, the most frequent appearance is iso-echogenic
to normal renal parenchyma [44].

On a color Doppler integration, RCCs, AMLs, and oncocytomas can show discrete
hypervascularization [45]. These limitations can be decreased using contrast medium,
which allows for better characterization of small renal lesions (Figure 1) [46].
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Figure 1. Renal ultrasound examination, B-mode (A) and CEUS scans (B,C). Small renal cortical
lesion isoechoic to adjacent parenchyma (arrows). After an injection of intravenous contrast medium,
the lesion shows enhancement.

3. Contrast-Enhanced Ultrasound Assessment

CEUS is a US technique characterized by the intravenous injection of contrast agents [47].
Second-generation US contrast agents include microbubbles of perfluorocarbon, nitrogen
gas, or sulfur hexafluoride stabilized in a phospholipid membrane [48]. The microbubbles
do not spread across vessel endothelium into interstitium and thus remain entirely intravas-
cular [49]. These features allow for the optimal assessment of both the microcirculation and
macrocirculation of the parenchyma and renal masses [50].

Several studies report increased diagnostic reliability in kidney cancers via CEUS,
due to the improved visibility of renal lesions and effective delineation of tumor micro
vessels [51]. In addition, it should be noted that microbubbles have an excellent safety
profile as they have a lower incidence of collateral effects, such as nephrotoxicity; for these
reasons, they may be utilized in patients with altered kidney functions [52]. Therefore,
CEUS may also be especially useful in the diagnosis and assessment of SRMs, especially in
differentiating between complex cysts, AMLs, and RCCs [52].

In the assessment of complicated cysts, CEUS can be used to highlight the vascular-
ization of septa and nodular protuberances (Figure 2), thus being able to help distinguish
between benign cysts, indeterminate cysts, and cysts of obvious malignant appearance [47].
Regarding AMLs, these lesions, typically, show peripheral contrast enhancement and re-
duced central enhancement, compared with the renal cortex [47]. Instead, RCC typically
presents heterogeneous hypervascularization in the arterial phase and early washout in the
late phase; perilesional border enhancement is also one of the most frequent features of
RCC [47]. Like RCCS, oncocytomas are hyper-enhancing lesions, but with delayed venous
wash-out [45]. Hence, CEUS is a useful tool for lesion characterization.
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4. Computed Tomography Assessment

CT is the main imaging method used to characterize SRMs, since it has an easy
accessibility and high tolerability by patients [53–56]. However, since this technology
is based on ionizing radiation, it should be chosen with caution for young patients and
pregnant women and mostly used for lesion surveillance.

The CT evaluation of renal masses requires a multiphasic protocol [57–59]. However,
it should be clarified that there is not a consensus on a specific protocol, so that for several
departments, it is sufficient to include only a non-contrastographic and a nephrogenic phase,
while for others, a corticomedullary and/or an excretory phase should be included [59].

The non-contrastographic phase is most useful for determining the presence, in a
homogeneous mass, of macroscopic fat and/or calcifications [60]. With regard to the corti-
comedullary phase, several studies have shown that this contrast phase may be useful for
differentiating subcategories of RCCs; in addition, it is most helpful for evaluating vessel
anatomy, vascular tumor involvement, and arterial variants for surgical planning [61,62].
The nephrogenic phase provides the most accurate assessment of kidney parenchyma, as
maximum and homogeneous enhancement are achieved, and for demonstrating an abnor-
mal enhancement of renal masses [61]. The excretory phase is less useful for characterizing
renal lesions; however, it plays a key role in assessing the anatomy of the calyces, renal
pelvis, and ureters, especially in partial nephrectomy candidates [61].

The main CT findings of renal masses are attenuation (lesion density and detection of
macroscopic fat), qualitative and quantitative enhancement, detection of central scars, and
growth rate [15,60,63,64].

4.1. Lesion Density

The density of renal parenchyma is usually about 30 to 40 HU; in the non-contrastographic
phase, the hyperattenuating lesion density ranges between 40 and 90 HU [65,66]. It has
been reported that renal masses characterized by an unenhanced homogeneous density of
more than 70 HU represent hemorrhagic cysts in more than 99% of cases [67].

4.2. Macroscopic Fat

Macroscopic fat is better seen on nonenhanced CT, where its density measures between
−10 and −100 HU [68]. The finding of macroscopic fat within a solid renal mass is strongly
suggestive of an AML, but not pathognomonic [69]. AMLs are the most frequent benign
kidney tumors and are lesions containing muscular, adipose, and vascular tissue in varying
proportions. They are usually rich in macroscopic fat, but, in 3–4.5% of cases, are atypical
and contain microscopic fat not evident on CT [70,71].

4.3. Enhancement

Enhancement is the most important parameter that a radiologist should evaluate to
characterize a renal lesion [72,73]. In fact, after the contrast administration, if a renal lesion
has a density increase of more than 20 HU, this pattern is indicative of the presence of
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a solid component [74]. In cases where the increment is less than 10 HU, the lesion is
classified as non-enhancing; when the increment is between 10 and 20 HU, the mass is
defined as indeterminate, and further evaluation is required [75].

Generally, SRMs have homogeneous enhancement, whereas larger lesions undergo
irregular enhancement due to necrotic components; the clear cell subtype typically shows
more intense enhancement [76,77]. The most significant limitation of an enhancement
assessment is the assessment of very small lesions, where it may be difficult to obtain a
correct enhancement assessment as image artefacts may influence the results [76].

4.4. Central Scar

The central stellate scar is a typical but unreliable feature of oncocytomas [78]. In
fact, according to several authors, less than half of oncocytomas have a central scar, while
according to others, it is present in only 11% of cases [79,80]. Furthermore, necrotic
components of RCC can mimic the scar. Therefore, no CT findings exist that can reliably
distinguish an oncocytoma from an RCC.

4.5. Growth Rate

Growth rate assessment has limited validity in differentiating benign from malignant
renal lesions [15]. In fact, small renal tumors have been shown to exhibit slow growth,
regardless of histopathologic subtype, with reported average growth rates of 0.28 cm/year
(range of 0.09–0.86 cm/year) [81]. Several studies report that 70% of SRMs undergoing
surveillance via imaging methods have no measurable growth until 32 months [82,83].
Other authors have shown no statistically significant differences in growth rate between
small RCCs and oncocytomas [81,84]. However, a rapid growth rate during the first year of
surveillance via imaging methods may be suggestive of an aggressive tumor.

5. Cystic Renal Masses and Bosniak Classification

Renal cystic lesions are commonly detected in clinical practice, as they are estimated
to occur in about 50 percent of people over the age of fifty [85]. However, it has been shown
that 6% of asymptomatic renal cystic lesions are renal cystic neoplasms [86]. For these
reasons, it is necessary to use a reliable method for the evaluation of renal cystic masses,
represented by the Bosniak classification system [87].

Bosniak classification was reported for the first time in 1986 and has been widely
accepted and utilized by both radiologists and urologists for the purpose of addressing the
clinical problem of evaluating renal cysts [80,88–94]. It was subsequently updated in 2005
and 2019 [88,89].

It was initially developed based on contrast-enhanced CT imaging features, but the
2019 revision proposed the inclusion of MRI findings; however, the latest classification has
not yet received widespread validation [90,91]. Some studies show greater sensitivity in
CEUS compared with CT or MRI in evaluating intralesional septa [92,93].

