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Abstract: Intrusion Detection Systems (IDS) are essential components in preventing malicious traffic
from penetrating networks and systems. Recently, these systems have been enhancing their detection
ability using machine learning algorithms. This development also forces attackers to look for new
methods for evading these advanced Intrusion Detection Systemss. Polymorphic attacks are among
potential candidates that can bypass the pattern matching detection systems. To alleviate the danger
of polymorphic attacks, the IDS must be trained with datasets that include these attacks. Generative
Adversarial Network (GAN) is a method proven in generating adversarial data in the domain
of multimedia processing, text, and voice, and can produce a high volume of test data that is
indistinguishable from the original training data. In this paper, we propose a model to generate
adversarial attacks using Wasserstein GAN (WGAN). The attack data synthesized using the proposed
model can be used to train an IDS. To evaluate the trained IDS, we study several techniques for
updating the attack feature profile for the generation of polymorphic data. Our results show that
by continuously changing the attack profiles, defensive systems that use incremental learning will
still be vulnerable to new attacks; meanwhile, their detection rates improve incrementally until the
polymorphic attack exhausts its profile variables.

Keywords: adversarial attacks; Generative Adversarial Network (GAN); Intrusion Detection Systems;
DDoS/DoS attacks; machine learning; Wasserstein Generative Adversarial Network (WGAN)

1. Introduction

The increasing usage of the Internet in all aspects of life causes concerns regarding
network security and needs constant improvements in securing Internet technologies from
various attacks. There are many tools deployed to secure data communication or prevent
cyber-security attacks, such as Intrusion Detection Systems (IDS), Intrusion Prevention
Systems (IPS), Anti-Malware, Network Access Control, and Firewalls. Our focus in this
work is on Intrusion Detection Systems (IDS), given the rise in malicious intrusions or
attacks on network vulnerabilities [1].

IDS analyzes the traffic data to distinguish between malicious and normal traffic and
to generate alerts so that necessary precautions can be carried out to prevent damage. With
the advancement in network attacks, the security detections and prevention systems are
also improving. Artificial Intelligence (AI) is now commonly used in defensive measures
in IDS [2,3], and opponents also have started to use AI techniques for generating malicious
attacks and adversarial data [4,5].

One of the frameworks to generate adversarial data is to use a Generative Adversarial
Network (GAN). It is an architecture that consists of two deep neural networks: the
Generator and the Discriminator. The generator synthesizes adversarial data, and the
discriminator distinguishes between the original and the synthesized adversarial data.
The generator and the discriminator compete in this way, and, in the end, the generator
produces synthetic or adversarial data [6]. GAN has been utilized in research to generate
various types of datasets such as images [7], sound [8], text [9], and network attack data [10].
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Polymorphic is a term that consists of a vital keyword, morph, which means changing
the form. In the context of network security, polymorphic attacks refer to the type of
attack that mutates its signatures to evade detection. In other words, a polymorphic
attack changes in such a way that it maintains its functionality. The polymorphic engine is
employed to change the signature of the attack. The polymorphic property of attacks makes
old detection signatures obsolete [11]. These types of attacks are specifically deployed
when the detection system uses signature-based pattern matching techniques. The first
known polymorphic attack was used to generate malicious URLs for a phishing attack [11].
This attack can evade the signature-based anti-phishing defense systems, and defense
systems are unable to blacklist malicious URLs.

The current state of research on generating adversarial attack data using machine
learning and AI methods is limited and mostly focused on specific formats such as image,
text, and sound. For example, phishing attacks are automated using adversarial AI [12],
and attackers can use GAN to generate the voice of a group of people to breach the security
access [13]. However, its use in generating network attacks has not been fully investigated,
which is the objective of this research.

Among network-based threats, Distributed Denial-of-Service (DDoS) and Denial of
Service (DoS) attacks are the most common to generate, often using simple scripting tools
such as Slowloris [14], GoldenEye [15], and Hulk [16]. Additionally, these attacks mostly
target specific organizations and need fewer resources. In this research, we focus on
generating DoS/DDoS attacks using adversarial network techniques, namely WGAN [17].
Furthermore, we develop a framework for generating polymorphic DoS/DDoS attacks in
such a way that maintains the intensity of the attack but can be misclassified by an IDS as a
regular network flow. The polymorphic attack generation engine will be useful for training
IDS against unknown or polymorphic attacks.

1.1. Contributions

The main contributions of this research can be summarized as:

- We propose a WGAN-based adversarial engine that can launch polymorphic attacks
on a black-box IDS. To the best of our knowledge, our work is the first to introduce
and study the concept of polymorphic network attacks.

- To preserve the functional behavior of an attack, we employ Shapley Additive Expla-
nations (SHAP) [18] that identify the functional features of the attacks.

- We introduce an adversarial polymorphic training mechanism to enhance the perfor-
mance of IDSs against these attacks.

