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Abstract

Background/Objectives: Acute myocardial infarction (MI) is a major cause of death world-
wide, and it imposes a heavy burden on health care systems. Although diagnostic methods
have improved, detecting the disease early and accurately is still difficult. Recently, Al
has demonstrated increasing capability in improving ECG-based MI detection. From this
perspective, this scoping review aimed to systematically map and evaluate Al applications
for detecting MI through ECG data. Methods: A systematic search was performed in
Ovid MEDLINE, Ovid Embase, Web of Science Core Collection, and Cochrane Central.
The search covered publications from 2015 to 9 October 2024; non-English articles were
included if a reliable translation was available. Studies that used Al to diagnose MI via
ECG were eligible, and studies that used other diagnostic modalities were excluded. The
review was performed per the PRISMA extension for scoping reviews (PRISMA-ScR) to
ensure transparent and methodological reporting. Of a total of 7189 articles, 220 were
selected for inclusion. Data extraction included parameters such as first author, year, coun-
try, Al model type, algorithm, ECG data type, accuracy, and AUC to ensure all relevant
information was captured. Results: Publications began in 2015 with a peak in 2022. Most
studies used 12-lead ECGs; the Physikalisch-Technische Bundesanstalt database and other
public and single-center datasets were the most common sources. Convolutional neural
networks and support vector machines predominated. While many reports described high
apparent performance, these estimates frequently came from relatively small, single-source
datasets and validation strategies prone to optimism. Cross-validation was reported in 57%
of studies, whereas 36% did not specify their split method, and several noted that accu-
racy declined under inter-patient or external validation, indicating limited generalizability.
Accordingly, headline figures (sometimes >99% for accuracy, sensitivity, or specificity)
should be interpreted in light of dataset size, case mix, and validation design, with risks
of spectrum/selection bias, overfitting, and potential data leakage when patient-level in-
dependence is not enforced. Conclusions: Al-based approaches for MI detection using
ECGs have grown quickly. Diagnostic performance is limited by dataset and validation
issues. Variability in reporting, datasets, and validation strategies have been noted, and
standardization is needed. Future work should address clinical integration, explainability,
and algorithmic fairness for safe and equitable deployment.
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1. Introduction

Myocardial infarction (MI) or heart attack continues to be among the main causes of
death and chronic morbidity globally. It poses a considerable challenge to health systems
because it has a high prevalence, imposes heavy economic costs, and necessitates immediate
diagnosis and treatment [1,2]. The World Health Organization (WHO) states that millions of
cases of MI are documented annually around the world, and this number keeps increasing
as a result of aging populations, dietary habits, physical inactivity, and stress [3]. Early
detection and accurate diagnosis of MI continue to be challenging despite tremendous
developments in clinical treatment and medical technologies, particularly in prehospital
triage, overcrowded urban emergency departments, and rural or low-resource hospitals
without on-site interventional cardiology or 24/7 expert ECG readers [4-7].

Among the fundamental diagnostic tools used in managing Ml is the electrocardio-
gram (ECG), which gives real-time information about the heart’s electrical activity. It
is extensively used as it is readily available, rapid, and does not invade any anatomical
structure [8,9]. The interpretation of an ECG needs clinical acumen and can be limited
by atypical presentations, subtle ECG changes, and individual variation in analysis [10].
This can be associated with misdiagnosis, delayed treatment, and worse outcomes in emer-
gencies. This indicates the need for more effective, standardized, precise procedures to
interpret ECG information [11].

Artificial intelligence (AI) has quickly become an innovative solution in health care,
particularly optimizing diagnosis procedures [12]. Recent analyses of comprehensive Al
diagnostic platforms, such as Microsoft’s Al Diagnostic Orchestrator (MAI-DxO), demon-
strate their potential to streamline workflows, reduce costs, and enhance clinical decision
support [13]. Al's capability to process big datasets and identify complicated, non-linear
trends is now widely used to interpret ECGs in cases of MI [14,15]. Machine and deep
learning algorithms, especially Convolutional Neural Networks (CNN), can spot minute
and vital ECG features that can be possible signs of the early stages of MI [16]. Such
technologies provide uniform, high-speed analysis that can aid doctors in making prompt
and accurate decisions [17]. Recent advancements have revealed that Al can enhance
ECG diagnosis by identifying trends like ST-segment elevations, T-wave abnormalities,
and other electrocardiographic markers of acute injury to the myocardium [18]. Beyond
acute detection, Al algorithms can also estimate the risk of future cardiac events by com-
bining ECG information with patient demographics and clinical and laboratory data [19].
Technology such as the MI3 model and risk stratification algorithms assist clinicians in
personalizing patient treatment and triaging high-risk patients earlier [20].