Regarding the 2019 version, this method uses the classification of cystic lesions with the
term “class” and not “category” and always uses Roman rather than Arabic numerals [89].
In addition, the 2019 Bosniak classification provides the definition of a “cystic renal mass”
as a mass characterized by the presence of less than about 25% of enhancing components
on subjective visual assessment [94].

According to the 2019 classification, cystic masses are divided into five classes:

- (a) Class I: benign simple cyst, which includes a mass with a well-defined, smooth and
thin wall (≤2 mm), homogeneous and simple fluid content (−9 to 20 HU), without
septa or calcifications, and with possible wall enhancement [89].

- (b) Class II: benign cyst, “minimally complex”, which includes 6 types in CT examina-
tion (Figure 3), all represented by well-defined masses with thin (≤2 mm) and smooth
walls [95], and these include the following:



J. Clin. Med. 2024, 13, 547 6 of 24

1. Masses with thin walls (≤2 mm) and from one to three septa with possible
enrichment of the septa and the wall, with the possible presence of calcifications
of all types;

2. Homogeneous masses with high density (≥70 HU) on non-contrast scan;
3. Homogeneous masses with density >20 HU, which do not enhance and may

have calcifications of all types;
4. Homogeneous masses with density between −9 and 20 HU on non-contrast CT;
5. Homogeneous masses with density between +21 and +30 HU at portal phase;
6. Homogeneous masses with low density and too small to be characterized.

Bosniak I and II cystic masses do not need additional investigation or follow-up as
they have a malignancy rate of about 0% [96].
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Figure 3. CT evaluation of small right renal cortical cystic lesion. The non-contrastographic (A),
corticomedullary (B), nephrogenic (C), and excretory (D) phases show homogeneous cystic lesion
with non-enhanced thin walls and calcification (arrows). The findings are consistent with Bosniak
Class II.

- (c) Class IIF: probably benign cyst masses that still require follow-up (F for follow-up)
because they have a malignancy rate ranging from 5 to 17% [96,97]. This class com-
prises minimally complex cystic masses with mildly thickened (3 mm) and enhancing
wall, or with mild and smooth thickening (3 mm) of one or more enhancing septa,
or many (≥4) smooth and thin enhancing septa [89]. The necessary finding to define
Class IIF or higher is the presence of measurable enhancement [91]. Follow-up is
performed via US/CT/MRI methods, and there are no strict rules regarding timing: it
is reasonable to do it at 6 months, at 12 months, and then annually for a total 5 years
to assess any morphological changes [98].

- (d) Class III: indeterminate cystic mass, which includes cystic masses characterized
by one or more thickened (≥4 mm) or enhancing and irregular (≤3 mm and with
convex marginal protrusions) walls or septa [91]. Bosniak III masses (Figure 4) are
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“potentially” malignant in that they have an intermediate probability of malignancy
(about 55%) [97]. Therefore, urologic consultation should be considered for possible
partial nephrectomy or radiofrequency ablation in candidates unfit for surgery [99].
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Figure 4. CT scan with intravenous contrast, corticomedullary phase (A–C): small left cortical
enhancing renal lesion in patient with right renal tumor (arrows). The findings are consistent with
Class III Bosniak.

- (e) Class IV: clearly malignant cystic mass, which includes masses characterized by the
presence of one or more enhancing nodules (≥4 mm convex protrusion with obtuse
margins, or a convex protrusion of any size that has acute margins). A Bosniak IV
mass (Figure 5) has a malignancy rate of about 90% and therefore requires urologic
consultation to perform partial or total nephrectomy [100].

The 2019 version of Bosniak classifications also quantifies the number of septa: the
term “few” is used in the case of 1–3 septa, while the term “many” is used in cases of
four or more septa [101]. The thickness of the septa is also quantified: it is defined as
“thin” in the case of thickness less than or equal to 2 mm, “minimally thickened” in the
case of thickness equal to 3 mm, and it is defined as “thick” when equal to or greater than
4 mm [101]. A “wall or septal irregularity” is defined in the case of an enhancing convex
protrusion with an obtuse margin less than or equal to 3 mm, while a “nodule” is defined
as an enhancing convex protrusion with an acute margin of any size or an obtuse margin of
4 mm or more [101].

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 8 of 25 
 

 

 
Figure 5. CT scan with administration of intravenous contrast, corticomedullary (A) and nephro-
genic (B) phases: histologically confirmed renal cancer (arrows). 

6. MRI Assessment 
Although CT is the most-performed technique for the study of SRMs, MRI is consid-

ered by the American College of Radiology (ACR) to be not only a comparable and alter-
native technique to CT, but also a technique that can offer many advantages over CT 
[60,102]. The principal MRI advantages include (a) better contrast resolution and tissue 
characterization; (b) the use of functional assessment; (c) the possibility of performing the 
examination in patients who are allergic to iodinated contrast agents; and (d) the lack of 
ionizing radiation [103,104]. The latter aspect is critical in patients who frequently undergo 
imaging evaluations for RCC screening, such as in cases of Von Hippel–Lindau disease 
[105–108]. In patients with end-stage renal failure, moreover, unenhanced MRI presents 
more information regarding the evaluation of SRMs than unenhanced CT [109]. In addi-
tion, several studies have demonstrated the greater ability of MRI than CT in characteriz-
ing SRMs [102]. 

A study protocol includes T2-weighted (W) turbo spin echo (T2W) in three planes, 
chemical shift imaging (CSI), i.e., axial T1W in and out of phase (IP + OP), and fat-satu-
rated 3D T1W gradient echo (FS) before and after gadolinium injection [110]. The combi-
nation of these sequences with dynamic contrast enhancement (DCE) and diffusion-
weighted imaging (DWI) outlines a multi-parametric (MP) MRI protocol [111–115]. 

6.1. T2W Imaging 
T2W sequences are typically performed as breath-hold (BH) half-Fourier single-shot 

turbo spin-echo (ss-TSE) in three orthogonal planes [116,117]. The use of ss-TSE results in 
improved spatial and contrast resolutions and reductions in artefacts and examination 
time [116]. 

T2W imaging is crucial in differentiating solid masses from cystic masses; it also may 
be useful in characterizing indeterminate solid masses [32]. In fact, a solid renal lesion 
characterized by heterogeneous hyperintensity with T2W compared with the renal cortex 
is more likely indicative of RCC, especially the clear cell subtype [118,119]. The evaluation 
of the signal intensity ratio of the lesion to renal parenchyma is highly dependable for 
differentiating RCC from AML [119]. 

AML typically presents a low T2W signal intensity (SI) [120]. However, it should be 
remembered that RCC (especially the papillary subtype) and hemorrhagic cysts (Figure 
6) may also be hypointense in T2; in fact, histologic confirmation is sometimes required to 
differentiate AML from RCC [121–123]. Instead, the differential diagnosis between solid 

Figure 5. CT scan with administration of intravenous contrast, corticomedullary (A) and nephrogenic
(B) phases: histologically confirmed renal cancer (arrows).