- We conduct comprehensive experiments and analyze the results to compare the
performance of multiple IDSs against polymorphic adversarial DDoS/DoS attacks.

1.2. Outline of the Paper

This paper is organized as follows. Section 2 provides a detailed overview of the
related works, followed by Section 3, which discusses deep learning-based techniques
for cybersecurity. Section 4 provides details regarding the dataset used and the feature
selection technique employed. Section 5 discusses our proposed framework. Section 6
describes the experimental setup, and thereafter, we present our results and analysis in
Section 7. Finally, in Section 8, we conclude the paper and provide recommendations for
future work.

2. Related Works
2.1. Taxonomy of Intrusion Detection Techniques Using ML and DL

Researchers have been working on various Machine Learning (ML) and Deep learning
(DL) techniques to improve the functionalities and ability of the IDS. There are three
techniques used by IDSs to detect various attacks: Signature-based detection (knowledge-
based), anomaly-based detection (behavior-based), and stateful protocol analysis (specification-
based) [1]. The first technique analyzes a network for a specific pattern of predefined
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attack. The limitation of this technique is that it is unable to detect an unknown attack
and zero-day attacks. The second method classifies the network flow data into standard
and anomalous data by comparing it with normal network user data. The limitation
of this technique is that it results in high false positives during classification [1]. The
third method is used to trace protocol states and identify unknown commands. The
disadvantage of this approach is that it is unable to identify slow-rate attacks, which have
similar behavior as normal data [1]. In the following subsections, we discuss several
signature-based, anomaly-based, and specification-based detection techniques employed
by current network security researchers.

2.1.1. Signature-Based Intrusion Detection

Various signature-based supervised machine learning classifiers, such as Support
Vector Machine (SVM) [19,20], Naïve Bayes (NB) [19,20], KNN [20], Decision Tree (DT) [21],
Random Forest (RF) [19,21], Logistic Regression (LR) [21], and Multi-Layer Perceptron
(MLP) [22] are studied by current researchers for intrusion detection. Their results show
that these algorithms have higher accuracy on known or similar attack patterns. The
authors in [23] pointed towards the recent developments and shortcomings in signature-
based IDS. They suggested that the main concern with the latest IDS is that they tend
to alarm on fake attack data, which results in high false positives in terms of machine
learning. A comparison of the detection rate and accuracy between various machine
learning techniques, such as Artificial Neural Network (ANN), SVM, NB, RF, and AdaBoost
has been discussed. In [24], the authors provide an overview of several single classifiers,
hybrid classifiers, and ensemble classifiers consisting of multiple ML models. The authors
have compared their results based on multiple network security datasets. Their research
shows that hybrid and ensemble classifiers provide a better accuracy and detection rate
as compared to a single classifier. The authors in [25] compared the efficacy of binary and
multi-class ML classifiers. These signature-based classifiers are compared based on several
performance metrics, such as True Positive Rate, False Positive Rate, Area Under the ROC
Curve (AUC), and incorrect classifications. Their results depicted that reducing the number
of target classes in training data helps in reducing the class imbalance for minority attack
classes, thereby improving the overall IDS performance.

Likewise, several advanced DL classifiers, such as Deep Neural Network (DNN) [26,27],
Convolutional Neural Network (CNN) [28,29], Recurrent Neural Network (RNN) [30,31],
Long Short Term Memory (LSTM) [30,31], and Gated Recurrent Unit (GRU) [32,33] are
employed by current network security researchers as signature-based intrusion detection
techniques. Although these supervised DL classifiers provide better attack detection rates
as compared to the traditional ML classifiers, they can identify only known attack patterns
and do not perform equally well on unknown attacks or variants of known attacks [2,3].

2.1.2. Anomaly-Based Intrusion Detection

The anomaly detection technique uses several statistical methods, machine learning,
and deep learning in IDS. The authors in [34] proposed a kernel-based IDS that can detect
anomalies, such as DDoS attacks. It uses the ML technique named K-means clustering
to classify between adversarial and standard examples. In [35], the authors employed a
statistical analysis-based anomaly detection to identify normal and malicious data. An
adaptive threshold profile is maintained for normal and abnormal behaviors together with
a trust management scheme. An ML network anomaly detection technique based on the
Isolation Forest classifier is proposed in [36]. Several anomalous behaviors are identified
through statistical feature extraction methods. The authors in [37], provided a comparative
analysis of several unsupervised network anomaly detection techniques, such as K-means,
Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Gaussian Mixture
Model (GMM), and Local Outlier Factor (LOF). Their results indicated that DBSCAN gives
the best performance based on the detection rate. Another unsupervised ML clustering-
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based technique is employed in [38]. The authors employed Sub-Space Clustering (SSC) and
One Class Support Vector Machine (OCSVM) to identify both known and unknown attacks.

