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Abstract: Artificial intelligence has yielded remarkably promising results in several medical fields,
namely those with a strong imaging component. Gynecology relies heavily on imaging since it
offers useful visual data on the female reproductive system, leading to a deeper understanding of
pathophysiological concepts. The applicability of artificial intelligence technologies has not been
as noticeable in gynecologic imaging as in other medical fields so far. However, due to growing
interest in this area, some studies have been performed with exciting results. From urogynecology to
oncology, artificial intelligence algorithms, particularly machine learning and deep learning, have
shown huge potential to revolutionize the overall healthcare experience for women’s reproductive
health. In this review, we aim to establish the current status of AI in gynecology, the upcoming
developments in this area, and discuss the challenges facing its clinical implementation, namely the
technological and ethical concerns for technology development, implementation, and accountability.

Keywords: artificial intelligence; gynecology; deep learning; machine learning

1. Introduction

Over the past years, interest and research in artificial intelligence (AI) technologies
and their applicability to medical practice has considerably increased [1]. AI-based systems
have made their way into a range of different medical fields, especially in those with a
strong imaging component [2], offering exciting prospects for more efficient and effective
use of medical images [3].

Artificial intelligence refers to a digitalized computer system that replicates the pro-
cessing of the human brain [4], its intelligent behavior and critical thinking [5]. By using
computer technology, these complex models have the potential to improve patient care
by speeding up processes and increasing their accuracy and efficiency [6], with lower
human demand [7]. It has proven its benefits in disease diagnosis and treatment, health
management, drug research and development, and precision medicine [8].

Indeed, the world is facing a quickly evolving new era with growing needs for higher
quality global healthcare [9]. As medical activity generates ever-increasing amounts of
digital images and medical records, AI algorithms appear as candidates to handle these
data efficiently.

When discussing the concept of artificial intelligence and its subsets, it is important
to clarify that AI, machine learning (ML), and deep learning (DL) are overlapping disci-
plines [10]. In fact, ML uses computer algorithms automatically developed from input
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training data to recognize patterns within large databases [11]. Thus, these models appear
as highly effective tools to predict future outcomes based on new unforeseen data and
decision making in various disciplines [12]. Additionally, the models can be refined as new
data are continuously added [13].

Furthermore, ML techniques can be either supervised or unsupervised [14]. A super-
vised algorithm uses a dataset that contains input features, such as output target pairs,
labeled at the start of training, to learn mapping and establish meaningful relationships
between the input data and the corresponding output, and creating a model that is able
to differentiate among output labels. Then, the trained model takes in new, fresh, unseen
data and makes predictions or classifications based on the knowledge from labeled ex-
amples [15]. Thus, these models depend heavily on high-quality labeled data. Moreover,
once a model has been developed, it is tested on the new patient’s data, apart from those
included in the training data, to determine its applicability to other people or scenarios [16].

On the other hand, unsupervised ML models are data-driven systems that automati-
cally learn from the relationships between elementary bits of information associated with
each variable of a dataset. Contrary to supervised ML, unsupervised ML methods reveal
associations or clusters existing within datasets and model patterns without any predefined
output data [17]. Unsupervised learning can be particularly beneficial and complement
supervised ML approaches. As these methods can discover potentially unrecognized pat-
terns from large databases, they can feed into supervised algorithms, which in turn will
build new models to discriminate among the classes of interest [18].

Alternatively, DL is a subset of ML [11]. Convolutional neural networks (CNNs) are a
complex multilayer architecture inspired by biological processes, since their design intends
to replicate the structure and organization of the visual cortex, where interconnected
neurons process and transmit information [19]. Therefore, they are particularly tailored to
visual-imagery-related tasks.

Thus, AI algorithms, namely DL and CNNs, hold great promise in the field of medical
imaging [2], from image recognition, processing, and reconstruction to automated analysis
and classification [20]. Therefore, they are of great contribution to disciplines that rely
heavily on images, and gynecology could be a player at the forefront in the development
and application of AI models [21,22]. Table 1 succinctly explains the different ML and DL
models characterized throughout the review.

Table 1. Summary of machine and deep learning models that have been focused on in this review,
with a brief consideration of their methodological concepts. ML—machine learning; DL—deep
learning; CNN—convolutional neural network.

Type of Model Model Definition

ML Support Vector
Machine (SVM)

Supervised algorithm that identifies an optimal hyperplane to classify data into
distint categories defining the optimal margin between the categories.

ML PNN (Probabilistic
Neural Network)

Non-parametric neural network capable of pattern recognition and classifcation,
estimating probability through a Parzen window aproach.

ML Fuzzy C-Means
Algorithm that classifies all data into multiple clusters (differently to most of the
models that atribute a classification to a single category), being specially useful in
cases where data or images may be partially atributable to more than one category.

ML Random Forest

ML algorithm that constructs multiple decision trees, combining them to develop an
accurate model for classification and regression tasks, reducing overfitting in
complex datasets has each tree and has its individual prediction, combining them in
the final development of the model.

ML XGBoost Gradient boosting algorithm that sequentially builds an ensemble of individual
decision trees, and it is used in classification and regression tasks.

ML kNN (k-Nearest
Neighbors)

ML model that makes predictions using a non-parametric method, based on the
majority class or average value of the k value nearest the data points.
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Table 1. Cont.

Type of Model Model Definition

DL ResNET (Residual
Network)

DL architecture that introduces residual connections, faciliting the learning and
updating of residual mapping while reducing the vanishing gradient method, being
one of the most used DL models in the classification of image patterns.

DL U-NET
CNN designed for image segmentation tasks with multiple convolutional layers,
capturing information effectively while mantaning spacial detail, and it is helpful in
assuring lesion location and pixel-level accuracy.

DL MASK-R
DL architecture suitable for segmentation of images, and which is capable of
identifiying frames with the relevant lesion while assuring the lesion is location
inside the image.

DL YOLO (You Only Look
Once)

DL algorithm that processes images in a single pass, making all predictions at once,
which facilitates its real-time application.

DL EB-0 GRU Hybrid approach combining both a CNN (E-B0) with a recurrent neural network
with gated units (GRU), facciliting image detection and segmentation.

DL ShuffleNet CNN architecture for image classification, with a design that reduces the
computacional complexicity, lowering the computational requirements.

DL VGG-Net Neural network composed of small 3 × 3 convolutional filters creating a uniform
deep structure, which allows improved accuracy in image detection/recognition.

DL MobileNetV2 Neural architecture designed for mobile devices, with lightweight concolutions, and
which is effective with lower computational requirements.

2. Application in Gynecological Imaging

AI application in gynecology is still at an early stage when compared with other
specialties. In fact, despite gynecology being one of the areas with the largest imaging
component, the impact of AI in practice is still in an embryonic phase. Nevertheless, there
is a need to understand the limitations of the available clinical imaging methods, namely
clinician workload and intra and interobserver variability, and AI has the potential to
overcome these limitations while increasing diagnostic accuracy [23]. However, AI has a
huge and recognized potential to assist in repetitive tasks, such as automatically identifying
good-quality images and identifying imaging patterns [21]. This work is a state-of-the-art
review of AI advancements in gynecology.