J. Clin. Med. 2024, 13, 547 8 of 24

6. MRI Assessment

Although CT is the most-performed technique for the study of SRMs, MRI is con-
sidered by the American College of Radiology (ACR) to be not only a comparable and
alternative technique to CT, but also a technique that can offer many advantages over
CT [60,102]. The principal MRI advantages include (a) better contrast resolution and tissue
characterization; (b) the use of functional assessment; (c) the possibility of performing
the examination in patients who are allergic to iodinated contrast agents; and (d) the
lack of ionizing radiation [103,104]. The latter aspect is critical in patients who frequently
undergo imaging evaluations for RCC screening, such as in cases of Von Hippel–Lindau
disease [105–108]. In patients with end-stage renal failure, moreover, unenhanced MRI
presents more information regarding the evaluation of SRMs than unenhanced CT [109].
In addition, several studies have demonstrated the greater ability of MRI than CT in
characterizing SRMs [102].

A study protocol includes T2-weighted (W) turbo spin echo (T2W) in three planes,
chemical shift imaging (CSI), i.e., axial T1W in and out of phase (IP + OP), and fat-saturated
3D T1W gradient echo (FS) before and after gadolinium injection [110]. The combination
of these sequences with dynamic contrast enhancement (DCE) and diffusion-weighted
imaging (DWI) outlines a multi-parametric (MP) MRI protocol [111–115].

6.1. T2W Imaging

T2W sequences are typically performed as breath-hold (BH) half-Fourier single-shot
turbo spin-echo (ss-TSE) in three orthogonal planes [116,117]. The use of ss-TSE results
in improved spatial and contrast resolutions and reductions in artefacts and examination
time [116].

T2W imaging is crucial in differentiating solid masses from cystic masses; it also may
be useful in characterizing indeterminate solid masses [32]. In fact, a solid renal lesion
characterized by heterogeneous hyperintensity with T2W compared with the renal cortex
is more likely indicative of RCC, especially the clear cell subtype [118,119]. The evaluation
of the signal intensity ratio of the lesion to renal parenchyma is highly dependable for
differentiating RCC from AML [119].

AML typically presents a low T2W signal intensity (SI) [120]. However, it should be
remembered that RCC (especially the papillary subtype) and hemorrhagic cysts (Figure 6)
may also be hypointense in T2; in fact, histologic confirmation is sometimes required to
differentiate AML from RCC [121–123]. Instead, the differential diagnosis between solid
neoplasms and hemorrhagic cysts is easier as the latter shows a high T1W signal and no
enhancement [124].

6.2. CS (IP D OP) Imaging

It is well known that around 80% of clear cell RCC have a decreased SI in CS due to
the presence of intracellular or intracytoplasmic lipids [125–129]. A significant decrease
in SI index (SI CSI index > 25%) in RCC is typical of the cc-RCC subtype, whereas only
rarely is there a minimal decrease in the remaining RCC subtypes [130]. On the other
hand, evidence of gross/macroscopic fat on FS MRI sequences is considered diagnostic of
AML [131–133]. However, although rarely, RCCs may show extracellular fat, due to varied
reasons, including bone metaplasia and renal sinus fat engorgement [134]. Similarly, about
5 percent of AMLs do not contain an adequate amount of fat (minimally fat or fat-poor
AMLs). Therefore, the evidence of signal loss in CS-MRI is not specific, as it can be detected
in both RCC and AML [135–146]. In these cases, the assessment of different sequences
can help in their characterization: the combination of the CS signal drop and evidence of
macroscopic fat in the mass is indicative of classic AML [135,136], while the evidence of
signal drop in a heterogeneously hyperintense mass in T2W, with contrast enhancement
during the contrast study is pathognomonic for cc-RCC [137,138].
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Figure 6. MRI assessment of small renal lesion: hemorrhagic cysts (arrows). The lesion is hypointense
on T2W sequences (A,B) and hyperintense in T1W sequences without contrast agents (C,E), with
restricted diffusion (D) and without contrast enhancement during contrast study ((F): arterial phase;
(G): corticomedullary phase and (H): portal phase).

6.3. Diffusion-Weighted Imaging

Diffusion-weighted imaging, as it is known, utilizes the random movement of water
molecules in several tissues to assess tissue cellularity [139]. An FS single-shot spin-echo
echo-planar imaging (EPI) sequence is used [140,141].

DWI has three main applications for the assessment of renal masses. First, low-b EPI
tracing can be used as a surrogate for FS T2W imaging, reducing the examination time [142].
Secondly, the long b-value of the EPI trace results in increased visibility of the renal lesion
and thus an improvement in lesion detection [143]. Finally, the presence or absence of
diffusion restriction can be a useful finding in the characterization of renal lesions. In this
regard, several authors have reported encouraging results regarding the role of DWI in the
characterization of solid renal masses, suggesting its usefulness especially in cases where
the use of gadolinium is contraindicated or when enhancement is ambiguous. Indeed,
several authors have demonstrated lower ADC values in malignant versus benign renal
lesions, especially in RCC versus oncocytoma [144–146]. Kang et al. suggested a moderate
accuracy of DWI for the prediction of malignancy and high-grade clear cell tumors [139].
A potential role of DWI has also been suggested in the differentiation of different RCC
subtypes. In fact, significantly lower ADC values have been demonstrated in papillary (p)-
and chromophobe (c)-RCCs than in cc-RCC (Figure 7) [147–149].

However, benign lesions could show restricted diffusion. Both typical and atypical
AMLs can exhibit diffusion restriction, showing ADC values like those of p-RCC [150].
In addition, chronic hemorrhagic cysts may also show diffusion restriction due to inter-
nal viscosity and “black-out T2” effects [151], so low ADC values can also be found in
pyelonephritis and abscesses [152].
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Figure 7. MRI assessment of low-grade clear cell RCC (arrows). (A) Coronal and (B) axial T2-W
images show a small renal mass with a hyperintense signal, without FS in T2-W FS (C) and restricted
diffusion (D). (E) Axial FS gradient T1W image shows hypointense lesion that after using a contrast
agent, has heterogeneous enhancement ((F): corticomedullary phase; (G,H): nephrogenic phase).

6.4. Gadolinium-Enhanced Sequences

The use of FS T1W GRE sequences, before and after gadolinium administration, is
necessary to obtain a complete MR protocol [153,154]. The presence of enhancement
after contrast administration is the key finding in the differentiation of cystic lesions from
solid neoplasms. According to the Bosniak 2019 classification, enhancement is defined
as an increased signal intensity greater than 15% of a renal mass in post-gadolinium T1
images compared to the pre-contrast images; both images should have been obtained with
the same acquisition parameters [89,155,156]. A subtraction of T1 images allows for a
better evaluation of subtle enhancement, presenting a sensitivity of 99% for solid renal
tumors [153]. Furthermore, due to a higher contrast resolution, MRI has been shown to
allow for a more adequate characterization of SRMs than CT by being able to overcome the
limitation of pseudoenhancement (Figure 8) [102].

The acquisition of postcontrast images with the dynamic contrast enhancement (DCE)
approach offer the possibility of obtaining quantitative parameters. Several authors showed
that cc-RCCs have greater enhancement than the renal cortex, while p-RCCs increase
less than the renal cortex [118]. In addition, it was seen that DCE can be useful for the
differentiation of fat-poor AML from p-RCC, since p-RCC show a slower enhancement than
AML [157]. On the other hand, one study showed that in using DCE-MRI, oncocytoma
could be distinguished from p-RCC with high specificity due to delayed enhancement [123].
Finally, the utility of DCE has also been demonstrated in distinguishing tumor grade; a
small series identified increased perfusion values in higher-grade tumors [158].
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Figure 8. MRI assessment of RCC. (A) Coronal and (B) axial T2-weighted images show a heteroge-
neous hypointense renal mass (arrow). (C) Axial in-phase T1-weighted image shows a drop in signal
intensity with restricted diffusion (D). Corticomedullary phase (E,F) and nephrographic phase (G,H)
axial 3D fat-saturated GR T1-weighted images show mild enhancement.

