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Abstract: Advances in perinatal intensive care have significantly enhanced the survival rates of
extremely low gestation-al-age neonates but with continued high rates of bronchopulmonary dys-
plasia (BPD). Nevertheless, as the survival of these infants improves, there is a growing awareness
of associated abnormalities in pulmonary vascular development and hemodynamics within the
pulmonary circulation. Premature infants, now born as early as 22 weeks, face heightened risks of
adverse development in both pulmonary arterial and venous systems. This risk is compounded
by parenchymal and airway abnormalities, as well as factors such as inflammation, fibrosis, and
adverse growth trajectory. The presence of pulmonary hypertension in bronchopulmonary dysplasia
(BPD-PH) has been linked to an increased mortality and substantial morbidities, including a greater
susceptibility to later neurodevelopmental challenges. BPD-PH is now recognized to be a spectrum of
disease, with a multifactorial pathophysiology. This review discusses the challenges associated with
the identification and management of BPD-PH, both of which are important in minimizing further
disease progression and improving cardiopulmonary morbidity in the BPD infant.

Keywords: bronchopulmonary dysplasia; pulmonary hypertension; echocardiography; pulmonary
vein stenosis; pulmonary vascular disease; prematurity

1. Introduction

Bronchopulmonary dysplasia (BPD) is a chronic lung disease primarily affecting
premature infants and characterized by an abnormal development of the lungs. While
fundamentally representing distorted pulmonary architecture leading to an abnormal
function, its clinical definition and severity stratification is often based on the presence
and degree of respiratory or oxygen support at 36 weeks postmenstrual age (PMA) in
preterm infants born at <32 weeks of estimated gestational age [1,2]. The understanding
of this condition has evolved over time, with recognition of shared respiratory, airway,
and vascular maldevelopment in its pathogenesis [3]. The development of pulmonary
hypertension (PH) has been described as high as 40% in this group and is associated with
a significant increase in morbidity and mortality [4]. Therefore, the importance of early
identification is crucial and guidelines have now advocated for the screening of PH in those
with established or evolving BPD [5,6].

Infants with BPD may prompt concern for PH by displaying nonspecific signs and/or
symptoms. These may include frequent episodes of hypoxemia, respiratory deterioration
events necessitating an escalation of respiratory or oxygen support, challenges in handling,
suboptimal growth, requirement for sedation and neuromuscular blockade to facilitate
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optimal ventilation, slow clinical progress, hepatomegaly, cardiac murmur, episodes of sig-
nificant hemodynamic deterioration, or shock with acidosis and increased lactate [7]. These
concerning elements, particularly when coupled with recognized perinatal risk factors such
as maternal preeclampsia, chorioamnionitis, intrauterine growth restriction, prolonged
rupture of membranes, oligohydramnios, sepsis, and necrotizing enterocolitis, may raise
suspicion that these clinical observations indicate an underlying abnormality in pulmonary
vascular development and function [8]. However, BPD infants may be “asymptomatic” of
their underlying pulmonary vascular disease considering significant underlying cardiac
compensation—hence the recommendation for screening through the aggregation of serial
clinical assessments, echocardiography, cardiac catheterization, and adjunct evaluations
such as laboratory investigations and dedicated imaging with complimentary modalities.

The diagnosis of BPD-PH represents a negative prognostic factor for mortality in the
premature population, especially within the initial two years of life [7]. This disease, which
is characterized by elevated pulmonary vascular resistance resulting from increased con-
striction, muscular vascular thickening, reduced vascular territory, heightened pulmonary
reactivity, ventilation–perfusion mismatch, and potentially adverse venous drainage and
remodeling [9–11], represents a heterogeneous lung disorder influenced by immature re-
pair mechanisms, pulmonary inflammation, and fibrosis. The physiological complexities
are further compounded by factors like shunt physiology through persistent systemic-to-
pulmonary connections such as patent ductus arteriosus (PDA), which increase pulmonary
blood flow, leading to reactive constriction and exposing the pulmonary vasculature to
systemic pressures. However, the role of the PDA as a causal contributor to BPD-PH remains
unclear [12]. Fortunately, ongoing lung growth during this period results in heightened
pulmonary vascular capacitance and improved respiratory units; therefore, well-managed
cases of BPD-PH often demonstrate improvement [13,14]. Central to this process is an
emphasis on optimizing cardiorespiratory status, preventing infections, and prioritizing
linear growth. The favorable effect on prognosis underscores the significance of overcoming
challenges in detection and confirmation, and highlights the need for prompt initiation of
multidisciplinary management to achieve this prognostic effect [15]. Yet herein lies one of
the biggest challenges in approaching the BPD infant with PH—how can there be certainty
in the diagnosis to guide management?

We present a review of the current literature published on the topic of BPD-PH,
focusing on screening recommendations and practices, the use of echocardiography as a
diagnostic tool, and report on general, recommended strategies for management of BPD-PH.
As bedside clinicians from four different institutions, we also highlight practical challenges
in the care of the BPD-PH infant. We provide an algorithm to guide screening, workup,
diagnosis, and management, recognizing the limitations inherent to the literature review
and reliance on consensus experience where there is a lack of evidence to guide practice.

2. Challenge #1: Screening and Confirmation
2.1. Screening for Pulmonary Hypertension

In the first three months of life, pulmonary vascular resistance naturally falls to normal
adult levels. PH has been defined as values of mean pulmonary arterial pressure (mPAP)
above 20 mmHg, largely based on the adult literature of idiopathic pulmonary arterial
hypertension and the associated risk of mortality or lung transplant with this cutoff [16,17].
The normal adult pulmonary artery pressure at rest is typically around 12–16 mmHg for
the systolic pressure, 8–12 mmHg for the diastolic pressure, and an mPAP of 9–12 mmHg.
While pulmonary artery pressure at birth is elevated due to an increased blood flow into
pulmonary vessels postnatally, this pressure gradually drops in the first few days of life to
approach these adult levels [18].