2.1. Cervical Cancer

Cervical cancer is highly prevalent, with a cumulative worldwide incidence of 13.3 cases
per 100,000 women-years, which is increased in low-income countries [24]. Additionally, it
is associated with a mortality rate of 7.2 deaths per 100,000 women-years [24]. Furthermore,
cervical cancer can be easily treated if detected at its early stages [25]. In daily practice,
cervical cancer screening is based on human papillomavirus (HPV) testing and cytological
examination. Therefore, it depends heavily on the pathologist’s experience, which also
is less accurate and has high interobserver variability. Colposcopy is also a critical com-
ponent of cervical cancer detection. However, because of the increased workload, visual
screening leads to misdiagnosis and low diagnostic accuracy [26]. Several authors have
advocated the potential of AI-powered cytological examination and colposcopy image
analysis, identifying abnormal cells or lesions, thus strengthening cervical cancer screening
and diagnostics [27]. This see-and-treat approach allows for earlier and effective treatment
of lesions using minimally invasive procedures, such as thermocoagulation, reducing the
malignancy and associated mortality [26], while reducing the need for unnecessary biopsies.
Table 2 summarizes the most recent evidence about AI models in colposcopy.

The first to study the implementation of an AI model in cervical cancer diagnosis was
Mehlhorn and colleagues, namely during colposcopy exams. In 2012, the group developed
a computer-assisted diagnostic (CAD) device based on image-processing methods to au-
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tomatically analyze colposcopy images. The CAD system revealed a diagnostic accuracy
of 80%, with a sensitivity of 85% and a specificity of 75%, in differentiating normal or
cervical intraepithelial neoplasia grade 1 (CIN1) from high-grade squamous intraepithelial
lesions (HSILs)(CIN2 or CIN3) in colposcopy exams [28]. A second study by the same
group confirmed the benefit of the CAD application during colposcopy exams’ evalua-
tion, demonstrating an increase in diagnostic accuracy when the exam was evaluated by
a less-experienced gynecologist [29]. A Greek group developed and trained a clinical-
decision support system (CDSS) based on an artificial neural network to correctly triage
740 women before referral to colposcopy; this was based on the cytological diagnosis and
the expression of various biomarkers [30]. Women detected with cervical intraepithelial
neoplasia grade 2 or worse (CIN2+) were chosen to undergo colposcopy. The CDSS pre-
sented a sensitivity of 89.4%, a specificity of 97.1%, a positive predictive value of 89.4%, and
a negative predictive value of 97.1%. This system has the potential to reduce the referral
rate for colposcopy when applicated in clinical practice.

Sato et al. were the first to develop a preliminary DL model based on a Keras neural
network with 485 images from 158 individuals who underwent colposcopy [31]. The
CNN tried to classify colposcopy images and predict post-procedure diagnoses. Patients
were classified into three groups: severe dysplasia, carcinoma in situ (CIS), and invasive
cancer (IC). Rather than evaluating the performance of a given AI-based model itself, the
authors wanted to establish its feasibility and usefulness in clinical practice as quick and
efficient way to obtain an accurate preoperative diagnosis that could help doctors in the
decision-making process. The model reached 50% accuracy in this dataset.

Asiedu et al. extracted color and textural-based features from visual inspection with
acetic acid and lugol’s iodine, and then used the data to train a support vector machine
(SVM) model to distinguish cervical intraepithelial neoplasia (CIN) from normal and benign
tissue [32]. The proposed framework achieved a sensitivity, specificity, and accuracy of
81.3%, 78.6%, and 80.0%, respectively, achieving better performance than expert physicians
using the same dataset. In the same year, Miyagi et al. developed a CNN for classification
of cervical squamous intraepithelial lesions from colposcopy images of 330 patients, 97 with
low-grade squamous intraepithelial lesions (LSILs) and 213 with HSILs, who underwent
colposcopy and lesion biopsy [33]. The CNN differentiated HSILs from LSILs with higher
accuracy (82.3% vs. 79.7%) and specificity (88.2% vs. 77.3%), although with slightly lower
sensitivity (80.0% vs. 83.1%). A study by the same group in 2020 included the results of
human papilloma virus (HPV) testing [34]. The trained CNN revealed an accuracy of 94.1%,
higher than gynecologists’ 84.3% global accuracy. This study was one of the first to include
additional variables in order to increase the diagnostic accuracy of the CNN.

In 2020, Yuan and colleagues worked on a database composed of 22,330 cases, includ-
ing 10,365 normal cases, 6357 LSIL cases, and 5608 HSIL cases [35]. Based on a dataset
of three frames per case, they developed a ResNet CNN for differentiating between nor-
mal images and dysplastic lesions (LSILs or HSILs). The CNN revealed 85% sensitivity,
82% specificity, and 93% accuracy. Also, they created a U-Net CNN capable of delimitat-
ing squamous lesions (LSILs or HSILs) in acetic acid and iodine images. The model had
84.7% sensitivity in acetic acid images and 61.6% in lugol’s iodine images. These lesion de-
limitation models are of utmost importance for guiding colposcopy-based biopsies. Finally,
the group developed a MASK-R CNN model to detect HSILs. The model detected HSILs
with 84.7% sensitivity in both acetic acid and iodine images, accurately identifying lesions
that benefit from treatment.

A Chinese group carried out a study to develop and validate a Colposcopic Artificial
Intelligence Auxiliary Diagnostic System (CAIADS) using digital records of 19,435 patients,
including colposcopy images and pathological results, which was considered the gold
standard [36]. Agreement between CAIADS-graded colposcopy and pathology findings
was higher than in expert-interpreted colposcopy (82.2% vs. 65.9%). The CAIADS model
was able to increase its diagnostic accuracy after considering patients’ related factors (such
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as previous cytology results). The new model also revealed a superior ability to predict
biopsy sites, with a median mean-intersection-over-union (mIoU) of 0.758.

In 2021, Fu et al. intended to create a model incorporating the results of HPV typing,
cytological examination, and colposcopy analysis [37]. First of all, they acquired colposcopy
images and created a multiple-image-based DL model using a multivariable logistic regres-
sion (MLR), presenting an area under the curve (AUC) of 0.845. Then, the results of the
cytology test and HPV test were used to build an ML model, with an AUC of 0.837. Finally,
they built a cross-modal integrated model using ML, through combining the multiple-
image-based DL model and the Cytology–HPV joint diagnostic model. The authors proved
the synergetic benefits of the ensembled model, presenting a higher AUC of 0.921. A
ShuffleNet-based cervical precancerous lesion classification method based on colposcopy
images was developed by Fang and colleagues [38]. The image dataset was classified into
five categories, namely normal, cervical cancer, LSILs (CIN1), HSILs (CIN2/CIN3), and
cervical neoplasm. In this dataset, the colposcopy images were expanded to reduce the
impact of uneven distribution between the lesions’ categories, Additionally, the ShuttleNet
network was compared with other CNNs (like the RestNet or the DenseNet). The new
CNN model presented a global accuracy of 81.23%, with an AUC of 0.99. A recent study
by Chen et al. collected images from 6002 colposcopy examinations of normal cervixes
and those with LSILs and HSILs [39]. A new model based on EficcientNet-B0 using Gate
Recurrent Unit was developed in order to accurately identify HSILs. The CNN revealed a
sensitivity of 93.6%, specificity of 87.6%, and accuracy of 90.6% in distinguishing between
HSILs, LSILs, and normal-cervix images.