6.5. MRI in Bosniak Classification

The Bosniak 2019 classification also included MRI findings in the classification of cystic
renal masses:

- Bosniak I cysts appear as well-defined masses with a smooth, thin wall (≤2 mm), ho-
mogeneous simple fluid with a signal intensity (SI) similar to that of cerebrospinal fluid
(CSF) and without septa or calcifications. The wall may show contrast enhancement.

- Class II includes three types of cystic lesions, all of which are well-defined and have
thin (≤2 mm) and smooth walls:

1. The first type has lesions with thin (≤2 mm) and few (one to three) septa. The
septa may have enhancement or calcifications of any type. Calcifications are less
evident in MRI than in CT.

2. The second type shows homogeneous and marked T2 hyperintensity (i.e., like
that of cerebrospinal fluid) in the MRI without contrast.

3. The third type exhibits homogeneous and marked hyperintensity on unenhanced,
fat-saturated T1-weighted images (i.e., signal intensity ≥2.5 times more intense
than adjacent renal cortical parenchyma) and typically includes a benign mass,
hemorrhagic or proteinaceous [159,160].

- The IIF type is a non-enhancing and heterogeneously hyperintense lesion with no
contrast in the T1W image. This type of lesion is important because sometimes
RCCs, especially papillary subtypes, are hemorrhagic and may show mild or absent
enhancement [161].

Finally, Classes III and IV in MRI include lesions with the same findings reported in
the CT evaluation.

6.6. Imaging Tools and Renal Lesions: Advantages and Limits

The Bosnian classification [89] was originally developed to classify renal cysts based
on CT findings, but MRI and CEUS can also be used, and the latter tools have greater
sensitivity than CT for detecting renal microvasculature. Furthermore, the absence of
ionizing radiation makes MRI and CEUS the preferred techniques for follow-ups.
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Regarding solid lesions, CT and MRI are the recommended imaging modalities used
to characterize them, since ultrasound is not sufficiently accurate. The accuracy of CT and
MRI in characterizing renal lesions based on morphology and enhancement patterns is
similar. Most guidelines recommend a preferential use of CT for the characterization of
renal masses due to its greater availability, lower cost, better spatial resolution, and artefact-
free quality images, and suggest the use of MRI for inconclusive and difficult cases [1,2].
However, the absence of radiation and the additional data provided by DWI sequences
and DCE-MRI make MRI a more attractive and comprehensive technique, and therefore,
depending on its availability, it can be considered the first diagnostic option. Furthermore,
the choice will depend not only on the test initially performed, but also on the experience
of each center, with different complementary techniques, possible contraindications, and
other patient characteristics. CEUS can also be used in different scenarios [1] with the
advantage of real-time evaluation, which allows for continuous evaluation in all phases,
with the further advantage of the absence of radiation and the absence of nephrotoxicity in
the means of ultrasound contrast.

6.7. Imaging Guided Percutaneous Biopsy

Thanks to the progress in techniques and the contemporary development of histo-
logical analyses, in recent years, imaging-guided percutaneous biopsy has acquired an
increasingly key role in the characterization of SRMs, so much so that it is currently used
routinely in some centers [162–164]. The advantages of histologic diagnosis are obvious
and include the identification of surgical lesions versus those left undetermined on imaging;
the identification of the specific tumor subtype and grade to better define prognosis and
treatment; and the histologic confirmation of malignancy before the initiation of ablative
treatments such as radiofrequency ablation and cryotherapy [165]. Current percutaneous
imaging-guided biopsy techniques have demonstrated sensitivity values of 70–100% and
specificity values of 100% [166]. However, reduced diagnostic performances have also been
found for biopsies in SRMs. For example, Rybicki et al. reported higher sensitivity and
negative predictive values in biopsies performed on 4–6 cm lesions than those performed
on masses smaller than 3 cm, 97% and 89% versus 85% and 60%, respectively [167].

Improved techniques have also led to a significant decrease in post-procedural compli-
cations, including seeding, resulting in a currently good safety profile [168,169].

7. Radiomics

Radiomics is a field of medical research that uses programmable detection tools to
extract objective information from standard images to be combined with clinical data to
increase the diagnostic, prognostic, and predictive accuracy over standard vision interpre-
tation [170–174]. Due to the large number of quantitative features in contemporary tumor
imaging, such as the histogram (first-order statistics), texture (distribution of gray levels
or second-order statistics), and shape, high-throughput data extracted from CT and MRI
examinations are used to develop new radiomic markers for diagnostic, therapeutic, and
prognostic purposes [175–180].

The use of radiomics in the evaluation of renal masses is an emerging and increasingly
central field with diverse applications, such as characterizing renal masses, distinguishing
subtypes of RCC, monitoring responses in target therapies, and prognosis in metastatic
settings [181–183]. Another area of particular interest and development in radiomics relates
to the improved characterization of SRMs; as mentioned above, although technological
improvement has been achieved, conventional imaging still has some limitations in reliably
differentiating between benign and malignant renal tumors [184]. Indeed, only a biopsy
of the indeterminate renal mass currently provides an accurate diagnosis of the lesion,
thus preventing any overtreatment [185]. However, there is still resistance to performing
biopsies from the urologic community due to fears of needle tract infiltration, pathologic
upstaging, and diagnostic uncertainty about oncocytic tumors [186,187].
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Regarding the differentiation of benign from malignant renal tumors, several studies
performed on CT and MRI images demonstrated better diagnostic performances using
radiomics models compared to expert radiologists. Yap et al. performed a large retro-
spective study on CT images extracted from 735 patients (539 malignant and 196 benign
masses), segmenting primary tumors and calculating 33 shape and 760 texture metrics per
tumor [188]. They showed that the shape features alone reached an AUC between 0.64 and
0.68 on multiple classifiers, compared with 0.67–0.75 and 0.68–0.75 obtained from plot-only
and combined models, respectively. Erdim et al. also performed a smaller retrospective
study by extracting 271 texture features from the CT images of seventy-nine patients with
84 solid renal masses (63 malignant and 21 benign) and demonstrating an AUC of 0.915
for the differentiation between malignant and benign tumors [189]. Other authors have
conducted retrospective studies to investigate the usefulness of radiomics models in the
differentiation of benign versus malignant renal tumors using CT images, thus demonstrat-
ing better performances with machine learning than experienced radiologists in terms of
sensitivity and specificity [190,191].

Regarding radiomics models applied to MRI images, Xi et al. conducted a large study
on 1162 kidney lesions (655 malignant and 507 benign), showing better performances with
the more optimized radiomics models than that of the average of expert radiologists with
the evidence of a higher test accuracy (0.70 vs. 0.60, p = 0.053), sensitivity (0.92 vs. 0.80,
p = 0.017), and specificity (0.41 vs. 0.35, p = 0.450) [191].