PH is defined as an abnormally high pulmonary pressure in the pulmonary artery.
This condition leads to end-organ damage; in this case, right ventricular (RV) systolic and
diastolic failure. The underlying mechanisms to the increased pulmonary pressure in the
context of BPD may be related to increased pulmonary vascular resistance, decreased pul-
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monary vascular capacitance due pulmonary hypoplasia, increased flow to the pulmonary
artery by persistent fetal shunt, postcapillary phenomenon (pulmonary vein stenosis, pul-
monary venous occlusive disease, left ventricular diastolic failure), or a combination of
these elements. Screening practice for BPD-PH is recommended at 36 weeks PMA [6].
However, there is a high variability in this practice. While only 38% respondents from a
survey of North American neonatal consultants had implemented a screening program for
BPD-PH [15], this program varied in its timing from 28 days after birth to 36 weeks PMA
based on a systematic review analysis and lacks consensus [19].

2.2. Echocardiography as a Screening and Diagnostic Tool

Echocardiography enables the assessment of cardiac anatomy, underlying cardiac func-
tion, and estimation of pulmonary arterial pressure using various metrics (Tables 1 and 2). This
diagnostic modality is noninvasive, radiation-free, and facilitates the estimation of pulmonary
arterial pressures under real-life circumstances, eliminating the need for general anesthesia. It
also allows for serial follow-up for surveillance, initiation, or titration of therapy. However,
there are limitations in this population owing to operator variations, suboptimal imaging
windows due to lung disease, tracheostomy presence, critical illness, testing availability,
and/or cardiologist familiarity with BPD/BPD-PH echocardiography reading protocols. As
per current guidelines [5,20,21], premature infants should undergo echocardiography screen-
ing for PH in several specific scenarios. Primarily, screening is recommended at the time of
BPD diagnosis, typically around 36 weeks PMA. A corollary to this is the consideration for
early screening at postnatal day 7 for the premature infant with a continued need for ventila-
tor support, because evidence of PH at this early stage suggests a high risk for developing
BPD at 36 weeks and an early echocardiographic assessment may influence therapeutic deci-
sions [6,22,23]. Lastly, infants requiring sustained significant respiratory support at any age,
particularly those with recurrent episodes of hypoxemia, should undergo echocardiography
to assess for the presence of PH. These screening scenarios aim to detect and manage PH
early in premature infants, allowing for timely interventions and optimized care. It should
be noted that screening is recommended in cases of perinatal severe hypoxemic respiratory
failure, despite optimal management of underlying lung disease, irrespective of gestational
age at birth, to identify developmental lung diseases known to be associated with PH.

Table 1. Echocardiography metrics for BPD-PH with references.

Estimation of Pulmonary Pressures

RVSP estimation by tricuspid
regurgitant jet velocity

Concern of PH if the RVSP > 40 mmHg by the TR jet (TR jet with an RV–RA gradient of
>35 mmHg, assuming an RA pressure of 5 mmHg). RVSP > 1/2 of systemic pressure is
concerning for abnormal pulmonary pressure. About 60% of echocardiograms may have a
quantifiable TR jet with a full envelope. Some use the cutoff of the TR jet > 33.6 mmHg)
[12,22].

Mean and diastolic PAP by
pulmonary insufficiency jet

Often not available in BPD-PH scans. However, when available, it provides estimates of
PAP during the diastolic phase of the cardiac cycle [24,25].
(mPAP = 4 × [early diastolic PI velocity]2 + estimated RA pressure)

Gradient and directionality through
restrictive PDA or VSD

May inform on systemic-to-pulmonary relationship based on directionality. Velocity
gradient may inform on sPAP and dPAP when compared to systemic blood pressure at the
time of the echocardiogram. Equalization of pressures occurs with unrestrictive
shunts—limiting the interpretation of underlying PVR [12,24].

Pulmonary artery acceleration
time/right ventricular ejection time
(PAAT/RVET)

This ratio provides some insight on the RV afterload. In a situation where the RV afterload
is increased (either due to high pulmonary vascular resistance or other
contributors—flow/pressure transmission), this ratio decreases. Ratio is measured from the
pulsed wave (PW) Doppler envelope of the right ventricular outflow tract. A low ratio
suggests an increased pulmonary afterload (abnormal < 0.31; some use a cutoff of <0.25)
[26–28].
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Table 1. Cont.

Estimation of Pulmonary Pressures

LV eccentricity index at peak systole

The left ventricular (LV) end-systolic eccentricity index provides a quantifiable metric of
septal deformation. The index is computed as the ratio of the diameter parallel to the
septum to the diameter perpendicular to the septum at peak of systole. In a situation where
there is a flat septal configuration or a bowing septum, this ratio will decrease. This
provides a continuous quantifiable metric of the “septal motion.” In the absence of a
congenital cardiac anomaly, ventricles will equalize pressure with their corresponding
outflow tract at the peak of systole. As such, the RV–LV relationship may inform on the
systemic-to-pulmonary systolic pressure relationship. In the expected setting, the LV
systolic pressure should be below the RV systolic pressure, and the LV should form a
near-perfect circular configuration at the peak of systole. The left ventricular (LV)
end-systolic eccentricity index (EI) ≥ 1.3 has been associated with PH in BPD infants [29,30].

LV septal motion
Septal flattening (or bowing toward LV) at peak of systole indicates an increased RV–LV
systolic pressure relationship. Flattening concerning for systolic PA pressure is greater than
50% systemic pressure [31].

Evaluation of RV Function/Dimensions

TAPSE

Tricuspid annular plane systolic excursion (TAPSE) is a marker evaluating RV systolic
function using the M-Mode tracking motion of the tricuspid valve (line of interrogation
crossing the apex and attachment of the tricuspid valve to the RV-free wall). It estimates the
longitudinal displacement of the tricuspid valve from peak diastole to peak systole. Low
values (by age) indicate RV dysfunction [32–34].

RV-FAC

FAC is calculated after obtaining the end diastolic (EDA) and the end systolic area (ESA) of
the RV (FAC = [EDA − ESA]/EDA), and also provides an important marker of RV function.
Normative values have been published (although normal FAC values quoted to be most
common when >35%) [35–37].

RV-MPI by TDI Evaluates the RV myocardial performance index using tissue Doppler imaging. Combined
marker of RV systolic and diastolic performance [35].

RV output estimation Assesses RV stroke volume and cardiac output. Values < 150 mL/kg/min are of concern
[26,38].

RV E/A ratio Assesses RV diastolic function [37].

RV S’ by TDI Measures RV systolic velocity using tissue Doppler imaging (peak longitudinal contraction
velocity). May be decreased in the context of systolic dysfunction [37,39,40].