Additionally, the diagnosis of cervical cancer can also be guided using magnetic
resonance imaging (MRI). Urushibara et al. designed a study including 418 patients,
177 patients with pathologically confirmed cervical cancer and 241 patients without cancer,
who underwent MRI between 2013 and 2020 [40]. They compared the performance of a
DL architecture, called Xception, with experienced radiologists in the diagnosis of cervical
cancer on sagittal T2-weighted images. The CNN presented higher sensitivity (88.3% vs.
78.3–86.7%) and accuracy (90.8% vs. 86.7–89.2%), with similar specificity.

The development of AI models in cervical cancer diagnosis can also be accomplished at
the histological level. In fact, in 2019, Sompawong and colleagues applied a Mask Regional
Convolutional Neural Network (Mask R-CNN) to analyze cervical cells using liquid-
based histological slides and screening for abnormal nuclear features [41]. The proposed
algorithm achieved an accuracy of 91.7%, sensitivity of 91.7%, and specificity of 91.7%.
In the same year, a group of Indian pathologists trained a CNN to identify abnormal
features from liquid-based cytology (LBCC) smears, using 2816 images—816 presenting
abnormal features, indicating LSILs or HSILs, and 2000 normal images, containing benign
epithelial cells and reactive changes [42]. The referred model yielded a sensitivity of 95.6%,
with 79.8% specificity. In addition, its high negative predictive value of 99.1% makes it
a potentially valuable tool for cervical cancer screening. The technological development
was accompanied by a multicenter observational study that evaluated the performance of
AI-assisted cytology for the detection of CIN or cancer [43]. The group used 188,542 digital
cytological images to train a supervised DL algorithm. The DL model detected 92.6%
of CIN 2 and 96.1% of CIN 3, showing an equivalent sensitivity but higher specificity
compared to skilled senior cytologists.
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Table 2. Summary of Studies about AI implementation in colposcopy. Sn, sensititivy; Sp, specificity; AUC, area under the curve; CIN, cervical intraepithelial
neoplasia; HSIL, high-grade squamous intraepithelial neoplasia; LSIL, low-grade squamous intraepithelial neoplasia; N, normal; VIA, visual inspection with acetic
acid; VILI, visual inspection lugol iodine. NK—not known.

Author, Year Study Aim Patients n Frames n Pathologic
Confirmation AI Methoad Dataset Method Analysis

Method
Categories Performance Metrics %

Sn Sp AUC

Mehlhorn, 2012,
Germany [28]

Detection of
CIN 2/3 lesions 198

375 frames (VIA)

– Normal: 39
– CIN 1: 41
– CIN 2: 99
– CIN 3: 19

Yes
Color texture

analysis
methods

frame annotation in VIA
(normal vs. CIN I vs. CIN

II-III)

n-fold cross
validation

HSIL (CIN 2 or
CIN 3) 85 75 80

Asiedu, 2019,
USA [32]

Differentiating
normal vs. abnormal

(CIN+)
134

Not known
Only number of patients
per category

Yes SVM

frame annotiation in VIA and
VILI

(VILI/VIA positive vs.
VILI/VIA negative)

5-fold cross
validation
(80–20%)

Abnormal (LSIL
or HSIL) 81 79 80

Miyagi, 2019,
Japan [33]

Differentiating LSIL
vs. HSIL 330

1 frame per colposcopy (VIA)

– LSIL: 97
– HSIL: 213

Yes ResNet frame labeling in acid free
(LSIL vs. HSIL)

5-fold cross
validation LSIL vs. HSIL 80 88 83

Yuan, 2020,
China [35]

Differentiating
normal vs. abnormal

(LSIL+)
22,330

3 frames per colposcopy (AF,
VIA and VILI)

– Normal: 10,365 × 3
– LSIL: 6357 × 3
– HSIL: 5608 × 3

Yes ResNet

frame annotation in acid-free,
VIA and VILI

(normal vs. LSIL vs. HSIL)

Train–test
validation

(80–10–10%)

Abnormal (LSIL
or HSIL) 85 82 93

Predicting the area of
lesion (LSIL+) 11,198

11,198 VIA frames +
11,198 VILI frames

– Normal: NK
– LSIL: NK
– HSIL: NK

Yes U-Net
VIA 85 NK NK

VILI 62 NK NK

Detection of HSIL 11,198 Yes MASK R
VIA 85 NK NK

VILI 85 NK NK

Xue, 2020,
China [36]

Differentiating
normal vs. LSIL vs.

HSIL vs. cancer
19,435

101,7267 acid-free frames

– Normal: NK
– LSIL: NK
– HSIL: NK
– Cancer: NK

Yes U-Net + YOLO
frame annotation in acid-free
(normal vs. LSIL vs. HSIL vs.

Cancer)

Train–test
validation

(70–10–20%)

LSIL+ 87 49 69

HSIL+ 66 90 78

Chen, 2022,
China [39]

Differentiating LSIL
vs. HSIL 6002 18,006 frames (AF, VIA

and VILI) Yes E-B0 with GRU
frame labeling in acid-free, VIA

and VILI
(LSIL vs. HSIL)

Train–test
validation

(60–20–20%)
LSIL vs. HSIL 88 94 91

Fang, 2022,
China [38]

Differentiating
normal vs. cervical
cancer vs. LSIL vs.

HSIL vs.
cervical neoplasm

1189

6996 acid-free frames

– Normal: 2352
– LSIL: 780
– HSIL: 2532
– Cervical cancer: 408
– Cervical neoplasm: 924

Not mentioned ShuffleNet

frame labeling in acid free
(normal vs. LSIL vs. HSIL vs.

cervical cancer vs.
cervical neoplasm) +
data augmentation

train–test
(90–10%)

N vs. all 90 NK NK

LSIL vs. all 86 NK NK

HSIL vs. all 82 NK NK

Cervical
neoplasm NK NK

Cervical cancer NK NK
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In fact, a validated AI-assisted cytology system, called Landing CytoScanner®, was
enrolled in a cohort study including 0.7 million women [44]. Women with abnormal results
in both AI-assisted and manual readings were diagnosed using colposcopy and biopsy. The
outcomes were of histologically confirmed CIN of grade 2 or worse (CIN2+). The agreement
rate between AI and the manual reading was 94.7% and the kappa value was 0.92. The
large number of images analyzed contributed to the robustness of this experiment. Given its
ability to exclude most normal cytology, with increased sensitivity compared with manual
cytology readings, the results support the AI-based cytology system for primary screening
of cervical cancer in a large-scale population. More recently, a Chinese group studied the
diagnostic performance of an artificial intelligence-enabled liquid-based cytology (AI-LBC)
in triaging women with HPV [45]. AI-LBC achieved sensitivity for the detection of CIN2+
comparable to that of experienced cytologists (86.49% vs. 83.78%), but significantly higher
in specificity (51.33% vs. 40.93%). Similar results were observed for CIN3+. Moreover, the
AI-LBC reduced colposcopy referral by 10%, compared with cytologists, making the process
more effective by reducing the number of false positives in the cytological evaluation. Even
though there are positive conclusions, prospective designs are needed to test the triaging
performance of the developed model.