Concerning the differentiation between small fat-poor AML from RCC, several studies
have demonstrated the discriminative efficiency of machine learning-based classification
models performed on CT and MR images [192–196]. Yang et al. performed a retrospective
study on 118 RCCs and 45 AMLs, extracting data from images at each stage of multiphasic
CT and entering them into 224 classification models with multiple classifiers, resulting in
3360 discriminative models to be examined for higher-level features [197]. It emerged from
this analysis that models achieving an AUC of 0.90 for differentiating low-fat AMLs from
RCCs were those based on unenhanced CT alone or in association with nephrographic
phase imaging. Shape and histogram features showed a greater discrimination ability
than texture features. Feng et al. performed an analysis on a smaller series that included
seventeen fat-poor AMLs and 41 RCCs using three-phase CT images to determine the
best discriminatory classifiers [198]. Moreover, Razik et al. performed a retrospective
study regarding the use of MRI-based texture analysis for differentiating low-fat AML and
oncocytoma from RCC [30], thus reporting AUC values > 0.8 for 54 lesions (34 RCCs, 14
low-fat AMLs, and 6 oncocytomas) [199].

Also, relevant to the differentiation of RCC subtypes and oncocytoma, some authors
demonstrated the utility of radiomics models based on data extracted from CT images. Coy
et al. performed a retrospective study on data extracted from contrast CT images during
the excretory phase of 179 renal lesions, including 128 cc-RCCs and 51 oncocytomas with a
mean size of 3.8 cm (range 0.8–14.6 cm) and 3.9 cm (range 1.0–13.1 cm), respectively [200].
It was noted that radiomics models predicted oncocytoma with an accuracy of 74.4%, a
sensitivity of 85.8%, and a positive predictive value (PPV) of 80.1%. Yu et al. performed
another retrospective study on histogram features based on the CT images of 119 onco-
cytomas and other RCC subtypes, showing excellent AUC values of 0.93 (p < 0.0001) for
differentiating cc-RCC from oncocytoma, 0.99 (p < 0.0001) for differentiating papillary
RCC from oncocytoma, and 0.92 for differentiating oncocytoma from other subtypes [201].
Finally, another study demonstrated an AUC of 0.85 for CT-based quantitative features in
differentiating chromophobe RCC (c-RCC) from oncocytoma in sixty-one histologically
confirmed patients (44 c-RCCs, 17 oncocytomas) [202].

However, an important limitation of current studies for characterizing renal masses
remains their heterogeneity in describing workflow characteristics, as highlighted by some
systematic reviews [203,204]. Therefore, external and independent prospective validation
studies and a diagnostic accuracy with reproducible and uniform radiomic features will be
necessary to achieve the clinical application of radiomics [205–242].
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8. Conclusions

The incidental findings of SRMs in patients undergoing imaging examinations to
evaluate other conditions is a common event. Thereafter, management depends on the
characterization of the SRMs via imaging, which allows in most cases to distinguish them
as surgical or nonsurgical. This requires the correct knowledge of the advantages and
limitations of the different imaging methods available and the patient’s clinical–anamnestic
context. The adequate characterization of SRMs is already achieved via contrast-enhanced
CT examination. Multiparametric MRI has been becoming, in recent years, the imaging
method of choice in the characterization and management of SRMs, especially in cases
of lesions indeterminate on CT. CEUS may also provide relevant information for the
characterization of SRMs; however, its role remains controversial and further studies will
be needed to clarify it.

Percutaneous biopsy presents a key role in characterizing lesions that remain indeter-
minate after imaging evaluation or before ablative treatment.

Radiomics is an emerging and promising field for the characterization of SRMs, having
the potential for unlimited applications, thus being able to contribute to the realization of
personalized medicine.

However, at present, radiomics is not yet ready to be used in clinical practice, and it
will be necessary to wait and further share data algorithms, methodologies, and prospective
validation studies.
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11. Altay, B.; Barışık, C.C.; Erkurt, B.; Kiremit, M.C. Subepithelial pelvic hematoma of the kidney (Antopol-Goldman Lesion). Turk. J.

Urol. 2015, 41, 48–50. [CrossRef]

https://zenodo.org/records/10517723
https://zenodo.org/records/10517723
https://doi.org/10.1186/s13244-020-00853-y
https://www.ncbi.nlm.nih.gov/pubmed/32372194
https://doi.org/10.1056/NEJMc1003178
https://www.ncbi.nlm.nih.gov/pubmed/20554992
https://doi.org/10.1007/s00261-018-1612-2
https://doi.org/10.1155/2015/364807
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-bycancer-type/kidney-cancer#heading-Zero
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-bycancer-type/kidney-cancer#heading-Zero
https://doi.org/10.1016/s0090-4295(97)00506-2
https://doi.org/10.1056/NEJMra043172
https://doi.org/10.2214/AJR.06.0920
https://doi.org/10.1148/radiology.143.1.7063720
https://doi.org/10.1148/rg.24si045509
https://doi.org/10.5152/tud.2014.48208


J. Clin. Med. 2024, 13, 547 15 of 24

12. Rinaldo, C.; Grimaldi, D.; Di Serafino, M.; Iacobellis, F.; Verde, F.; Caruso, M.; Sabatino, V.; Orabona, G.D.; Schillirò, M.L.; Vallone,
G.; et al. An update on pyelonephritis: Role of contrast enhancement ultrasound (CEUS). J. Ultrasound. 2022. [CrossRef] [PubMed]

13. Jana, M. Renal “Pseudotumor” on Contrast-Enhanced Ultrasound. Am. J. Roentgenol. 2021, 217, 1241. [CrossRef]
14. Renzulli, M.; Brandi, N.; Argalia, G.; Brocchi, S.; Farolfi, A.; Fanti, S.; Golfieri, R. Morphological, dynamic and functional

characteristics of liver pseudolesions and benign lesions. Radiol. Med. 2022, 127, 129–144. [CrossRef] [PubMed]
15. Elstob, A.; Gonsalves, M.; Patel, U. Diagnostic modalities. Int. J. Surg. 2016, 36 Pt C, 504–512. [CrossRef]
16. De Meerleer, G.; Khoo, V.; Escudier, B.; Joniau, S.; Bossi, A.; Ost, P.; Briganti, A.; Fonteyne, V.; Van Vulpen, M.; Lumen, N.; et al.