RV E/E’ by TDI Estimates RV filling/diastolic function [37,39,40].

RV EDA Evaluates RV end-diastolic area [37].

RV/LV RV/LV ratio > 1 at peak of systole in parasternal short axis is concerning for RV dilation
[24,41].

RV longitudinal strain
Speckle-tracking echocardiography allows for assessment of RV longitudinal deformation
during contraction. Associated with later mortality in those with BPD-PH diagnosis.
Normative values have been published by age and vendor [32,33,42,43].

Evaluation of LV Function/Dimensions

Shortening fraction

May be computed from the 2D or Motion-Modes. Ratio between the end diastolic and peak
systolic diameters of the internal cavity of the LV at the tip of the mitral valve. Concern with
angle of image acquisition and assessment of partial/segmental LV function. Normal:
28–46% [44].

EF by biplane Standard measure of LV ejection fraction. Assumes a mathematical bullet-shaped LV, which
may not be true in the context of adverse septal motion. Normal > 55% [44,45].

EF by 5/6 area length Alternative measure of LV ejection fraction. Normal > 55% [46].

LV-EDV LV end-diastolic volume assessment [44,46].

LV mass Assesses LV hypertrophy, potentially leading to a decreased LV compliance and an
increased end-diastolic pressure [47].
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Table 1. Cont.

Estimation of Pulmonary Pressures

LV output estimate Evaluates LV stroke volume and cardiac output. Values < 150 mL/kg/min are of concern
[26].

LV S’ by TDI Measures LV systolic velocity using tissue Doppler imaging (peak longitudinal contraction
velocity). May be decreased in the context of systolic dysfunction [39].

LV E/E’ (free wall and septal) Estimates LV filling pressures [39].

LV E/A Assesses LV diastolic function [48].

LV longitudinal or
circumferential strain

Speckle-tracking echocardiography allows for assessment of LV longitudinal and
circumferential deformation during contraction. In healthy children, the mean LV global
longitudinal strain is −20% (95% CI, −19.5% to −21%) and the mean global circumferential
strain is −22% (95% CI, −20% to −25%) [33,42,43].

Evaluation of Shunts

Atrial shunt evaluation

A bidirectional or right-to-left shunt suggests higher right-sided atrial pressure (often
secondary to RV diastolic dysfunction). These patients may have concomitant
hepatomegaly and dilated inferior vena cava and subhepatic veins (with occasionally >50%
retrograde flow by pulse-wave Doppler) [26,28,49].

Post-tricuspid shunt evaluation
A bidirectional or right-to-left shunt provides information on the pressure relationship
between the pulmonary and systemic sides; unrestrictive shunts lead to equalized systolic
pressure [26,28,49].

Assessment for Concomitant Anomalies

Pulmonary veins Assessment of pulmonary venous flow at each ostium to rule out signs of pulmonary veins
stenosis (mean gradient < 4 mmHg, biphasic/triphasic flow) [50,51].

Pulmonary valve, main pulmonary
artery and right/left pulmonary
arteries

Evaluation for signs of RV outflow tract obstruction, or stenosis/obstruction in the
pulmonary arteries [10].

Future Parameters in Investigation

LV-EF by 3D echocardiography 3D-volume capture of the LV in order to estimate LV dimensions and function by ejection
fraction (or strain). Limited data are available in the neonatal population [52].

RV-EF by 3D echocardiography
Detailed RV ejection fraction assessment using 3D-echocardiography and modeling.
Advanced techniques are often challenging in preterm infants and require specific expertise,
equipment, and assessment tools [53].

Blood speckle-tracking Assessment of vortex formation in the LV and RV. Estimation of transcavitary pressure
gradients [54].

Myocardial work assessment Incorporates markers of left or right ventricular afterload into strain analysis [55].

Table provided by Dr. Gabriel Altit.
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Table 2. Selected image examples of metrics used in the assessment of BPD-PH.

Metric Echocardiography Image Example

Pulmonary insufficiency jet
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Legend: Marker of longitudinal systolic function of the right ventricle (RV) (which primarily
contracts longitudinally). The M(motion)-Mode is used with the line of interrogation
passing through the attachment of the tricuspid valve at the level of the free wall of the RV,
and through the RV apex. The distance travelled from end-diastole to peak of systole is
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tracing through time (red circle). Occasionally, superimposed tissue Doppler allows to
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Table 2. Cont.

Metric Echocardiography Image Example

Tricuspid regurgitation jet
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Table 2. Cont.

Metric Echocardiography Image Example

RV E/A ratio
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Table 2. Cont.
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Legend: The LV end-systolic eccentricity index provides a quantifiable metric of sep-
tal deformation. The index is computed as the ratio of the diameter parallel to the
septum to the diameter perpendicular to the septum at peak of systole. In situations
where there is a flat septal configuration or a bowing septum, this ratio will decrease.
This provides a continuous quantifiable metric of the “septal motion.” In the absence
of a congenital cardiac anomaly, ventricles will equalize pressure with their corre-
sponding outflow tract at the peak of systole. As such, the RV–LV relationship may 
inform on the systemic to pulmonary systolic pressure relationship. In the expected
setting, the LV systolic pressure should be below the RV systolic pressure, and the LV
should form a near-perfect circular configuration at the peak of systole. Here, the ratio
is 1.14 (normal if <1.3). Letters a = 1; b = 2. The equation is a/b.
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Legend: The LV end-systolic eccentricity index provides a quantifiable metric of septal
deformation. The index is computed as the ratio of the diameter parallel to the septum to
the diameter perpendicular to the septum at peak of systole. In situations where there is a
flat septal configuration or a bowing septum, this ratio will decrease. This provides a
continuous quantifiable metric of the “septal motion.” In the absence of a congenital cardiac
anomaly, ventricles will equalize pressure with their corresponding outflow tract at the peak
of systole. As such, the RV–LV relationship may inform on the systemic to pulmonary
systolic pressure relationship. In the expected setting, the LV systolic pressure should be
below the RV systolic pressure, and the LV should form a near-perfect circular configuration
at the peak of systole. Here, the ratio is 1.14 (normal if <1.3). Letters a = 1; b = 2. The
equation is a/b.