In order to increase the diagnostic accuracy of cervical lesions, new image methods
have been evaluated. High-resolution endomicroscopy (HRME) consists of a fiber optic
fluorescence microscope capable of acquiring nuclear images in vivo. In 2022, Brenes et al.
used a dataset of images from over 1600 patients to train, validate, and test a CNN algorithm
to diagnose CIN2+ cases from HRME images [46]. The proposed method consistently
outperformed the current gold-standard methods, achieving an accuracy of 87%, with
a sensitivity of 94% and specificity of 58%. By incorporating the HPV status, specificity
increased to 71%.

Finally, AI-models can also provide prognostic information, guiding therapeutic decision.
In 2019, Matsuo et al. compared the performance of a DL model with four survival-analysis
models, including the Cox proportional hazard regression model, the mainstay for survival
analyses in oncologic research in predicting survival in women with cervical cancer [47].
The study included 768 women, with a median follow-up time of 40.2 months. The new
model exhibited superior performance, outperforming the prediction models for overall
survival, but with similar results in predicting progression-free survival. The prognostic
information given using DL algorithms was also evaluated in a retrospective study evaluat-
ing 157 women who developed recurrent cervical cancer among 431 women with cervical
cancer diagnosed between January 2008 and December 2014 [48]. Predictions of 3- and
6-month survival after recurrence were compared between the current approach (linear
regression model) and their experimental approach (DL neural network model). The DL
model inputs included some clinical and laboratorial parameters and achieved significantly
better prediction for 3-month (AUC 0.747 vs. 0.652) and 6-month (AUC 0.724 vs. 0.685)
survival. Better predictions of limited life expectancy in women with recurrent cervical
cancer pave the way for even more personalized clinical decisions, thus helping clinicians
to individually adjust the level of care provided.

2.2. Endometrial Cancer

Endometrial cancer is the most common gynecological malignancy in developed
countries, with rising prevalence. Commonly, the disease is diagnosed in an early localized
phase in the setting of postmenopausal bleeding. Nevertheless, cases with advanced
disease at diagnosis have a poor prognosis [49]. Additionally, endometrial cytology is not a
cost-effective screening method, with a large number of false negatives. In this context, AI
algorithms represent a profitable tool either in the automatic classification of hysteroscopy
or histopathological images necessary for diagnosing endometrial cancer, or in preoperative
MRI-based predictions. Table 3 summarizes the main works about artificial intelligence
models for the diagnosis of endometrial cancer during hysteroscopy.
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Table 3. Summary of studies about AI implementation in hysteroscopy. Sn, sensitivity; Sp, specificity; AUC—area under the curve; NK—not known;
EH—endometrial hyperplasia; AH—atypical hyperplasia; EC—endometrial cancer; EP—endometrial polyps; SM—submucous myomas; FCM—Fuzzy C-Means.

Author, Year Study Aim Patients n Frames n Pathologic
Confirmation AI Method Dataset Method Analysis

Method
Categories

Performance Metrics %

Sn Sp AUC

Neofytou, M.S.;
2006, USA [50]

Hysteroscopy image
classification 198

418 frames

– Normal: 209
– Abnormal: 209

No
Color– texture

analysis
methods

Frame annotation based on
texture features (two
different classifiers)

10-fold cross
validation (and
leave-one-out

method)

Normal vs. abnormal 51–77 72–82 NK

Vlacho-kosta, 2013,
Greece [51]

Differentiating
normal vs. uterine vs.
endometrial cancer

77
NK
Only number of patients
per category

Yes DNN and FCM Feature extraction related to
vessel and texture structure NK Normal vs.

patological 71–93 71–91 91

Zhang, 2021,
China [52]

Differentiating
benign (EH, EP, and
SM) from premalig-

nant/malignant
lesions (AH and EC)

454

1851 frames:
EH = 509
AH = 222,
EC = 280
EP = 615
SM = 225

Yes VGGNet

Image-based frame labeling
with preprocessing and

retaining of region of interest
and data augmentation

Train–test
validation (50

images for each
category in

test set)

Part 1:
EH vs. AH vs. EC vs.

EP vs. SM;
Part 2: benign vs.

premalig-
nant/malignant

83 96 94

Takahashi, 2021,
Japan [53]

Differentiating
malign vs. benign or

normal findings
177

411,800 frames

– Malignant: 109,957
– Others: 301,843

Yes

Xception,
MobileNetV2

and
EfficientNetB0

Frame labeling in still
images and video segments

Train–test
validation

Malignant
and others (uterine
myoma, EP normal

endometrium)

92 89 90
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Neofytou and colleagues were the first to develop a CAD system for the classifica-
tion of hysteroscopy images based on color–texture analysis [50]. In total, 418 regions
of interest were extracted from 40 patients, and these data were used to train two classi-
fiers: a probabilistic neural network (PNN) and an SVM model. The latter achieved the
highest percentage of correct classifications between normal and abnormal endometrial
tissue (79%). In 2013, Vlachokosta et al. developed a neural network for the classification
of hysteroscopic images of the endometrium by evaluating the endometrial vessels and
texture features [51]. In this work, a Fuzzy C-Means clustering algorithm was used for
feature selection. A total of 28 patients with abnormal uterine bleeding, 10 patients with
endometrial cancer, and 39 subjects with no pathological condition were enrolled in the
study. The neural network had an accuracy of 91.2%, with a sensitivity of 93.6%, and a
specificity of 83.8%. The role of AI models in hysteroscopy was also addressed by Zhang
et al. in 2021. The Chinese group obtained 1851 hysteroscopic images from 454 patients
with confirmed endometrial lesions, including endometrial hyperplasia without atypia,
atypical hyperplasia, endometrial cancer, endometrial polyps, and submucous myomas, to
construct and train a VGGNet-16 model, a 16-layer DL CNN [52]. The model achieved an
overall accuracy in classifying endometrial lesions of 80.8%. For dichotomous classification
of the lesions as benign or as premalignant/malignant, the model’s accuracy, sensitivity,
and specificity were 90.8%, 83.0%, and 96.0%, respectively. In both classification tasks the
CNN model outperformed the gynecologist’s evaluation. A Japanese study developed a
DL-based model with 411,800 images from 177 videos (comprising normal findings, en-
dometrial polyps, endometrial myomas, atypical endometrial neoplasia, and endometrial
cancer) [53]. The developed CCN had a binary nature (malign vs. benign or normal find-
ings). Three different models were evaluated—Xception, MobileNetV2, and EfficientNetB0.
After combining all the trained models, a diagnostic accuracy of 90.3%, sensitivity of 91.7%,
and specificity of 89.4% were achieved.