Advanced applications like Al-Based Alarm Strategies take it to an additional level
by integrating ECG outcomes with clinical signs and troponin values to maximize triage
and minimize treatment delays [21]. Such models have emerged as effective in minimizing
critical parameters such as “door-to-balloon” time, which is crucial in enhancing outcomes
for patients who receive emergency percutaneous coronary intervention. Al further assists
medical practitioners in high-volume settings by automating elements of diagnosis to
ensure that no hidden clues go unobserved [22,23].

Even with these advancements, there are challenges. The current literature base of Al-
aided ECG interpretation continues to be fragmented, with studies differing in data sources,
sample sizes, validation methods, and reporting standards, and there is considerable
variation in data validity. Furthermore, issues related to algorithm explainability, patient
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privacy of data, and algorithm biases need to be resolved before widespread clinical
application. Compatibility with clinical practice and gaining clinician trust will be equally
crucial to successful implementation [24].

In light of the rapidly changing Al technologies and their growing use in cardiology, it
is imperative to analyze systematically how these tools influence ECG-based diagnosis of
ML. This scoping review will chart the range of Al use in ECG interpretation of MI, discover
missing areas in existing literature, and provide input to future studies and practice. By
summarizing existing evidence, this review intends to facilitate the development of novel,
effective, and equitable diagnostic tools to enhance patient outcomes in MI.

This scoping review systematically maps and evaluates AI methods for MI detection
using ECG data by cataloging commonly used model families (e.g., CNN, SVM, artificial
neural networks (ANN), random forests) together with input representations and lead
configurations; inventorying public versus single-center datasets and whether patient-
level independence is enforced; summarizing validation designs (random or intra-patient
versus inter-patient splits, internal versus external validation, cross-validation practices);
synthesizing reported performance metrics (accuracy, sensitivity, specificity, AUROC, F1,
where reported) with attention to case mix and sample size; and identifying gaps and risks
of bias, including spectrum/selection bias, overfitting, and data leakage, as well as the
current state of clinical integration, explainability, and algorithmic fairness. Methods and
reporting follow the PRISMA extension for Scoping Reviews (PRISMA-ScR).

2. Materials and Methods

We conducted a scoping review to systematically map research on Al applications for
MI detection using ECG data. Methods followed the Joanna Briggs Institute (JBI) guidance
for scoping reviews. No formal protocol was registered for this scoping review; however,
the review was conducted following the PRISMA-ScR guidelines.

2.1. Data Sources and Searches

The search strategy was developed in collaboration with a medical librarian (T.K.) and
structured around the Population-Concept—Context (PCC) framework. The Population
included patients or human ECG datasets, the concept encompassed artificial intelligence
methods (including machine learning, deep learning, and neural networks) for MI detec-
tion, and the context included healthcare settings. Controlled vocabulary terms were used
alongside keywords to capture relevant studies. Terms included “Artificial Intelligence”,
“Myocardial Infarction”, “Electrocardiography”, “Diagnosis”, “Forecasting”, and “Diag-
nostic Imaging”, as well as their relevant synonyms and keyword variations to maximize
search sensitivity across all databases. Boolean operators, truncation, and proximity oper-
ators were applied to maximize sensitivity. The search was executed in Ovid MEDLINE,
Ovid Embase, Web of Science Core Collection, and Cochrane Central. We systematically
searched the literature covering the last 10 years, from 1 January 2015, to 9 October 2024.
Non-English studies were included only if a reliable translation was available; otherwise,
they were excluded. No publication type restrictions were used in the search strategy.