When used for screening, a normal echocardiogram in an infant with BPD will have an
estimated RVSP of less than one-third of the systemic pressure, a rounded septal position
at peak of systole (round LV in parasternal short axis view indicating higher LV pressure
compared to RV pressure), and an absence of RV changes (hypertrophy, dilation, and
functional deterioration). “Mild” PH is suspected when the RVSP is more than one-
third of the systemic systolic blood pressure at the time of echocardiography [6], with
septal flattening in systole, mild RV hypertrophy (RVH), and RV dilatation (which can be
quantified by the RV–LV diameter ratio in parasternal short axis; a normal ratio is below 1.0).
Some authors have used other cutoffs of TRJ, such as an RV–RA gradient of 33.6 mmHg [12].
The “moderate” PH category is suspected when the RVSP is between half and two-thirds
of the systemic pressure. Echocardiographic features include a flat septum or late systolic
posterior bowing, moderate RVH or dilatation, and a potential reduction in RV function.
“Severe” PH is diagnosed when the RVSP exceeds two-thirds of the systemic pressure. If
shunts are present, there is a predominant right-to-left shunt. Pansystolic posterior septal
bowing is observed, along with severe RVH, RV dysfunction, and RV dilatation. In the
context of a PDA or a VSD, “low velocity” shunting is often noted. These gradations
provide a comprehensive framework for assessing the severity of PH and their associated
hemodynamic changes. Of note, a straight ventricular septum in diastole usually indicates
right ventricular volume overload, often seen in the context of a chronically significant left-
to-right shunt at the interatrial level, raising Qp:Qs. This is uncommonly seen in the first
few months of life, because the magnitude of the shunt increases over time following the
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transition to postnatal life and cardiac adaptation to the increased volume load. A straight
ventricular septum in diastole may also be seen in the context of increased RV end-diastolic
pressure, which may be secondary to RV hypertrophy and altered RV performance. In
the setting of chronically increased RV pressure overload with RV adaptation, one may
sometimes appreciate adverse septal configuration throughout the cardiac cycle. In this
context, flattening of the septum is appreciated in both systole and diastole due to RV
systolic and diastolic impairments [57,58].

Other echocardiographic markers [59] may also provide more subtle information on sys-
tolic and diastolic performance, such as tissue Doppler imaging, filling velocities, pulmonary
vein velocities, deformation by speckle-tracking analysis, and 3D-echocardiographic–derived
ejection fraction. RV size may be evaluated according to Z-scores [60] and interpreted for
dilation. Assessment of RV function at the initial screening is important because the initial
altered ventricular function at PH detection has been associated with an increased mor-
tality [32,50]. Functional measurements can be achieved through assessment of tricuspid
annular plane systolic excursion (TAPSE) [35] and fractional area change (FAC). A com-
prehensive evaluation of the left ventricle is also of importance due to the interventricular
interactions.

Shunting directionality through a post-tricuspid shunt informs on the pressure re-
lationship between the pulmonary and systemic side. In the context of an unrestrictive
post-tricuspid shunt, the sPAP pressure is, by definition, close to the systemic pressure
due to the equalization of pressure on both sides of the shunting lesion and, therefore,
will not be helpful to draw conclusions on underlying vascular resistances. However, a
restrictive shunt can give significant information. As such, a right-to-left ventricular shunt
informs that the right-sided pressure is higher than the left-sided pressure. Atrial-level
shunts reflect the diastolic compliance of the respective ventricles [49] and so a right-to-left
shunt suggests impaired diastolic filling pressures of the right ventricle, a condition seen in
right ventricular diastolic failure.

2.3. Confirmation of Diagnosis
Cardiac Catheterization Is Not Routinely Performed

While cardiac catheterization is acknowledged as the gold standard for diagnosing PH,
there is a lack of universal recommendations advocating for its routine use in infants with
BPD [61]. Cardiac catheterization plays a crucial role not only in confirming the diagnosis
of precapillary PH (defined as an mPAP greater than 20 mmHg, pulmonary arterial wedge
pressure or LV end-diastolic pressure less than or equal to 15 mmHg, and a PVR indexed
to body surface area greater than or equal to 3 Woods unit ×m2 in age > 3 months) [16],
but also in guiding treatment decisions. It provides a means to assess pulmonary vasoreac-
tivity and conduct hemodynamic evaluations, including identifying left-to-right shunts
and addressing postcapillary confounders such as left ventricular disease and pulmonary
vein stenosis. These factors are significant because they may either prohibit or limit the
administration of pulmonary vasodilators. Further, some of these concomitantly detectable
conditions (such as pulmonary vein stenosis) may warrant intervention. Despite its impor-
tance, the widespread acceptance and utilization of catheterization as a first-line diagnostic
tool for BPD-PH face numerous challenges. These challenges include the availability of
specialized teams comfortable with performing the procedure, such as cardiac intervention-
alists and cardiac anesthesiologists, along with considerations of patient risks. The BPD
infant is particularly more susceptible to adverse effects from general anesthesia, reintuba-
tion, transport, and changes in temperature, which can result in clinical instability or even
a PH crisis. Given these complexities, the current recommendation is to reserve cardiac
catheterization for situations in which there are unexpected responses to initial PH-targeted
therapy or the presence of unexplained, recurrent pulmonary edema. Further, cardiac
catheterization should be considered when there is a suspicion of an anatomic abnormality;
pulmonary vein stenosis on echocardiography or other cardiac imaging (magnetic reso-
nance imaging (MRI) or computed tomography (CT) scan); aortopulmonary collaterals;
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congenital systemic-to-pulmonary shunt (PDA, ASD, or VSD); or when there is a concern
for left ventricular functional alterations suggested by pulmonary edema, left ventricular
hypertrophy, or left ventricular diastolic dysfunction on imaging.