Radiotherapy for renal-cell carcinoma. Lancet Oncol. 2014, 15, e170–e177. [CrossRef] [PubMed]
17. Lancellotta, V.; Del Regno, L.; Di Stefani, A.; Fionda, B.; Marazzi, F.; Rossi, E.; Balducci, M.; Pampena, R.; Morganti, A.G.; Mangoni,

M.; et al. The role of stereotactic radiotherapy in addition to immunotherapy in the management of melanoma brain metastases:
Results of a systematic review. Radiol. Med. 2022, 127, 773–783. [CrossRef] [PubMed]

18. Petrillo, A.; Fusco, R.; Barretta, M.L.; Granata, V.; Mattace Raso, M.; Porto, A.; Sorgente, E.; Fanizzi, A.; Massafra, R.;
Lafranceschina, M.; et al. Radiomics and artificial intelligence analysis by T2-weighted imaging and dynamic contrast-enhanced
magnetic resonance imaging to predict Breast Cancer Histological Outcome. Radiol. Med. 2023. [CrossRef]

19. Granata, V.; Fusco, R.; De Muzio, F.; Brunese, M.C.; Setola, S.V.; Ottaiano, A.; Cardone, C.; Avallone, A.; Patrone, R.; Pradella, S.;
et al. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver
metastases prognostic assessment. Radiol. Med. 2023. [CrossRef]

20. Johnson, D.C.; Vukina, J.; Smith, A.B.; Meyer, A.M.; Wheeler, S.B.; Kuo, T.M.; Tan, H.J.; Woods, M.E.; Raynor, M.C.; Wallen, E.M.;
et al. Preoperatively misclassified, surgically removed benign renal masses: A systematic review of surgical series and United
States population level burden estimate. J. Urol. 2015, 193, 30–35. [CrossRef]

21. Franco, D.; Granata, V.; Fusco, R.; Grassi, R.; Nardone, V.; Lombardi, L.; Cappabianca, S.; Conforti, R.; Briganti, F.; Grassi, R.; et al.
Artificial intelligence and radiation effects on brain tissue in glioblastoma patient: Preliminary data using a quantitative tool.
Radiol. Med. 2023, 128, 813–827. [CrossRef]

22. Granata, V.; Fusco, R.; Cozzi, D.; Danti, G.; Faggioni, L.; Buccicardi, D.; Prost, R.; Ferrari, R.; Trinci, M.; Galluzzo, M.; et al.
Structured reporting of computed tomography in the polytrauma patient assessment: A Delphi consensus proposal. Radiol. Med.
2023, 128, 222–233. [CrossRef] [PubMed]

23. Finelli, A.; Ismaila, N.; Bro, B.; Durack, J.; Eggener, S.; Evans, A.; Gill, I.; Graham, D.; Huang, W.; Jewett, M.A.; et al. Management
of small renal masses: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 2017, 35, 668–680.
[CrossRef] [PubMed]

24. Granata, V.; Simonetti, I.; Fusco, R.; Setola, S.V.; Izzo, F.; Scarpato, L.; Vanella, V.; Festino, L.; Simeone, E.; Ascierto, P.A.; et al.
Management of cutaneous melanoma: Radiologists challenging and risk assessment. Radiol. Med. 2022, 127, 899–911. [CrossRef]
[PubMed]

25. Zeilinger, M.G.; Giese, D.; Schmidt, M.; May, M.S.; Janka, R.; Heiss, R.; Ammon, F.; Achenbach, S.; Uder, M.; Treutlein, C. Highly
accelerated, Dixon-based non-contrast MR angiography versus high-pitch CT angiography. Radiol. Med. 2023. [CrossRef]

26. Hu, X.; Shi, S.; Wang, Y.; Yuan, J.; Chen, M.; Wei, L.; Deng, W.; Feng, S.T.; Peng, Z.; Luo, Y. Dual-energy CT improves differentiation
of non-hypervascular pancreatic neuroendocrine neoplasms from CA 19-9-negative pancreatic ductal adenocarcinomas. Radiol.
Med. 2023. [CrossRef]

27. He, X.; Li, K.; Wei, R.; Zuo, M.; Yao, W.; Zheng, Z.; He, X.; Fu, Y.; Li, C.; An, C.; et al. A multitask deep learning radiomics model
for predicting the macrotrabecular-massive subtype and prognosis of hepatocellular carcinoma after hepatic arterial infusion
chemotherapy. Radiol. Med. 2023. [CrossRef]

28. Pirosa, M.C.; Esposito, F.; Raia, G.; Chianca, V.; Cozzi, A.; Ruinelli, L.; Ceriani, L.; Zucca, E.; Del Grande, F.; Rizzo, S. CT-based
body composition in diffuse large B cell lymphoma patients: Changes after treatment and association with survival. Radiol. Med.
2023. [CrossRef]

29. Spinelli, M.S.; Balbaa, M.F.; Gallazzi, M.B.; Eid, M.E.; Kotb, H.T.; Shafei, M.E.; Ierardi, A.M.; Daolio, P.A.; Barile, A.; Carrafiello,
G. Role of percutaneous CT-guided radiofrequency ablation in treatment of intra-articular, in close contact with cartilage and
extra-articular osteoid osteomas: Comparative analysis and new classification system. Radiol. Med. 2022, 127, 1142–1150.
[CrossRef]

30. Bassi, E.; Russo, A.; Oliboni, E.; Zamboni, F.; De Santis, C.; Mansueto, G.; Montemezzi, S.; Foti, G. The role of an artificial
intelligence software in clinical senology: A mammography multi-reader study. Radiol. Med. 2023. [CrossRef]

31. Gakis, G.; Kramer, U.; Schilling, D.; Kruck, S.; Stenzl, A.; Schlemmer, H.P. Small renal oncocytomas: Differentiation with
multiphase CT. Eur. J. Radiol. 2011, 80, 274–278. [CrossRef]

32. Ramamurthy, N.K.; Moosavi, B.; McInnes, M.D.; Flood, T.A.; Schieda, N. Multiparametric MRI of solid renal masses: Pearls and
pitfalls. Clin. Radiol. 2015, 70, 304–316. [CrossRef] [PubMed]

33. Meyer, M.; Nelson, R.C.; Vernuccio, F.; Gonzalez, F.; Schabel, C.; Mileto, A.; Patel, B.N.; Schoenberg, S.O.; Marin, D. Comparison
of Iodine Quantification and Conventional Attenuation Measurements for Differentiating Small, Truly Enhancing Renal Masses
from High-Attenuation Nonenhancing Renal Lesions With Dual-Energy CT. Am. J. Roentgenol. 2019, 213, W26–W37. [CrossRef]
[PubMed]

https://doi.org/10.1007/s40477-022-00733-9
https://www.ncbi.nlm.nih.gov/pubmed/36385692
https://doi.org/10.2214/AJR.21.26223
https://doi.org/10.1007/s11547-022-01449-w
https://www.ncbi.nlm.nih.gov/pubmed/35028886
https://doi.org/10.1016/j.ijsu.2016.06.005
https://doi.org/10.1016/S1470-2045(13)70569-2
https://www.ncbi.nlm.nih.gov/pubmed/24694640
https://doi.org/10.1007/s11547-022-01503-7
https://www.ncbi.nlm.nih.gov/pubmed/35606609
https://doi.org/10.1007/s11547-023-01718-2
https://doi.org/10.1007/s11547-023-01710-w
https://doi.org/10.1016/j.juro.2014.07.102
https://doi.org/10.1007/s11547-023-01655-0
https://doi.org/10.1007/s11547-023-01596-8
https://www.ncbi.nlm.nih.gov/pubmed/36658367
https://doi.org/10.1200/JCO.2016.69.9645
https://www.ncbi.nlm.nih.gov/pubmed/28095147
https://doi.org/10.1007/s11547-022-01522-4
https://www.ncbi.nlm.nih.gov/pubmed/35834109
https://doi.org/10.1007/s11547-023-01752-0
https://doi.org/10.1007/s11547-023-01733-3
https://doi.org/10.1007/s11547-023-01719-1
https://doi.org/10.1007/s11547-023-01723-5
https://doi.org/10.1007/s11547-022-01542-0
https://doi.org/10.1007/s11547-023-01751-1
https://doi.org/10.1016/j.ejrad.2010.06.049
https://doi.org/10.1016/j.crad.2014.10.006
https://www.ncbi.nlm.nih.gov/pubmed/25472466
https://doi.org/10.2214/AJR.18.20547
https://www.ncbi.nlm.nih.gov/pubmed/30917024