2.2. Eligibility Criteria

We included original studies that used Al methods (e.g., machine learning, deep
learning) to detect or diagnose MI using ECG data. Studies whose primary diagnostic
input was not ECG (e.g., echocardiography, biomarkers, imaging without ECG) were
excluded. (Operational definitions used in searching and screening treated “ECG” and
acute coronary syndrome,” and “is-

i

“ECG” as equivalent and “myocardial infarction,
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chaemia/infarction” as within the MI diagnostic spectrum, with final inclusion limited to
studies explicitly addressing MI detection.)

2.3. Study Selection and Data Extraction

We used Covidence software (https://www.covidence.org/, accessed on 15 Octo-
ber 2024) for screening and data extraction. Duplicates were removed both by the software
and manually. Two researchers [L.S. and FEM.] independently conducted the title and ab-
stract screening, while two others [S.B. and M.].] conducted the full-text screening. W.A.
resolved conflicts.

The final studies included were exported as an Excel sheet. For each study, we
extracted key parameters including first author, year of publication, country, Al model type,
algorithm used, ECG data type, and primary performance metrics such as accuracy and area
under the receiver operating characteristic curve (AUC). Additional data were also collected
to provide comprehensive information on study characteristics and methodology, including
data source, types of Al models, common algorithms, data preprocessing techniques,
ECG signal features used for Al model training, additional patient data included, cross-
validation approaches, outcome specificity, sensitivity, Fl-score, and reported clinical
outcomes. Data extraction was performed by [W.A. and T.H.], with any discrepancies
resolved through discussion.

2.4. Synthesis of Results

Given the objectives of a scoping review, we used descriptive, narrative synthesis.
We mapped publication trends over time and by country; summarized ECG input types,
datasets, and algorithm families; and tabulated model-building/validation practices and
performance metrics. The text and figures present findings as counts/percentages, and
detailed per-study data are provided in Table S1. Methods for scoping synthesis (mapping
and frequency summaries rather than meta-analysis) align with JBI guidance.

2.5. Critical Appraisal of Individual Sources

Consistent with scoping reviews to map and characterize evidence, we did not under-
take formal risk-of-bias or quality appraisal.

3. Results

Our research strategy yielded 7189 articles, of which Covidence identified 1132 as
duplicates, while 726 were identified manually. Only two-hundred-and-twenty arti-
cles were included in the final data extraction, as shown in the PRISMA flow diagram
(Figure 1, Table S1).

Publications on the use of Al in detecting MI have increased steadily over recent
years, reaching a peak in 2022, reflecting growing interest in Al-based ECG detection of
myocardial infarction. China contributed the largest number of publications, while 17%
were conducted across multiple countries. The number of publications per country is
shown in Figure 2.

Most studies used 12-lead ECG in their Al training and testing, followed by single-lead
ECG, most commonly lead II. Continuous ECG was used in 15% of the studies and was
sometimes combined with other ECG leads in 4%. Figure 3 shows the frequency of the
ECG leads used.
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Figure 1. PRISMA Flow Diagram of Study Selection Process.

Figure 2. Global Distribution of Publications on Al-Based Detection of MI.
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Figure 3. Frequency of ECG Lead Types Used in Al-Based Detection of MI.

3.1. Data Validation Approaches for AI-Based ECG Models

In order to evaluate Al models, data validation methods were performed, including
cross-validation (CV), a common method in which the dataset is divided into training
and validation sets. The included studies used CV in 57% of the studies, while 36% of the
publications did not specify the splitting technique [25]. In addition, inter-patient validation
was used to assess model generalizability across entirely unseen patients. Several studies
that reported > 99% accuracy on random or intra-patient splits showed lower performance
under stricter inter-patient or external evaluation; for example, 100% — 95.65%, 99.92% —
95.49%, and 99.81% — 92.69% (—4-8 percentage points). In some localization/domain-shift
settings, declines were larger (=99% — ~55%).

3.2. ECG Data Source

In addition, several studies relied on custom or institution-specific datasets, including
those with multi-lead configurations or continuous ECG recordings (e.g., 12-lead SECG and
3-lead OECG at 1000 Hz, or extended 15-lead ECGs incorporating Frank XYZ vector leads).

Figure 4 demonstrates the algorithms used in Al training. Some algorithms, such
as CNN and SVM, were commonly used across multiple studies, while others, like the
Cascade Correlation Neural Network, were used in only a few studies.