2.4. Adjunct Testing May Be Helpful

Laboratory testing may be performed as an adjunct to an echocardiographic screen
or as follow-up investigations to monitor progression. Testing may include biomarkers
such as baseline brain natriuretic peptide (BNP) or N-terminal pro-BNP (NT-proBNP) [62].
These peptides are cleaved fragments of pro B-type natriuretic protein (pro-BNP), a pro-
tein secreted by cardiomyocytes in response to stretch. Commercial and hospital-based
laboratories can readily measure serum concentrations of these peptides, and they may
be useful for trending over time. However, it is essential not to solely rely on them for
making a diagnosis, because measured levels can be influenced by factors such as age (both
gestational and postnatal), fluid status, systemic hypertension, and shunt volumes [61].
There is also an indication that pro-BNP values may be influenced by other complications
of prematurity, including retinopathy of prematurity, sepsis, necrotizing enteropathy, and
intraventricular hemorrhage [63]. BNP has a half-life of approximately 20 min, and NT-
proBNP has a half-life of 2 h; therefore, both tests are limited in their ability to reflect the
steady state [64]. Other commonly employed investigations in the BPD-PH population
include serial electrocardiograms (with at least one upon suspicion of PH on echocardiog-
raphy screening), serial blood gas analysis (given the direct correlation between respiratory
acidosis and the deterioration of pulmonary vascular resistance), and serial expanded
electrolytes (inclusive of calcium levels), especially in those exposed to chronic diuretics
therapy [65]. Unfortunately, testing is often conducted using samples from acute venipunc-
ture or capillary heel stick sources and, as a result, may not accurately reflect a true steady
state. Additional testing includes imaging such as chest radiography, videofluoroscopic
swallowing evaluation or flexible endoscopic evaluation of swallowing, laryngoscopy and
bronchoscopy assessments, and oximetric evaluations, as well as computed tomography or
magnetic resonance imaging of the chest to assess for other comorbidities that may cause or
contribute to BPD-PH. The option for these studies may vary across institutions, reflecting
the availability of testing and/or the availability of trained personnel to perform and inter-
pret them. In certain clinical scenarios, an ACTH stimulation test for adrenal insufficiency,
a thyroid function test, genetic evaluations for PH-specific mutations (such as TBX4 and
BMPR2), and evaluations for confounding developmental lung disease conditions (such
as errors of surfactant metabolism, alveolar capillary dysplasia, and filamin A) may be
warranted.

3. Challenge #2: Multitiered Management of BPD-PH
3.1. Focusing on Optimization of Respiratory Disease as First-Line Therapy

Once BPD-PH is suspected and confirmed, either by serial echocardiography or cardiac
catheterization, management is needed to prevent further morbidity and to minimize
mortality. However, this poses a challenge for most clinicians because there are few
medical therapies approved and studied in this population, and these infants have many
confounding variables that can affect stability for therapeutic interventions. However, since
the objective of BPD-PH management is to prevent progression of pulmonary vascular
remodeling, the mainstays of treatment are optimization of lung growth, prevention of
lung injury, and avoidance of a local hypoxic microenvironment [66]. This consists of
judicious use of oxygen, positive airway pressure, and diuretics [67] to optimize pulmonary
mechanics and acid-base status.

Guidelines recommend initiating the management of BPD-PH by adopting a proac-
tive approach to address BPD comprehensively. This involves conducting a thorough
assessment to identify potential confounding variables that may impact the management
of BPD-PH. These variables include conditions such as severe parenchymal lung disease,
chronic reflux or aspiration, as well as airway abnormalities such as malacia [5,6,21]. Each
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of these conditions may contribute to BPD-PH and must be addressed while the infant
is assessed for initiation of medical treatment with targeted PH therapies. Supporting
lung growth to achieve adequate growth velocity (weight-for-length or body mass index),
implementation of safe feeding practices with the goal of preventing aspiration, and main-
taining adequate lung inflation will promote the growth of respiratory bronchioles and
associated vasculature. Continued care in the outpatient setting to ensure vaccination,
thoughtful timing for elective surgeries, and parental education is an additional corner-
stone of treatment. This, which is the standard of care for neonatology, is the basis for
BPD-PH management. Within these recommendations, however, there are nuances that are
of particular importance for the BPD-PH infant and require specific PH expertise.

3.2. Management of Chronic Respiratory Failure: Ventilator

Adequate management of chronic respiratory failure in some BPD-PH patients may
completely alleviate PH altogether by minimizing local hypoxic, hypercapnic, compression,
and distention effects on the pulmonary vasculature. Therefore, focusing on respiratory
management is recommended as the first-line therapy. In those infants still on mechani-
cal ventilation, utilizing a ventilator strategy to minimize hypercapnia and maintaining
the infant as close as possible to functional residual capacity (FRC) using positive end-
expiratory pressure (PEEP) (to overcome intrinsic PEEP for adequate inhalation and ex-
halation), adequate tidal volumes, and sufficient exhalation times can decrease additional
strain on an otherwise already abnormal cardiorespiratory system. Ventilatory strate-
gies for BPD recommend respiratory rates of 12–15 breaths per minute, tidal volumes of
10–12 millimeters per kilogram of body weight, and PEEP around 8–10 centimeters of water,
although some infants with particularly severe BPD and large airway malacia may need
higher PEEP levels to prevent air trapping and hyperinflation [21]. Using positive airway
pressure to prevent alveolar derecruitment and ventilation–perfusion mismatch–related
hypoxemia is a management tool for the BPD-PH population that cannot be overstated.
Often, the timing for shifting the focus from BPD prevention strategies such as low PEEP, a
higher respiratory rate, and a low inspiratory time to the management of established BPD
to provide sufficient ventilatory support to facilitate growth and development is unclear
and often needs a continuous assessment of the patient through a dedicated team with
a multidisciplinary approach [9,61,68]. In some instances, tracheostomy may be needed
to adequately meet the infant’s respiratory needs, while still allowing for adequate par-
ticipation in therapies and promoting interaction and neurodevelopment of the infant at
a critical stage of maturation. In addition to the use of positive airway pressure therapy,
management of chronic respiratory failure also requires assessment of the airway to address
any underlying tracheomalacia and/or bronchomalacia.