On the other hand, the evaluation of the depth of myometrial invasion, typically using
MRI, is an integral part of the assessment of patients suffering from endometrial cancer, as it
affects the choice of treatment and prognosis. Therefore, AI-based MRI analysis appears as
a possible time-efficient and cost-effective approach. Chen et al. evaluated the performance
of a DL network in myometrial invasion depth identification on T2-weighted imaging
(T2WI)-based endometrial cancer MRI [54]. Images from 530 patients with pathologically
confirmed endometrial cancer were used to train and validate the model with a YOLOv3
algorithm to locate the lesion areas, achieving an accuracy of 84.8%, a sensitivity of 66.7%,
and a specificity of 87.5% in determining deep myometrial invasion. When the performance
of radiologists and trained network model were evaluated together, they reached a higher
accuracy of 86.2% and a sensitivity of 77.8%, with equal specificity. In 2021, Zhu et al.
developed a new method for the evaluation of depth of myometrial invasion MRI [55].
Differently from other previous prediction models, they used a geometric feature, named
by the authors as LS, intended to describe the irregularity of the tissue structure inside the
corpus uteri triggered by endometrial cancer. Then, a multiple probabilistic SVM incorpo-
rated LS and texture features, which are then merged to form the ensemble model EPSVM.
The proposed EPSVM’s merging of LS and textural information showed more trustworthy
predictions, achieving an accuracy, sensitivity, and specificity of 93.7%, 94.7%, and 93.3%,
and exhibiting higher performance than those of the commonly used classifiers and the
models using LS or texture features alone. Thus, future computer-aided classification based
on the proposed method would be able to assist radiologists in accurately identifying
deep miometrial invasion in MRI. On the other hand, the use of AI-models during the
radiological diagnosis of endometrial cancer was also addressed in a few works. In 2021,
Zhang et al. analyzed preoperative MRI from 158 patients with endometrial cancer and
designed a CNN architecture to predict endometrial cancer based on radiomic features from
MRI [56]. The AUC of the radiomic model was 0.897 in the training group. A comprehen-
sive prediction model, incorporating specific imaging parameters and clinical pathological
information, achieved an AUC of 0.913. Based on those results, the authors suggested that
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radiomics parameters can be used as noninvasive markers to predict endometrial cancer.
In 2022, a Japanese group compared the diagnostic performance of a CNN model with the
classification of three expert radiologists for diagnosing endometrial cancer [57]. The CNN
demonstrated a non-inferior diagnostic performance than the radiologists. The single set
of axial apparent diffusion coefficients of water maps and axial contrasted T1-weighted
images revealed an AUC of 0.88–0.95. On the other hand, the addition of other image types
had an associated AUC of 0.87–0.93.

The diagnosis of endometrial cancer is classically made after the analysis of histopatho-
logical material obtained during a hysteroscopy. Thus, AI may have a role in simplifying
anatomopathological diagnosis, while reducing the problem of interobserver variability.
Sun and colleagues built up a CAD approach based on a CNN and attention mechanisms,
called HIENet, for histopathological endometrial images screening [58]. Their model
was designed to discriminate between four classes of endometrial tissue, namely normal
endometrium, endometrial polyp, endometrial hyperplasia, and endometrial adenocar-
cinoma. The ten-fold cross validation dataset revealed an accuracy of 76.9%, while the
validation dataset of 200 hematoxylin and eosin images achieved an accuracy of 84.5%.
By highlighting the histopathological correlations of local pixel-level image features to
morphological characteristics of endometrial tissue, the model can assist pathologists in
better interpretation of diagnoses.

Lastly, the value of ML and DL models is not only centered on predicting a diagnosis,
but, more importantly, it provides significant prognostic information. In 2022, Feng et al.
worked on a random forest (RF) model that was able to predict histology, stage, and grade
of endometrial carcinoma preoperatively based on a database containing age, body mass
index BMI, and examinations of 329 patients with endometrial cancer [59]. The RF model
had an AUC of 0.69, accuracy of 81% for histology prediction, AUC of 0.66, and an accuracy
of 63% for disease staging, with an AUC of 0.64 and accuracy of 43% for grading. The
performance of doctors’ prediction compared to AI was higher than that of RF alone and
doctors’ prediction without AI. Nevertheless, the modest results of the model need to
be improved before its clinical implementation. More recently, Li et al. unveiled their
work aimed at evaluating the performance of ML classification methods based on clinical
and radiomic signatures from T2-weighted MR images in predicting deep myometrial
infiltration, clinical risk category, histological type, and lymphovascular space invasion
(LVSI) in women with endometrial cancer [60]. The AUCs for deep miometrial invasion,
high-risk endometrial cancer, endometrial histological type, and LVSI classification were
0.79, 0.82, 0.91, and 0.85, respectively, on the independent external testing dataset. This
work showcases the benefit of implementation of an ML model to obtain diagnostic and
prognostic information during a single MRI exam.

2.3. Endometriosis

Endometriosis is a chronic medical condition, with a significant economic and disease
burden on society [61,62]. It is defined as an extra-uterine growth of endometrial-like
tissue in diverse organs, namely the ovaries, small bowel, colon, bladder, and peritoneum,
causing pain and fertility issues. As a non-invasive and easily accessible tool, transvaginal
ultrasound is commonly used in clinical practice for screening, but laparoscopic exploration
with lesion sampling and histologic evaluation remains the gold standard approach for
endometriosis diagnosis [63]. AI algorithms may play a key role in early detection of the
disease, namely through automatic assessment of imagiology findings, which are usually
difficult to interpret, or through the development of predictive models for earlier diagnosis
and better disease control.

In fact, endometriosis consists of a myriad of symptoms, not rarely nonspecific, that
complicate its diagnosis. In fact, the absence of clinical and minimally invasive markers
of the disease result in a relevant number of diagnostic laparoscopies performed in this
clinical context. In 2022, an ML algorithm based on 16 clinical and patient-based symptoms
was developed [64]. Among the models tested, Soft Voting Classifier, random forest,
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and Extreme Gradient Boosting (XGBoost) stood out as those with the best performance,
with a sensitivity and specificity ranging between 95%, 98%, and 80%, respectively. The
high diagnostic yield suggests that the algorithm is a potential substitute for diagnostic
laparoscopy, while also giving general care practitioners a possible tool for minimally
invasive diagnosis or suspicion for this disease.

The current evidence suggests that endometriosis is characterized by a change in the
amount of some molecules (i.e., proteins, antigens) in the blood, which can be evaluated
using Raman spectroscopy, a non-invasive diagnostic method for endometriosis [65]. In
2019, a Turkish group report a Raman spectroscopy-based classification model developed
from the blood samples of 94 patients (49 with endometriosis and 45 healthy individuals).
Among the ML techniques tested, k Nearest Neighbors (kNN), achieved the best classifica-
tion performance, with a sensitivity of 80.5% and a specificity of 89.7%. Once the model was
tested with unseen data, it yielded a sensitivity and specificity value of 100%. This work
suggested AI-based Raman spectroscopy classification as a potential future replacement for
laparoscopy, given the minimally invasive nature of the exam, requiring only the collection
of a peripheral blood sample.