@® Percentage (%) W Frequency

300 40

Algorithm

Figure 4. Al Algorithms Used for ECG-Based Detection of MI.
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3.3. Diagnostic Performance

Unsurprisingly, most algorithms demonstrated high accuracy, sensitivity, and speci-
ficity, with most studies achieving results between 99% and 100%. Multiple CNN studies
reported accuracy above 99%, though these results were often achieved on relatively small
datasets and inner-patient validation, which may introduce bias and limit generalizability.
Performance tends to be lower with stricter inter-patient validation.

Overall accuracy ranged from 70% to 100%, with the peak performance of 100% ob-
served in many studies, including different models, which are single period with multiple
infarction areas, ANN with time-domain HRV parameters, EfficientNetV2B2 for MI de-
tection, CNN—multi-VGG for inner-patient evaluation, SVM for MI detection, and CNN
(Table 1). As shown in Figure 5, only a few studies reported poor outcomes, primarily
among the earlier publications in the field of AL

Table 1. Family-level diagnostic performance for AMI detection from ECG.

Algorithm Accuracy (Reported) Sensitivity Specificity Notes/Representative Examples
Family (Reported) (Reported)
CNN Often > 99% (overall Often > 99% Often > 99% Multiple CNN studies reported consistently
model accuracies in the high, though variable, classification (e.g.,
corpus span 70-100%) multi-VGG inner-patient evaluation; other
CNN variants). Performance tends to be
highest on inner-patient splits and can drop on
strict inter-patient validation.
SVM Often > 99% Often > 99% Often > 99% SVMs trained on engineered ECG features
(including ST-T morphology/HRV) frequently
matched CNN-level performance; exemplar
work reported good results.
ANN (MLP) Up to ~100% in Up to ~100% in  Up to ~100% in ANN using time-domain HRV parameters
some reports some reports some reports reported near-perfect performance; results vary
with features and validation.
Random Reported as high in NA NA RF appears among used algorithms (Figure 4),
Forest individual studies; no but the narrative does not quantify family-level
pooled/aggregate sensitivity /specificity; see per-study entries in

family metrics in
manuscript text

Table S1 for exact values.

NA: Not applicable.
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Figure 5. Accuracy, Sensitivity, and Specificity of AI Models Used in MI Detection Studies. Circles
represent outliers.
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4. Discussion

ECG is central to myocardial ischemia assessment, but bedside interpretation has
practical limits, with interobserver variability and subtle features that may be overlooked
without computer-assisted analysis [26]. In this context, Al has emerged as a potential
tool capable of extracting clinically relevant diagnostic information from ECG data. Used
as a second reader, it can reduce clinician variation, lower human errors, and enhance
clinical decision-making.

This review specifically explores the application of Al in the early detection of MI,
which has gained significant interest in recent years, highlighting the growing intersection
between digital technologies, especially machine learning, and various aspects of cardiology.
A notable observation is China’s dominance in publication output. This reflects national
policy support, most prominently the 2017 New Generation Artificial Intelligence Develop-
ment Plan issued by the State Council, which set milestones for global Al leadership by
2030 and fostered city-level pilot programs, academic—clinical-industry collaborations, and
substantial research investment. Consequently, Chinese inventors accounted for about 70%
of global generative Al patent family publications between 2014 and 2023, underscoring
a strong innovation pipeline and research productivity. In the ECG-AI field specifically,
open-access Chinese 12-lead datasets such as the Chapman-Shaoxing collection have low-
ered entry barriers and provided internationally recognized benchmarks, further driving
output and visibility [27]. Many studies report high accuracy, sensitivity, and specificity,
but results vary by dataset and evaluation (especially inter-patient/external testing); Fig-
ure 5 summarizes this range, with CNNs and SVMs often performing well. CNNs are a
subdivision of ANNSs that consist of a convolutional, pooling, and fully connected layer
that work synergistically to interpret the provided mission effectively. They are specifically
designed to capture and process visual patterns in data, making them particularly effective
for interpreting signals such as ECG waveforms [28]. CNNs likely predominate because
they learn discriminative features directly from raw or transformed waveforms, can exploit
multi-lead spatial correlations, and reduce hand-engineered feature dependency, which
are advantages that often translate to better cross-dataset robustness when rigorously
validated [15]. Recently, Yunfan Chen et al. introduced an advanced version of a CNN, the
Multi-Feature Fusion CNN, which moves beyond analyzing morphological or frequency
features in isolation. Instead, it integrates both domains to enhance diagnostic performance.
This innovative architecture achieved an accuracy of 87%, outperforming the previous ver-
sion by 6.89% points [29]. This example shows the variability across studies and supports
describing performance as a range rather than 99-100%.