3.3. Management of Chronic Respiratory Failure: Oxygen

Oxygen should be utilized to maintain oxygen saturations in a target range that will
minimize hypoxic vasoconstriction. Saturation targets and ranges may vary based on the
infant’s underlying disease driver and condition. However, because most BPD-PH infants
are diagnosed after 36 weeks PMA, the use of oxygen should be less of a concern with
relation to retinopathy of prematurity. For the majority of term, uncomplicated BPD-PH
infants (i.e., without pulmonary vein stenosis or cardiac shunts), targeting saturations
of 92–95% is reasonable [5,61,69]. Some guidelines have advocated for the use of 95%
saturation as a target in infants with established BPD-PH to avoid hypoxemic stress on
the pulmonary vasculature, although no trial has tested this saturation target within this
population [70,71]. Nevertheless, when evidence of PH is present on echocardiography
before 36 weeks of PMA, there is a lack of data regarding the target oxygen saturations
and their association with long-term outcomes. Addressing this gap requires a multicenter
approach to study these effects over the long term.
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3.4. Identifying Confounding Variables: Left-to-Right Intracardiac Shunts, Pulmonary
Vein Stenosis

Management of the BPD-PH infant must include assessment of left-to-right intracar-
diac and/or extracardiac shunts, such as atrial septal defects and PDA. While these have
been considered benign in the general pediatric population, there is an increased sensitivity
to recognizing the negative effects that additional pulmonary blood flow (and pressure
transmission) can have in some BPD infants, potentially even contributing to the develop-
ment of BPD [72,73]. While not directly proportional, it is observed that the younger the
gestational age at birth, the more simplified the pulmonary parenchyma is, and the more
marked the premature postnatal disruption in respiratory and vascular development [74],
which may be observed as a diminished tolerance of increased pulmonary blood flow
from shunt sources. Therefore, in situations in which the infant is unable to make clinical
advancements, unable to wean from respiratory support or diuretics, and exhibits poor
growth and poor tolerance of handling, consideration for closure of the left-to-right shunt
could be considered [68,72,73]. Multidisciplinary discussion is recommended to evaluate
risks, benefits, and timing of this intervention [68]. However, the presence of an interatrial
shunt or post-tricuspid shunt, in the context of PH, may also be kept open in order to allow
a pop-off in cases of PH crisis. As such, each case of suspected pulmonary vascular disease
should be thoroughly discussed and evaluated in a multidisciplinary fashion to evaluate if
the flow lesion contributes to the overall increase in pulmonary arterial pressure, or if the
predominant phenotype is one of underlying high pulmonary vascular resistance.

Echocardiography can offer valuable insights into pulmonary vein stenosis, indicated
by elevated velocity (a mean gradient exceeding 4 mmHg) and the loss of phasic flow [3].
However, it is important to note that echocardiography might not detect multilevel stenosis
or pulmonary venous atresia, and the visibility of pulmonary veins can be compromised
depending on the acoustic windows availability. Therefore, computed tomography of the
chest is recommended for optimal visualization of the pulmonary veins [3,51]. Infants with
pulmonary vein stenosis may often present with recurrent or persistent pulmonary edema,
tachypnea/respiratory distress, or poor tolerance of fluids.

3.5. Treating Comorbidities to Minimize Respiratory Complications
Nutrition and Feeding

Nutrition and management of fluids is an extremely important treatment for BPD-PH
infants to support lung growth and minimize fluid overload into leaky pulmonary capillaries of
preterm infants. Nutritional support may be complicated by fluid restriction and/or the use
of diuretics. However, caloric fortification should be offered when appropriate and possible
with close monitoring of weight gain, linear growth, and head circumference [75–77]. Collabo-
ration with dietitians well versed in neonatal nutrition should be sought and tracking of
weight/length ratio and body mass index are important as part of the global monitoring of
well-being [78].

Gastroesophageal (GE) reflux is common in preterm infants and especially in those
with BPD, with up to 40% of reported prevalence [79]. The diagnosis and management of
GE reflux microaspiration in the NICU setting is challenging due to variable practices across
institutions. Although the correlation between GE reflux symptoms and the severity of
lung disease is not direct, most PH guidelines recommend addressing GE reflux in infants
with severe BPD to minimize PH-related events [80–82]. Dynamic airway collapse in
addition to GE reflux and laryngeal injury probably predisposes to an increased aspiration
risk in preterm infants with BPD [83]. Recurrent small amounts of aspiration can be
silent or may present with nonspecific clinical symptoms, such as an increased work of
breathing, wheezing, a frequent drop in oxygen saturations, or poor weight gain, and
can be challenging to diagnose. Tests such as the Flexible Endoscopic Evaluation of
Swallowing and the barium swallow study lack sensitivity for aspiration risk in preterm
infants. Therefore, the active participation of a dedicated team of speech and occupational
therapists in their ongoing evaluation, as well as for the bedside assessments, is crucial.
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Promoting safe feeding practices to minimize aspiration is critical to lung health and
continued healthy lung function [1,75,78,84].

3.6. Fluid Management

Infants with BPD-PH are particularly sensitive to alterations in fluid status. An increased
pulmonary blood flow relative to the parenchymal development or poor fluid clearance from
immature or injured kidneys can result in a suboptimal fluid balance and cause additional
cardiorespiratory strain [84]. Diuretics are therefore a mainstay of treatment in this population,
often used to reduced pulmonary vascular congestion. With oxygen, diuretics are among the
most widely prescribed therapy for BPD-PH infants [85,86]. Ongoing monitoring of chemistry
and growth is critical while on diuretics or fluid restriction. Fluid status must be assessed
regularly to take care to avoid low preload and cardiac output conditions. Additionally,
observational data suggest that diuretic therapy may be associated with improvement in
pulmonary pressures and right and left ventricular function in BPD-PH infants [67]. Future
studies should also evaluate the contribution of altered LV diastolic performance and
increased systemic vascular tone as potential contributors to the BPD-PH phenotype [33,87].
Indeed, new therapeutic avenues to be studied may involve LV afterload reduction in such
circumstances.

3.7. Lack of Approved PH Therapies and Lack of Data in This Population Should Not Deter Use
When Indicated
PH Pharmacotherapy

When optimization of ventilation, oxygenation, nutrition, fluid balance, acid-base
balance, infectious status, and any intracardiac shunts have failed to improve clinical
status or indices of PH in the BPD-PH infant by echocardiogram, lab monitoring, or
cardiac catheterization, PH-specific pharmacotherapy should be considered as the next
line in management. This may present as the infant who, despite optimized gas exchange,
appropriate lung expansion on chest imaging, minimization of aspiration and malacia, and
judicious fluid management, continues to exhibit poor growth, intolerance of cares, and
a persistently abnormal echocardiogram. There are multiple classes of therapy that may
be utilized with the goal of promoting pulmonary vasodilation and preventing vascular
remodeling that may lead to irreversible vasoconstriction and cardiopulmonary morbidity.
Three broad classes of PH-specific vasodilators are typically utilized by PH specialists
in the management of BPD-PH, targeting the nitric oxide pathway, endothelin pathway,
and prostacyclin pathway. While none of these agents have been extensively studied in
controlled clinical trials in the population affected with BPD-PH [88], there are numerous
cohort studies, case reports, and reviews that attest to their safety, tolerability, and efficacy
using standard PH dosing regimens in appropriately selected patients. Newer agents
such as those acting on the soluble guanylate activation (i.e., riociguat) or oral prostanoids
activators (i.e., selexipag) have limited data within the BPD-PH population. The arsenal
of PH-specific vasodilators continues to grow but familiarity with the various classes,
formulations of therapies, and specific use in the BPD-PH population is limited to PH
specialists who may not be readily available for consultation in BPD-PH infant care. Despite
this lack of universal experience, consultation with a specialist experienced in the use of
these medications is recommended prior to initiation of therapy.