J. Clin. Med. 2024, 13, 547 16 of 24

34. Granata, V.; Fusco, R.; Setola, S.V.; Castelguidone, E.L.D.; Camera, L.; Tafuto, S.; Avallone, A.; Belli, A.; Incollingo, P.; Palaia, R.;
et al. The multidisciplinary team for gastroenteropancreatic neuroendocrine tumours: The radiologist’s challenge. Radiol. Oncol.
2019, 53, 373–387. [CrossRef]

35. Bertelli, E.; Palombella, A.; Sessa, F.; Baldi, I.; Morelli, N.; Verna, S.; Greco, I.; Morselli, S.; Pili, A.; Sebastianelli, A.; et al.
Contrast-enhanced ultrasound (CEUS) imaging for active surveillance of small renal masses. World J. Urol. 2021, 39, 2853–2860.
[CrossRef] [PubMed]

36. Heidenreich, A.; Ravery, V.; European Society of Oncological Urology. Preoperative imaging in renal cell cancer. World J. Urol.
2004, 22, 307–315. [CrossRef]

37. Forman, H.P.; Middleton, W.D.; Melson, G.L.; McClennan, B.L. Hyperechoic renal cell carcinomas: Increase in detection at US.
Radiology 1993, 188, 431–434. [CrossRef]

38. Hajianfar, G.; Haddadi Avval, A.; Hosseini, S.A.; Nazari, M.; Oveisi, M.; Shiri, I.; Zaidi, H. Time-to-event overall survival
prediction in glioblastoma multiforme patients using magnetic resonance imaging radiomics. Radiol. Med. 2023. [CrossRef]

39. Katabathina, V.S.; Kota, G.; Dasyam, A.K.; Shanbhogue, A.K.; Prasad, S.R. Adult renal cystic disease: A genetic, biological, and
developmental primer. Radiographics 2010, 30, 1509–1523. [CrossRef]

40. Terada, N.; Ichioka, K.; Matsuta, Y.; Okubo, K.; Yoshimura, K.; Arai, Y. The natural history of simple renal cysts. J. Urol. 2002, 167,
21–23. [CrossRef]

41. Hélénon, O.; Crosnier, A.; Verkarre, V.; Merran, S.; Méjean, A.; Correas, J.M. Simple and complex renal cysts in adults: Classifica-
tion system for renal cystic masses. Diagn. Interv. Imaging 2018, 99, 189–218. [CrossRef]

42. Eble, J.N. Angiomyolipoma of kidney. Semin. Diagn. Pathol. 1998, 15, 21–40. [PubMed]
43. Jinzaki, M.; Tanimoto, A.; Narimatsu, Y.; Ohkuma, K.; Kurata, T.; Shinmoto, H.; Hiramatsu, K.; Mukai, M.; Murai, M. Angiomy-

olipoma: Imaging findings in lesions with minimal fat. Radiology 1997, 205, 497–502. [CrossRef] [PubMed]
44. Nicolau, C.; Antunes, N.; Paño, B.; Sebastia, C. Imaging Characterization of Renal Masses. Medicina 2021, 57, 51. [CrossRef]

[PubMed]
45. Schwarze, V.; Marschner, C.; Negrão de Figueiredo, G.; Knösel, T.; Rübenthaler, J.; Clevert, D.A. Single-center study: The

diagnostic performance of contrast-enhanced ultrasound (CEUS) for assessing renal oncocytoma. Scand. J. Urol. 2020, 54, 135–140.
[CrossRef]

46. Fan, L.; Lianfang, D.; Jinfang, X.; Yijin, S.; Ying, W. Diagnostic efficacy of contrast-enhanced ultrasonography in solid renal
parenchymal lesions with maximum diameters of 5 cm. J. Ultrasound Med. 2008, 27, 875–885. [CrossRef]

47. Malhi, H.; Grant, E.G.; Duddalwar, V. Contrast-enhanced ultrasound of the liver and kidney. Radiol. Clin. N. Am. 2014, 52,
1177–1190. [CrossRef] [PubMed]

48. Contrast-Enhanced Ultrasound. Reference Article, Radiopaedia.org. Available online: https://radiopaedia.org/articles/contrast-
enhanced-ultrasound-2?lang=us (accessed on 27 November 2022).

49. Quaia, E.; Calliada, F.; Bertolotto, M.; Rossi, S.; Garioni, L.; Rosa, L.; Pozzi-Mucelli, R. Characterization of focal liver lesions with
contrast-specific US modes and a sulfur hexafluoride-filled microbubble contrast agent: Diagnostic performance and confidence.
Radiology 2004, 232, 420–430. [CrossRef]

50. Piscaglia, F.; Nolsoe, C.; Dietrich, C.F.; Cosgrove, D.O.; Gilja, O.H.; Nielsen, M.B.; Albrecht, T.; Barozzi, L.; Bertolotto,
M.I.C.H.E.L.E.; Catalano, O.; et al. The EFSUMB guidelines and recommendations on the clinical practice of contrast enhanced
ultrasound (CEUS): Update 2011 on non-hepatic applications. Ultraschall Med. 2012, 33, 33–59. [CrossRef]

51. Xu, Z.F.; Xu, H.X.; Xie, X.Y.; Liu, G.J.; Zheng, Y.L.; Lu, M.D. Renal cell carcinoma and renal angiomyolipoma: Differential diagnosis
with real-time contrast-enhanced ultrasonography. J. Ultrasound Med. 2010, 29, 709–717. [CrossRef]

52. Dietrich, C.F.; Nolsøe, C.P.; Barr, R.G.; Berzigotti, A.; Burns, P.N.; Cantisani, V.; Chammas, M.C.; Chaubal, N.; Choi, B.I.; Clevert,
D.A.; et al. Guidelines and Good Clinical Practice Recommendations for Contrast-Enhanced Ultrasound (CEUS) in the Liver-
Update 2020 WFUMB in Cooperation with EFSUMB, AFSUMB, AIUM, and FLAUS. Ultrasound Med. Biol. 2020, 46, 2579–2604.
[CrossRef]

53. Granata, V.; Faggioni, L.; Grassi, R.; Fusco, R.; Reginelli, A.; Rega, D.; Maggialetti, N.; Buccicardi, D.; Frittoli, B.; Rengo, M.; et al.
Structured reporting of computed tomography in the staging of colon cancer: A Delphi consensus proposal. Radiol. Med. 2022,
127, 21–29. [CrossRef]

54. Shang, Y.; Chen, W.; Li, G.; Huang, Y.; Wang, Y.; Kui, X.; Li, M.; Zheng, H.; Zhao, W.; Liu, J. Computed Tomography-derived
intratumoral and peritumoral radiomics in predicting EGFR mutation in lung adenocarcinoma. Radiol. Med. 2023. [CrossRef]
[PubMed]

55. Luo, G.; Li, Z.; Ge, W.; Ji, Z.; Qiao, S.; Pan, S. Residual networks models detection of atrial septal defect from chest radiographs.
Radiol. Med. 2023. [CrossRef] [PubMed]