In fact, colonic involvement in endometriosis is common and there are published
works about the application of AI models in their diagnosis. An Italian group tested several
ML models during the ultrasound (US) diagnosis of endometriosis with bowel involve-
ment [66]. They compared the accuracy of different ML methods combining patient’s age
with ultrasound soft markers, namely the presence of US signs of uterine adenomyosis,
presence of an endometrioma, adhesions of the ovary to the uterus, presence of “kissing
ovaries”, and absence of sliding sign, to raise suspicion of endometriotic bowel involvement.
The models were developed based on data from 333 patients, with a testing dataset com-
prising 67% of the images, and a validation dataset with 33%. A Neural Network algorithm
(NeuralNet) presented the best performance, with an accuracy of 73%, a sensitivity of 72%, a
specificity of 73%, with a PPV of 52%, and an NPV of 86% for the diagnosis of rectosigmoid
endometriosis. However, the model did not outperform current logistic regression models
in terms of diagnostic accuracy, which limits its application in clinical practice.

Pouch of Douglas (POD) obliteration is a consequence of inflammation in the pelvis,
often seen in patients with endometriosis. The sliding sign is a dynamic transvaginal
ultrasound (TVUS) test that can diagnose POD obliteration. In 2021, a DL model was
created based on a temporal residual network for automatic classification of the sliding sign
as positive (normal) or negative (abnormal, indicating POD obliteration) using a dataset
of 749 recorded ultrasound videos [67]. The model achieved an accuracy of 88.8%, with
a sensitivity of 88.6%, a specificity of 90.0%, a PPV of 98.7%, and an NPV of 47.7% in the
training dataset. However, despite the satisfactory performances of the model, there is a
need to consider the technical difficulty of performing the ultrasonographic sliding sign,
which could limit the generalization of the application of the DL model, and the absence of
surgical information on POD, which nowadays remains the gold standard for its diagnosis.

In conclusion, several AI models (clinical, biochemical, and radiological) have been de-
veloped for an earlier, minimally invasive diagnosis of endometriosis. The main objective of
this algorithms would be a reduction in the number of diagnostic laparoscopies performed
in this context, which are commonly performed after months or years of disease symptoms
and multiple exams with nondiagnostic findings. Nevertheless, all the algorithms were
developed in a retrospective manner and need to be validated in prospective multicenter
studies in order to replace the current gold standard and obtain an earlier diagnosis of this
high-burden disease.

2.4. Ovarian Cancer

Initial characterization of a suspicious adnexal mass is based on imagological features
from transvaginal ultrasonography and can be complemented using other effective tools,
such as MRI or computed tomography (CT) [68]. Despite advances in therapy, ovarian can-
cer remains the most lethal gynecologic cancer, mainly because women are diagnosed at an
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advanced stage [69]. Therefore, improving the sensitivity of diagnostic tools, standardizing
imaging techniques and developing predictive models for malignancy risk could reduce
mortality from ovarian cancer by leading to the early detection of this malignancy [70].

Transvaginal ultrasound is commonly performed in the routine screening of ovarian
cancer or following clinical suspicion in the presence of symptoms (namely abdominal pain,
pelvic discomfort, or unexplained weight loss). Additionally, this exam can be performed
preoperatively in the evaluation of an ovarian tumor. However, despite a satisfactory
sensitivity for diagnosing ovarian cancer, its low PPV limits its implementation and results
frequently in unnecessary procedures or concerns [71]. In fact, the distinction between
benign and malign ovarian findings is challenging. In order to simplify this classification
a SVM classification model to automatically discriminate malignant and benign ovarian
tumors was developed and validated, using a dataset of 1000 benign and 1000 malignant
ultrasound images [72]. They obtained an accuracy of 99.9%, a sensitivity of 100%, and a
specificity of 99.8%.

Alqasemi and colleagues extracted twenty-four unique features from more than 400 ul-
trasound and photoacoustic images obtained from 33 ex vivo ovaries of 24 patients and
used them to train three classifiers, namely generalized linear model, neural network,
and SVM [73]. The main objective of the model was to differentiate between benign and
malignant findings, with the SVM achieving the best results. At the validation dataset of
unseen 95 images from 20 additional patients, the SVM classifier achieved 76.9% sensitivity
and 95.1% specificity.

The automatic diagnosis of an ovarian tumor could also be based on variations of
color intensity. Acharya et al. created a computer-aided diagnostic (CAD) technique called
GyneScan® for automatic ovarian tumor classification into benign or malignant, based on
the subtle variations in the gray-level intensity variations in the 3D-transvaginal ultrasound
images (1300 benign and 1300 malignant) [74]. K Nearest Neighbors/Probabilistic neural
network classifiers with 11 classifiers showed 100% classification accuracy, sensitivity, speci-
ficity, and positive predictive value in detecting ovarian cancer. This research appointed
the use of CAD during a transvaginal ultrasound as a valuable tool for increasing its
diagnostic accuracy.

DL models have been appointed as a solution for increasing the diagnostic accuracy of
a transvaginal ultrasound for ovarian cancer. A CNN based on 39 malignant and 105 benign
cases was developed for automatic classification of adnexal masses, combining ultrasound
images’ features and patient’s age [75]. The model revealed a global accuracy of 98.8%,
sensitivity of 98.5%, and specificity of 98.9%. A CNN based on 3 DL algorithms (VGG16,
ResNet50 and MobileNet) was developed and compared to the evaluation by an ultrasound
expert [76]. The DL model showed comparable diagnostic accuracy with a sensitivity over
95% in the evaluation of 3077 ultrasound images from 758 women with ovarian cancer.
The comparison with a radiologist expert was also addressed by Gao and colleagues. A
retrospective dataset of 34,488 images of ovarian cancer and 541,442 images of benign
findings was used to develop and validate the CNN in a multicenter setting [77]. The
model presented higher accuracy when compared to radiologist assessment at detecting
ovarian cancer (88.8% vs. 85.7%). These results are encouraging, given the specificity of
transvaginal ultrasound, and AI-driven screening of ovarian cancer could be a realistic
to achieve using nationwide screening even in unfavored settings. However, due to the
retrospective nature of the studies, more investigations may contribute to the robustness of
this experiment.

The diagnostic workup of an adnexal mass often includes CT imaging. A Chinese
group developed a DL model to determine the risk of recurrence based on preoperative
CT images from 245 patients with high-grade serous ovarian cancer [78]. The model
incorporated DL features with a Cox proportional hazard model to automatically determine
the 3-year recurrence probability. The combined model had an AUC of 0.772 and 0.825 for
predicting 3-year recurrence in two validation cohorts. ML models were also developed
based on contrast-enhanced CT images. An ensembled model with a combination of
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radiomics and DL features was developed for automatic discrimination of benign and
malignant ovarian tumors [79]. The ML model showed a satisfactory performance, with an
accuracy of 82%, specificity of 89% and sensitivity of 68%.