Nitric oxide pathway: The AHA/ATS PH guidelines [5] recommend the use of inhaled
nitric oxide (iNO) for pediatric cases experiencing a PH crisis. iNO can be delivered
through invasive or noninvasive respiratory support and has the potential to rapidly
induce pulmonary vasodilation and improve ventilation–perfusion mismatch and therefore
rapidly drop the RV afterload. As such, treatment with iNO has been advocated for infants
diagnosed with BPD and symptomatic PH [21]. iNO binds to soluble guanylate cyclase
in the pulmonary vascular endothelial cells, stimulating the conversion of guanosine
triphosphate to cyclic guanosine monophosphate (cGMP), which, as a second messenger,
prompts the relaxation of smooth muscle cells in blood vessel walls. Exogenous iNO is



J. Clin. Med. 2024, 13, 3417 15 of 22

often used in infants with other forms of pulmonary arterial hypertension, particularly in
the setting of persistent pulmonary hypertension of the newborn (PPHN) [18,69]. Given
the effect of nitric oxide in vasodilation, iNO is often used beyond the perinatal period as
an acute, temporary therapy for the BPD-PH infant. This may be considered episodically
for severe hypoxemia or to facilitate medication adjustment.

Phosphodiesterase-5 inhibitors (PDE-5i) also increase intracellular cGMP levels, pro-
moting vasodilation in the nitric oxide pathway. There are animal reports that nitric oxide
may promote continued lung development as well, although this has not been readily
demonstrated or studied in the developing human lung [89]. Sildenafil is currently ap-
proved by the Food and Drug Administration (FDA) in children greater than one year
of age. It remains the most widely used PH therapy for BPD-PH [90–92] and study as
a possible preventative therapy is being explored [93,94]. Adverse drug effects of GE
reflux [95] are not uncommon in the BPD-PH population and infants should be monitored
for this. Tadalafil use has increased for BPD-PH therapy owing to the perceived lack of GE
reflux exacerbation, although this is largely anecdotal. PDE-5i administration should be
monitored for hypotension. Riociguat, a soluble guanylate cyclase stimulator, enhances
the generation of endogenous nitric oxide. While approved for World Symposium of
Pulmonary Hypertension (WSPH) Group 1 and Group 4, it is not sanctioned for Group 3,
which encompasses BPD-PH. Nonetheless, anecdotal evidence and animal studies hint at
its potential efficacy in Group 3 infants, indicating a prospective role in future BPD-PH
therapy [96,97].

Acting via a similar pathway, milrinone is a phosphodiesterase-3 (PDE-3) inhibitor,
leading to increased cAMP within cardiac and vascular smooth muscle cells. This results in
enhanced cardiac contractility, filling, and relaxation of smooth muscle in blood vessels,
leading to systemic and pulmonary vasodilation. While there is a scarcity of data specifi-
cally addressing BPD-PH, milrinone could be considered for those with suprasystemic PH
and/or concomitant RV dysfunction. However, milrinone requires intravenous adminis-
tration, may accumulate in renal impairment, and could precipitate systemic hypotension.
It is important to recognize that all systemically administered pulmonary vasodilators
have the potential to indiscriminately dilate pulmonary vessels. This could exacerbate
ventilation–perfusion mismatch and lead to systemic hypoxia, particularly in infants with
severe concurrent pulmonary parenchymal disease.

Endothelin pathway: Endothelin receptor antagonists (ERAs) block the endothelin
receptor, preventing endothelin from binding to cause vasoconstriction and proliferation.
Bosentan, an endothelin receptor A and receptor B antagonist, is metabolized by the liver
and therefore can interact with many medications. Monthly monitoring, at a minimum,
is required to ensure that liver function is not affected by its use. Bosentan is currently
approved by the FDA for use in pediatric PH in children over three years of age, but is
commonly utilized in the BPD-PH population. The other ERAs on the market (ambrisentan,
macitentan) have limited reports in this population. They are attractive options because
they have less effect on liver function and are selective antagonists, but may be associated
with anemia and fluid retention.

Prostacyclin: Prostacyclin’s effect is mediated through the activation of cyclic adeno-
sine monophosphate (cAMP), which inhibits calcium influx into smooth muscle cells,
leading to relaxation and dilation of blood vessels. This class of medications can be dosed
by inhalation, oral, or continuous infusion (subcutaneous or intravenous). Side effects
include flushing, systemic hypotension, pulmonary edema and pleural effusions, local skin
reaction, tachycardia, fever, worsening of ventilation–perfusion mismatch, and more. These
limitations frequently restrict their application in more delicate BPD-PH infants, leading to
their reserved usage primarily in severe PH cases. Prostacyclin may be used acutely in the
immediate management of RV failure or PH crisis or long term with noted improvement.
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4. Challenge #3: Long-Term Follow-Up Care of BPD-PH Infants

The long-term follow-up care of the BPD-PH infant demands a multidisciplinary
team approach to ensure that all aspects of treatment listed above are addressed [68].
This is crucial given the high risk of mortality, a risk that increases with the degree of
PH [9,98]. Compared to BPD infants without PH, BPD-PH infants have higher rates of
needing technology including respiratory support, feeding support, and oxygen therapy
and readmissions with illness are not infrequent [7]. With expectant management, avoid-
ance of illness, and good growth, BPD-PH is generally felt to improve over the course of
the first few years of life, allowing for the discontinuation of PH therapies by a median
of 4.4 years [88,99]. However, the postdischarge course of a BPD-PH infant requires close
follow-up because negative cardiorespiratory outcomes can persist well beyond infancy
and even into adulthood [7,100,101].