56. Zheng, C.; Gu, X.T.; Huang, X.L.; Wei, Y.C.; Chen, L.; Luo, N.B.; Lin, H.S.; Liao, J.-Y. Nomogram based on clinical and preoperative
CT features for predicting the early recurrence of combined hepatocellular-cholangiocarcinoma: A multicenter study. Radiol. Med.
2023. [CrossRef]

57. Sheth, S.; Fishman, E.K. Multi-detector row CT of the kidneys and urinary tract: Techniques and applications in the diagnosis of
benign diseases. Radiographics 2004, 24, e20. [CrossRef] [PubMed]

https://doi.org/10.2478/raon-2019-0040
https://doi.org/10.1007/s00345-021-03589-6
https://www.ncbi.nlm.nih.gov/pubmed/33495864
https://doi.org/10.1007/s00345-004-0411-2
https://doi.org/10.1148/radiology.188.2.8327692
https://doi.org/10.1007/s11547-023-01725-3
https://doi.org/10.1148/rg.306105513
https://doi.org/10.1016/S0022-5347(05)65373-6
https://doi.org/10.1016/j.diii.2017.10.005
https://www.ncbi.nlm.nih.gov/pubmed/9503504
https://doi.org/10.1148/radiology.205.2.9356635
https://www.ncbi.nlm.nih.gov/pubmed/9356635
https://doi.org/10.3390/medicina57010051
https://www.ncbi.nlm.nih.gov/pubmed/33435540
https://doi.org/10.1080/21681805.2020.1736621
https://doi.org/10.7863/jum.2008.27.6.875
https://doi.org/10.1016/j.rcl.2014.07.005
https://www.ncbi.nlm.nih.gov/pubmed/25444099
https://radiopaedia.org/articles/contrast-enhanced-ultrasound-2?lang=us
https://radiopaedia.org/articles/contrast-enhanced-ultrasound-2?lang=us
https://doi.org/10.1148/radiol.2322031401
https://doi.org/10.1055/s-0031-1281676
https://doi.org/10.7863/jum.2010.29.5.709
https://doi.org/10.1016/j.ultrasmedbio.2020.04.030
https://doi.org/10.1007/s11547-021-01418-9
https://doi.org/10.1007/s11547-023-01722-6
https://www.ncbi.nlm.nih.gov/pubmed/37749461
https://doi.org/10.1007/s11547-023-01744-0
https://www.ncbi.nlm.nih.gov/pubmed/38082195
https://doi.org/10.1007/s11547-023-01726-2
https://doi.org/10.1148/rg.e20
https://www.ncbi.nlm.nih.gov/pubmed/14730056


J. Clin. Med. 2024, 13, 547 17 of 24

58. Liu, M.T.; Zhang, J.Y.; Xu, L.; Qu, Q.; Lu, M.T.; Jiang, J.F.; Zhao, X.C.; Zhang, X.Q.; Zhang, T. A multivariate model based on
gadoxetic acid-enhanced MRI using Li-RADS v2018 and other imaging features for preoperative prediction of dual-phenotype
hepatocellular carcinoma. Radiol. Med. 2023. [CrossRef]

59. Chu, J.S.; Wang, Z.J. Protocol Optimization for Renal Mass Detection and Characterization. Radiol. Clin. N. Am. 2020, 58, 851–873.
[CrossRef]

60. Kang, S.K.; Huang, W.C.; Pandharipande, P.V.; Chandarana, H. Solid renal masses: What the numbers tell us. Am. J. Roentgenol.
2014, 202, 1196–1206. [CrossRef]

61. Sheth, S.; Scatarige, J.C.; Horton, K.M.; Corl, F.M.; Fishman, E.K. Current concepts in the diagnosis and management of renal cell
carcinoma: Role of multidetector ct and three-dimensional CT. Radiographics 2001, 21 (Suppl. S1), S237–S254. [CrossRef]

62. Kim, H.L.; Zisman, A.; Han, K.R.; Figlin, R.A.; Belldegrun, A.S. Prognostic significance of venous thrombus in renal cell carcinoma.
Are renal vein and inferior vena cava involvement different? J. Urol. 2004, 171, 588–591. [CrossRef]

63. Alterio, D.; Zaffaroni, M.; Bossi, P.; Dionisi, F.; Elicin, O.; Falzone, A.; Ferrari, A.; Jereczek-Fossa, B.A.; Sanguineti, G.; Szturz, P.;
et al. Reirradiation of head and neck squamous cell carcinomas: A pragmatic approach-part I: Prognostic factors and indications
to treatment. Radiol. Med. 2023. [CrossRef] [PubMed]

64. Zheng, M.; Zhu, G.; Chen, D.; Xiao, Q.; Lei, T.; Ye, C.; Pan, C.; Miao, S.; Ye, L. T1-weighted images-based radiomics for structural
lesions evaluation in patients with suspected axial spondyloarthritis. Radiol. Med. 2023. [CrossRef]

65. Bosniak, M.A. The small (less than or equal to 3.0 cm) renal parenchymal tumor: Detection, diagnosis, and controversies. Radiology
1991, 179, 307–317, Erratum in: Radiology 1991, 181, 289. [CrossRef] [PubMed]

66. Cao, Y.; Feng, J.; Wang, C.; Yang, F.; Wang, X.; Xu, J.; Huang, C.; Zhang, S.; Li, Z.; Mao, L.; et al. LNAS: A clinically applicable deep-
learning system for mediastinal enlarged lymph nodes segmentation and station mapping without regard to the pathogenesis
using unenhanced CT images. Radiol. Med. 2023. [CrossRef] [PubMed]

67. Jonisch, A.I.; Rubinowitz, A.N.; Mutalik, P.G.; Israel, G.M. Can high-attenuation renal cysts be differentiated from renal cell
carcinoma at unenhanced CT? Radiology 2007, 243, 445–450. [CrossRef] [PubMed]

68. Takahashi, N.; Takeuchi, M.; Sasaguri, K.; Leng, S.; Froemming, A.; Kawashima, A. CT negative attenuation pixel distribution and
texture analysis for detection of fat in small angiomyolipoma on unenhanced CT. Abdom. Radiol. 2016, 41, 1142–1151. [CrossRef]

69. Aganovic, L.; Cohan, R.H. Renal Tumors. In Diseases of the Abdomen and Pelvis 2018–2021: Diagnostic Imaging-IDKD Book; Hodler,
J., Kubik-Huch, R.A., von Schulthess, G.K., Eds.; Springer: Cham, Switzerland, 2018; Chapter 1.

70. Kim, J.K.; Park, S.Y.; Shon, J.H.; Cho, K.S. Angiomyolipoma with minimal fat: Differentiation from renal cell carcinoma at biphasic
helical CT. Radiology 2004, 230, 677–684. [CrossRef]

71. Shetty, A.S.; Sipe, A.L.; Zulfiqar, M.; Tsai, R.; Raptis, D.A.; Raptis, C.A.; Bhalla, S. In-Phase and Opposed-Phase Imaging:
Applications of Chemical Shift and Magnetic Susceptibility in the Chest and Abdomen. Radiographics 2019, 39, 115–135. [CrossRef]

72. Israel, G.M.; Hindman, N.; Bosniak, M.A. Evaluation of cystic renal masses: Comparison of CT and MR imaging by using the
Bosniak classification system. Radiology 2004, 231, 365–371. [CrossRef]
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