Additionally, artificial intelligence may have a role in augmenting the diagnostic
accuracy of MRI. A dataset was composed of 55 sonographically indeterminate ovarian
masses (27 benign and 28 malignant) [80], and, in this study, a prospective analysis of
preoperative dynamic contrast-enhanced MRI was used to identify the best descriptive
parameters in predicting malignancy of complex ovarian masses. Time-to-peak and wash-
in-rate achieved the highest sensitivity and specificity. In the second part of the author’s
experiment, and based on a combination of these two parameters, they developed a
decision-tree classifier using the line equation obtained using linear discriminant analysis
(LDA), which is a supervised ML classification model. The LDA model achieved an
accuracy of 89% and AUC-ROC over 0.93. A retrospective study with 501 women intended
to develop and validate an objective MRI-based ML assessment model to distinguish benign
and malign epithelial ovarian tumors [81]. The ML performed better than radiologist
assessment, with AUC values higher than 0.90. The importance of AI discrimination
of adnexal masses is also the exclusion of the malignancy of an adnexal mass, reducing
unnecessary surgeries and preserving ovarian function and fertility.

The application of AI models could also focus on discriminating ovarian cancer types,
and not only in determining the malignant nature of an adnexal mass. A preliminary
study by Zhang et al. evaluated the ability of an MRI radiomics model in discriminating
benign ovarian diseases from malignant and differentiating between type I or II epithelial
carcinomas [82]. For the classification between benign and malignant masses, the MRI
radiomics model achieved a high accuracy of 87% in the independent validation cohort.
For the classification between type I and type II subtypes, the method showed a satisfactory
performance, presenting with an accuracy of 84% in the independent validation cohort.

On the other hand, there is a need to consider the use of AI models in the histopatholog-
ical analysis of ovarian cancer. BenTaieb and colleagues developed an SVM model for auto-
matic histopathological subtyping of ovarian cancer, based on a dataset of 133 patients [83].
Their model achieved substantial agreement with six clinicians that evaluated the same
dataset, with a diagnostic accuracy of 90% in subtype discrimination. A Japanese group
tried to predict the pathological result of an ovarian mass and evaluated the performance
of five ML algorithms, namely support vector machine (SVM), random forest (RF), naive
Bayes (NB), logistic regression (LR), and Extreme Gradient Boosting (XGBoost) in predicting
the pathological diagnosis of ovarian tumors based on features, commonly available from
blood tests, patient background, and data from preoperative examinations [84]. XGBoost
was the one with better performance, with an accuracy of 80%.

Finally, AI may also play a role in giving accurate prognostic information for ovar-
ian cancer patients. A British group focused on the development of a neural network
capable of predicting the overall survival of epithelial ovarian cancer patients, comparing
it with a logistic regression model [85]. The model outperformed the logistic regression
model, predicting overall survival with an accuracy of 93%. When it came to predicting
the outcome of surgery (complete/optimal cytoreduction vs. suboptimal cytoreduction),
the neural network showed once more good results, with 77% accuracy. Late in 2022, a
multicenter study aimed to develop an ML prediction model for the diagnosis and prog-
nosis of epithelial ovarian cancer, based on age and 33 peripheral blood biomarkers from
521 patients with ovarian cancer and 144 patients with benign gynecological diseases [86].
XGBoost, a supervised ML method, showed promising results, as the AUC-ROC values
distinguished epithelial ovarian cancer and benign findings, determining the pathological
subtypes; grade and clinical stage were 0.958, 0.792, 0.819, and 0.68, respectively. The
existence of validated models for preoperative prognosis information is important to assure
the appropriate surgical treatment and select high-risk patients for monitoring recurrent
disease, reducing ovarian cancer-related mortality.
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2.5. Urogynecology

Urogynecology faces new challenges as we attempt to increase the diagnostic accuracy
of different exams, while reducing interobserver variability [87]. Some studies have focused
on the potential of AI methods in urogynecology as a diagnostic tool by boosting the
capabilities of well-known techniques such as ultrasound, dynamic, and functional MRI,
and standardizing urodynamic tests’ interpretation [88].

Stress incontinence is a highly prevalent condition associated with great morbidity.
The disease is typically diagnosed using urodynamic tests, but other alternatives have been
studied. A Taiwanese group developed a CAD system based on a multilayer perception
neural network to diagnose stress incontinence based on anatomical and functional char-
acteristics of the bladder neck on perineal ultrasound [89]. The proposed CAD system
effectively detected USI using perineal sonographic analysis, with an accuracy of 91.7%,
with a sensitivity of 94.4%, and a specificity of 83.3%. This study attests the ability of AI
models to accurately identify imaging patterns. A few years latter a semiautomated pelvic
floor measurement algorithmic model on 15 dynamic MRI was compared with manual
pelvic floor measurements for pelvic organ prolapse evaluation [90]. The algorithmic model
provided highly consistent and accurate locations for reference points on MRI, identifying
them faster than the manual-point identification process. These results pave the way for
research into new automatic methods to facilitate and improve the process of pelvic floor
measurements on MRI based on the potential of artificial intelligence [89].

On the other hand, there have been a few studies evaluating the impact of AI models in
the evaluation of urodynamic studies. Indeed, the application of AI algorithms could reduce
the interobserver variability associated with exam interpretation. Detrusor overactivity, a
marker of an overactive bladder, is detected in urodynamic studies and often correlates
with lower urinary tract symptoms, driving management. In 2020, Wang et al. sought
to develop a predictive model using ML algorithms to identify detrusor overactivity in
urodynamic studies [91]. A total of 799 urodynamic studies were evaluated, and raw
tracings of vesical pressure, abdominal pressure, detrusor pressure, infused volume, and
all annotations during the exam were obtained. The ML model presented an overall
accuracy of 81.3%, a sensitivity of 76.9%, and a specificity of 81.4% in detecting detrusor
activity. A ML algorithm to detect detrusor overactivity in patients with spina bifida was
developed using data windowing, dimensionality reduction, and SVM techniques [92].
In total, 805 urodynamic studies from 546 patients were used to train the model, which
achieved a good performance in both time-based (AUC 0.919, sensitivity of 84.2% and
specificity of 86.4%) and frequency-based (AUC 0.905, sensitivity of 68.3% and specificity
of 92.9%) approaches. This promising proof-of-concept ML approach may be employed to
standardize urodynamic studies’ interpretation and subsequently validate them as a useful
tool in different populations.

Finally, there is also an interest in predicting responses to treatment in urogynecology,
selecting the appropriated treatment for each patient. Sheyn et al. based on a retro-
spective dataset including 559 women with overactive bladders, who were treated with
anticholinergic medications to develop and validate a predictive random forest model for
anticholinergic response in this population [93]. Patients were stratified by age and number
of previously failed medications. They achieved a final accuracy of 80.3%, with a sensitivity
of 80.4% and a specificity of 77.4% in the external validation dataset. The model performed
best in women aged younger than 40 years (AUC 0.84) and worst in women aged older
than 60 years who had previously failed medication (AUC 0.71).