Several studies reported strong results with SVMs, particularly when datasets were
smaller, inputs used hand-crafted ECG features (e.g., ST-segment shift, QRS shape, fre-
quency measures), and the number of leads was limited. SVM is a supervised method
that finds the optimal hyperplane separating classes; a larger margin around the sup-
port vectors improves robustness [28]. With kernel functions, SVM can map non-linear
ECG patterns into a higher-dimensional space where linear separation is feasible, helping
detect subtle ischemic changes that may be missed in the original feature space. These
properties fit low-dimensional, engineered inputs and allow class-weights/regularization
to address class imbalance [30]. On the other hand, CNNs usually benefit from larger
and more diverse training data and from full 12-lead inputs; when data are limited or
single-lead, the performance gap becomes small, which explains why some MI detection
studies favored SVMs.

SVM pipelines depend on hand-crafted features and careful preprocessing, which can
degrade under baseline wander, noise, or device-specific filtering [31,32]. Model behavior
is sensitive to kernel choice and hyperparameters (C, v), and non-linear kernels can overfit
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small or intra-patient settings, inflating apparent performance. Probabilistic risk estimates
are not native and typically require post hoc calibration (e.g., Platt scaling), which many
studies omit [33]. Kernel SVMs also scale poorly with large sample sizes or long continuous
recordings (time/memory often grow super-linearly with the number of training points),
forcing down-sampling or heavy feature summarization [34].

Most of those algorithms used a 12-lead ECG in their Al training and testing. A deep
neural network system comprising six layers and trained on over 900,000 standard 12-lead
ECG recordings demonstrated high F1 scores across several diagnostic categories, including
rhythm disorders (F1 = 0.957), acute coronary syndromes (F1 = 0.925), and conduction
abnormalities (F1 = 0.893) [35]. Apart from showing Al’s potential utility in MI detection,
these findings also emphasize the enhanced diagnostic performance achievable when lever-
aging comprehensive 12-lead ECG inputs. Clinically, a 12-lead ECG is the recommended
frontline test for suspected ACS and enables anatomical localization (e.g., inferior, anterior,
posterior), guiding urgent reperfusion decisions; guideline pathways are anchored in the
12-lead [36]. Single-lead inputs (often lead II) are attractive for ambulatory/wearable
screening and can support MI detection in research settings; however, their diagnostic
performance for reversible ischemia and regional changes is generally lower than standard-
ized 12-lead acquisition [37]. Continuous ECG/ST-segment monitoring can detect transient
or silent ischemia and facilitate earlier triage. However, real-time streams introduce label
uncertainty (event timing, noise/artifacts) and distribution shift across care settings, which
can reduce external validity unless models are trained and validated accordingly [38].

Al can complement physicians in everyday work. It can serve as a second reader on
the first and serial ECGs, flagging borderline ST-T changes and subtle patterns that may be
overlooked; in one retrospective evaluation, Al identified MI in ECGs initially interpreted
as normal by conventional algorithms [39]. In triage (including prehospital /ED settings),
alarm strategies that combine ECG with clinical signs and troponin can route high-risk
cases to earlier review and help reduce delays. Al can also assist with signal quality by
detecting noise or inconsistent signals before interpretation [40], and computational ECG
approaches enable simple comparison with prior recordings to highlight new changes. This
way, Al may help reduce missed MI while the final decision remains with the clinician.

In a retrospective evaluation of Al algorithms for detecting MI from ECG initially inter-
preted as normal but later confirmed to be associated with acute coronary syndromes, the
Al excels in detecting 75% of these ECG as MI cases and 86% as abnormal [41]. This reduces
human limitations such as missed subtle findings, cognitive fatigue, and interobserver
variability. Thus, Al helps prevent diagnosis delays and shortens balloon time.