5. Overcoming the Challenges Listed

An unexpected hurdle in implementing screening guidelines lies in determining
the appropriate course of action based on the results. If a BPD infant presents with an
abnormal echocardiogram, the consensus is that a comprehensive assessment (Figure 1),
with particular attention to respiratory status, should take precedence as the first line
of management. Prior to initiating any medication therapy, it is crucial to prioritize the
optimization of respiratory, fluid, or infectious status (with appropriate protective measures
such as infant and family vaccination), because changes observed on echocardiography
may potentially improve or resolve through these measures. After optimizing the infant to
the best of the bedside clinician’s ability, the subsequent steps may involve confirming the
BPD-PH diagnosis through cardiac catheterization or further imaging (MRI or CT scan)
to assess for parenchymal disease or pulmonary vein stenosis. However, since cardiac
catheterization may not be readily available in all institutions, it is recommended to conduct
hemodynamic catheterizations in expert centers to minimize complications [102]. Moving
to a facility with this expertise may not always be feasible, prompting clinicians to consider
treatment with PH vasodilators for early stabilization and escalation with continued clinical
distress. A challenge here lies in the limited availability of robust data, which may cause
hesitation among less experienced clinicians or result in inappropriate medication choices
or regimens. In clinical practice, it is not uncommon for high doses of sildenafil and
bosentan to be employed as a “last resort”, but the authors caution against that because it
can potentially result in an unsafe situation with a risk of iatrogenic patient harm.

Each neonatology practice will encounter unique considerations in treating BPD-
PH, impacting available treatment options. Limitations may differ based on institution
and country, including formulary restrictions, local regulations, drug availability, market
access, delivery methods, national regulations by drug agencies (i.e., “risk evaluation and
mitigation strategy” programs), limited hospital formulary access, logistical challenges
in medication administration, and insufficient expertise or guidance from pulmonary
hypertension consultants. Additionally, familiarity with optimal dosing regimens can also
influence treatment strategies. Whenever possible, consultation with an experienced BPD-
PH specialist should be sought, either within the institution or by external consultation.
While selecting the optimal vasodilator of the BPD-PH infant, thought must be given to
each individual patient’s physiology and patient-specific factors such as vasoreactivity
on cardiac catheterization, existing left-to-right intracardiac shunts, left heart disease,
and pulmonary vein stenosis, amongst others. These factors may not only guide which
agent may be best tolerated, but also which may be the most efficacious. It is critical to
note that systemically absorbed pulmonary vasodilators may exert an undifferentiated
effect on the pulmonary vasculature, potentially contributing to ventilation–perfusion
mismatch. Therefore, once PH-specific pharmacotherapy is initiated, close monitoring of
clinical parameters, echocardiogram or catheterization indices, and laboratory monitoring
is recommended to ensure tolerance and monitor for efficacy.



J. Clin. Med. 2024, 13, 3417 17 of 22

J. Clin. Med. 2024, 13, x FOR PEER REVIEW  18  of  24 
 

 

the postdischarge course of a BPD-PH infant requires close follow-up because negative car-

diorespiratory  outcomes  can  persist  well  beyond  infancy  and  even  into  adulthood 

[7,100,101]. 

5. Overcoming the Challenges Listed   

An unexpected hurdle in implementing screening guidelines lies in determining the 

appropriate course of action based on the results. If a BPD infant presents with an abnor-

mal echocardiogram, the consensus is that a comprehensive assessment (Figure 1), with 

particular attention to respiratory status, should take precedence as the first line of man-

agement. Prior to initiating any medication therapy, it is crucial to prioritize the optimi-

zation of  respiratory, fluid, or  infectious  status  (with  appropriate protective measures 

such as infant and family vaccination), because changes observed on echocardiography 

may potentially improve or resolve through these measures. After optimizing the infant 

to the best of the bedside clinician’s ability, the subsequent steps may involve confirming 

the BPD-PH diagnosis  through  cardiac  catheterization or  further  imaging  (MRI or CT 

scan) to assess for parenchymal disease or pulmonary vein stenosis. However, since car-

diac catheterization may not be readily available in all institutions, it is recommended to 

conduct hemodynamic catheterizations in expert centers to minimize complications [102]. 

Moving to a facility with this expertise may not always be feasible, prompting clinicians 

to consider treatment with PH vasodilators for early stabilization and escalation with con-

tinued  clinical distress. A challenge here  lies  in  the  limited availability of  robust data, 

which may cause hesitation among less experienced clinicians or result in inappropriate 

medication choices or regimens. In clinical practice, it is not uncommon for high doses of 

sildenafil and bosentan to be employed as a “last resort,” but the authors caution against 

that because it can potentially result in an unsafe situation with a risk of iatrogenic patient 

harm.   

 

Figure 1. Proposed algorithmic approach to BPD-PH. *Consideration should be given for robust PH 

assessment using echocardiography metrics noted in Table 1. 
Figure 1. Proposed algorithmic approach to BPD-PH. * Consideration should be given for robust PH
assessment using echocardiography metrics noted in Table 1.

Overcoming these numerous challenges is, unfortunately, not a straightforward task.
Addressing these issues requires an understanding of the local culture, availability of
experienced consultants, and proximity to larger comprehensive centers. Therefore, there
is no one-size-fits-all solution that can be incorporated into guidelines to overcome these
barriers to implementation. It should be acknowledged that although PH expertise may not
be readily available in the original institution, consultation via phone or through a formal
second opinion may be possible. If the infant is safe for transport, consideration may be
given to transferring them to an institution with BPD-PH expertise for acute stabilization,
confirmation of diagnosis, and initiation of treatment.

6. Conclusions

The development of BPD-PH unfortunately represents a significant and serious com-
plication for infants with BPD. Due to the premature disruption of respiratory and vascular
development, the risk for postnatal complications is notably high. Guidelines are available
for screening and diagnosing PH in this population, and there is an increasing body of
experience with PH treatment, particularly concerning supportive care such as managing
chronic respiratory failure, providing nutritional support, and intervening on intracardiac
shunts. However, there are multiple practical challenges at the bedside that may impact
the implementation and, ultimately, the management of this life-threatening complication.
While general recommendations exist to address these barriers, further studies are needed
to incorporate them into subsequent practice models.
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