3. AI: Promises, Pitfalls, and the Unmet Needs for Its Implementation

AI-based systems have excelled in image analysis and interpretation and appeared
throughout the last decade as powerful tools to revolutionize the field of gynecologic
imaging. In the supra cited studies, AI was able to provide faster and accurate predictions
and diagnosis, improving the overall efficiency of gynecologic healthcare. This is not
a perspective in which these systems would replace clinicians, but instead they would
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perfectly integrate into clinical practice, assisting in the decision-making process and
reducing classification errors and interobserver variability inherent to the human being,
either by their erratic nature, or by the fatigue accumulated in healthcare professionals due
to the ever-growing workload. In the field of gynecological cancer, undoubtedly one of
the most promising aspects is the given capacity to analyze better and, especially, earlier,
producing more reliable results and, ultimately, which may improve patient survival.

Beyond the convincing results of the mentioned experiments, most of these works
were carried out using retrospective data analysis, so we cannot rule out selection bias or
spectrum bias. Thus, these algorithms should be carefully tested before their implemen-
tation in daily practice. Other studies were performed with a small number of patients,
thereby they still need to be validated using larger databases to attest their robustness. As
AI tools themselves have the potential to improve their classification performance as new
data are generated and they are fed with algorithms, the advent of the big data era will
propel the exponential development of AI techniques in the near future. Improving the
quality of input data collected in clinical practice, using standardized methods, is then a
challenging requirement to ensure the increasing robustness of these techniques.

In fact, the application of AI-systems in gynecology is still in an embryonic phase
in the imaging field. Indeed, there is a need to address the importance of data privacy
and AI implementation bias. This novel healthcare technology is highly dependent on
having a high amount of data, and its anonymization or re-identification is difficult and
time-consuming, as is not always addressed [94,95]. The production of a large amount of
information creates a problem in data management. The solution for this concern could
be the generalization of blockchain technology in AI-produced data. A blockchain allows
local storage of decentralized medical data, which remains immutable [96]. Thus, the
implementation of blockchain technology in the next AI models is fundamental to assure
the integration of ever-growing information.

On the other hand, it is important to address the problem of data bias. In fact, the de-
velopment of AI models commonly has an inherent spectrum bias, in which the technology
may not be applied to the population for which it was developed [95]. The majority of the
works discussed in this review have a potential spectrum bias, as they were developed in a
local or national patients’ dataset. Thus, the encouraging results of these models must be
interpreted with caution, given the need to see the results validation in a heterogenous mul-
ticentric context, preferentially in a worldwide scenario, before implementing AI models
into clinical practice.

Beyond the ever-evolving complexity in terms of model characteristics, there is also a
concern in whether a model is trustable, and specially how it comes to a decision. Thus,
several works have delved into the importance of explainable AI [97,98]. Thus, in order
to be trustworthy, a ML or DL model should be capable of justifying the given output.
Addressing this question is important to both the model developers and the regulatory
entities, assuring accountability during the AI development process.

Furthermore, it is important to consider the implications associated with an AI-based
decision. In fact, AI can produce good or bad outcomes, which can influence patient
outcome [95]. Additionally, when facing an error in AI prediction, several factors must be
considered, namely the quality of the model’s training, the type of algorithm and bias in
data collection and analysis. However, patient safety should be a priority, and a model
could be designed with the priority of greater sensitivity, even in the case of increasing
false-positive cases. The matter of legal responsibility in AI-driven decisions has been
the focus of recent papers, with a recent paper proposing the split of responsibility across
three factors: the design of the model, the human–machine interaction, and the AI-driven
human decision [99]. Indeed, commonly there will be difficulty in defining the point in
the algorithm at which the decision was wrong, and clinicians must be able to coherently
interpretate the model’s output, with the risk of reducing patient trust when facing errors
caused by an AI-based decision [100]. Even so, currently there is an absence of well-defined
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regulations on ethical and legal issues with the use of AI in healthcare, and this topic should
be a priority to standardize good practice with AI [101].

Additionally, the vast majority of the discussed works did not address the need
for interoperability in AI-model implementation. In fact, the interoperability challenge
is a hot topic when discussing the implementation of AI-systems in medicine. Indeed,
in order to assure its clinical applicability, technology should be generalizable for the
majority of devices available [102]. Despite showing promising results, the majority of AI
systems evaluated in this review have demonstrated their results in a single hysteroscope,
colposcope or even a single liquid-based cytology test. The inclusion of multidevice studies
is fundamental to increase the technology readiness level of the different models.

Moreover, there is a need to consider the advent of generative AI and large language
models in medicine, and, specifically, in gynecology. Large Language Models (LLMs) rep-
resent a category of DL technology developed to comprehend and produce language that
closely mimics human, exemplified by entities like ChatGPT (OpenAITM) or Google Bard
(GoogleTM). These models are based on Transformer architectures, which use self-attention
mechanisms, in Natural Language Processing (NLP), to identify complex relationships
between words. In the medical field, transformative AI technologies such as these models
could have a significant impact in clinical practice. They have the potential to facilitate
the management of extensive electronic health records and large datasets, facilitating the
resolution of complex clinical cases [103]. Additionally, they can contribute to advance-
ments in machine translation (e.g., translating text to other languages) and enhancing the
efficiency of the question–answer process (e.g., predict automatic answers based on the
text at hand). The main limitation of using this type of technology is its propensity to
introduce errors, as generated text may appear trustworthy despite being factually incorrect
(hallucination effect) [104]. These chatbots often prioritize following instructions rather
than providing genuine responses, lacking the authentic approach that a human would of-
fer [105]. The referencing process also lacks proper control, potentially resulting in mistakes.
Additionally, the unpaid technology of ChatGPT (ChatGPT 3.5) has not been upgraded,
with the model not incorporating the latest information beyond 2021 into its training data.
In terms of the commercial version, the paid version, ChatGPT 4, outperforms the prior free
version, ChatGPT 3.5 [106]. This enhancement has the potential to reduce medical errors
and decrease fatigue due to its enhanced processing capability, which includes the ability
to handle pictures and more complex data. Such developments might be extremely useful
for streamlining information flowcharts, improving doctor–patient communication, and
minimizing technical errors. Thus, while LLMs may introduce bias or incorrect information,
they can be very useful in the medical context, particularly for summarizing vast amounts
of information. This becomes especially valuable in an era where medical knowledge
is growing exponentially, with genecology being a suitable area for NLP models [107].
However, before implementation and generalization, regulation of and compliance with
ethical issues should be assured to augment the clinical utility of the models.

4. Concluding Remarks

The ever-growing development of AI technologies and their increasing potential in
numerous areas of healthcare make this a trending topic. Apart from several challenges
facing its clinical implementation, the future seems to be very promising in gynecology since
some interesting advances have been made. Undoubtedly, these auxiliary computerized
methods proved to be profitable and time- and resource-saving. However, more research
studies are needed to attest the usefulness of this technology in real life. The developments
until this moment have been tremendous, and even more are expected over the next few
years. In fact, there is still a very long way to go until AI-based technologies become
perfectly integrated into everyday clinical decisions.
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