Al can also support routine workflow by comparing current ECGs with prior ones
to flag new changes, prompting repeat ECGs or troponin tests when clinical risk remains,
routing high-risk traces earlier in prehospital /ED triage, and detecting poor lead placement
or noise before interpretation. Used this way, Al may help reduce missed MI while the final
decision remains with the physician.

One of the studies emphasized that certain subtle ECG variations are often misinter-
preted as noise, despite their potential to carry significant prognostic value, particularly in
post-myocardial infarction risk stratification [42]. To address this challenge, they developed
an adaptive downsampling technique that optimizes data processing without compromis-
ing diagnostic integrity [42]. Another study introduced the concept of computational ECG,
which leverages the integration of portable monitoring devices with cloud-based analytics
to enable real-time interpretation of ECG data [43]. These innovations demonstrate the
ongoing efforts to enhance the clinical utility of long-duration ECG signals within Al-driven
cardiovascular care.
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Our review has limitations, including reliance on physician-interpreted ECGs as the
reference standard, rather than using definitively diagnosed MI confirmed by clinical out-
comes or imaging [44]. This introduces a potential source of bias and affects the model’s
validity. Also, two reviewers independently screened titles, abstracts, and full texts, with
discrepancies resolved by a third reviewer. Formal inter-rater agreement metrics (e.g.,
Cohen’s kappa) were not calculated, which may be considered a limitation of the review
process. Additionally, the use of small datasets, limited explainability of Al predictions
(e.g., through class activation mapping), and the omission of detailed clinical information
constrain the generalizability of findings [45]. Beyond dataset size, the heterogeneity of
data sources presents another challenge; some studies rely on publicly available databases
such as PTB, while others use institution-specific datasets that may not reflect broader
population variability. The review highlights considerable variability in reporting practices
across studies, including differences in dataset sources, lead configurations, preprocessing
steps, algorithm selection, validation strategies, and performance metrics. This variability
limits direct comparison of results and interferes with evaluating Al-based interpretations’
overall validity and generalizability. Therefore, there is a clear need for harmonized report-
ing frameworks, including standardized descriptions of datasets, validation strategies, and
performance metrics. Such frameworks would facilitate reproducibility, enable fair bench-
marking, and support safe clinical translation of Al-based ECG models for MI detection.

5. Conclusions

This scoping review maps the emerging evidence on Al for electrocardiographic de-
tection of myocardial infarction. Building on the heterogeneous datasets, model types, and
validation practices we identified, the next step is converging on standardized reporting
and evaluation frameworks specific to ECG-AI for MI. At a minimum, future studies should
transparently report dataset provenance and case mix; enforce and document patient-level
independence; prioritize inter-patient and external validation; provide calibration and
decision-threshold rationale; disclose preprocessing and feature pipelines to minimize leak-
age; share model cards and code/data when feasible; and present stratified performance
(e.g., by age, sex, rhythm, comorbidity, and acquisition setting) to surface fairness and
generalizability concerns. For clinicians, the current landscape suggests where ECG-AI
might assist, e.g., prehospital triage, busy emergency departments, settings without on-site
cardiology, yet real-world utility should be established prospectively with clinically mean-
ingful endpoints (time-to-treatment, missed MI, unnecessary activations), human-factors
assessment, and integration workflows that preserve clinician oversight. For policymak-
ers and health-system leaders, the path to safe deployment includes setting minimum
reporting standards for procurement, requiring external /ongoing performance monitoring
and equity audits, enabling privacy-preserving data access for multicenter validation, and
supporting interoperability and auditability across vendors. In keeping with the aims of
a scoping review, we do not make claims about comparative effectiveness. Rather, we
highlight gaps and propose a research agenda: prospective, preregistered, multicenter
studies; context-specific implementation trials (prehospital, ED, rural/low-resource hospi-
tals); post-deployment surveillance; and health—-economic evaluations. Advancing along
this agenda can move ECG-AIs for MI from promising prototypes toward trustworthy,
equitable, and clinically actionable tools.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/jcm14196792/s1, Table S1: Characteristics and outcomes of
included studies.
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