Several DL algorithms are employed for unsupervised network anomaly detection.
In [39], the authors introduced a Deep Autoencoder model for network flow-based anomaly
detection. While the detection is only based on the distribution of traffic features, inves-
tigation of other network features is left for future work. The authors in [40] introduced
a hybrid anomaly detection classifier consisting of a CNN model and an unsupervised
Deep Autoencoder (DAE) model. In this case, CNN is used for traffic profiling and the
unsupervised DAE is used for unsupervised detection of normal and anomalous traffic.
In [41], the researchers compared several anomaly detection techniques, such as K-means,
Deep Autoencoding Gaussian mixture model (DAGMM), Self Organizing Maps (SOM),
and Adversarial Learned Anomaly Detection (ALAD) to identify normal and anomalous
network flows. Based on their analysis, ALAD is the best performing model since it learns
from adversarial samples and provides stable results on minority attacks.

2.1.3. Specification-Based Intrusion Detection

Multiple specification-based intrusion detection techniques are applied by network
security researchers to identify protocol-based attacks. In [42], the authors introduced a
specification-based IDS engine for networks without an infrastructure. The paper mainly
focused on the Ad-hoc On Demand Distance Vector (AODV) routing protocol. Experi-
mental results showed that attacks can be detected with high detection accuracy. The
authors in [43] proposed a behavior rule specification-based IDS for safety-critical medical
cyber systems. In this case, the behavior of a medical device is monitored for any hidden
attacks to reduce false positives and ensure the patient’s safety. The authors report that
their proposed technique outperforms other available techniques for intrusion detection in
healthcare applications. In [44], the authors explored a specification heuristics-based IDS
for Internet of Things (IoT) Networks. In this paper, the researchers focused on identifying
intrusion at each device level rather than the network level. Experimental results revealed
that their approach is successful in identifying abnormal sequential patterns as compared
to other available approaches.

2.2. Attacks Using Generative Adversarial Networks

With the recent developments towards Machine Learning and Deep Learning tech-
niques, Intrusion Detection Systemss are getting advanced with these methods. However,
there is limited research testing the integrity of the advanced IDS against adversarial data.

A framework to generate adversarial malware using GAN to bypass the detection
system is developed in [45]. The objective of this research was to use a black-box malware
detector since most of the attackers are unaware of the detection techniques used in the
detection system. Instead of directly attacking the black-box detector, the researchers
created a model that can observe the target system with the corresponding data. Then, this
model calculates the gradient computation from the GAN to create adversarial malware
data. With this technique, the authors achieved a model accuracy of around 98%.

The same methodology has been employed to generate adversarial attacks for An-
droid applications. The authors in [46] present a model to generate adversarial android
malware using GAN. The model consists of the generator, the discriminator, and Malware
Detector. The generator takes a random noise vector and produces the adversarial data. The
discriminator gets benign data and adversarial malware and then differentiates between
real and perturbed data. The discriminator provides feedback in the form of loss to the
generator. If the generated sample is distinguishable, it will increase the loss, and decrease
it otherwise. They have used various classifiers, such as Support Vector Machine, Random
Forest, and Logistic Regression as the machine learning classifiers for the GAN model.

The Wasserstein GAN (WGAN) model was introduced in [17]. To generate a malicious
file, the authors in [10] proposed a method that uses WGAN in order that a detection
system signifies the adversarial malicious file as a regular file. They have achieved an
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accuracy of around 99%, proving that their method can generate adversarial malicious files
that can bypass the detection system.

A study in [47] used WGAN to generate simulated attack data. According to the
authors, many tools can generate simulated attack data. However, this process could take
a long time and a large amount of resources. Using the proposed technique, they have
produced millions of connection records with only one device and within a short period.
They used the KDD Cup 1999 dataset as the training set. Their experiment suggests that as
compared to GAN, the WGAN learns faster and generates better results.

Ring et al. [48] proposed a method that produces flow-based attack data using WGAN.
This research uses the CIDDS dataset to test and train the proposed method. They have
suggested that the flow-based dataset consists of categorical features, such as IP address,
port numbers, etc., where the GAN model is unable to process. They have also proposed a
method to preprocess the categorical data and transform that into continuous data. They
have employed several techniques to evaluate the quality standard of the adversarial data.
Their results show that it is possible to generate real network data using this method.

The benefits of WGAN to improve IDS functionality has been studied in [49]. The
authors proposed a technique, called IDSGAN, to generate adversarial attack data and
test the attack against the Intrusion Detection System. They have utilized the NSL-KDD
as the benchmark dataset to generate an adversarial attack on IDS. They have tested this
technique with various machine learning classifiers, such as Support Vector Machine, Naïve
Bayes, Multilayer Perceptron, Linear Regression, Decision Tree, and Random Forrest. Four
types of attacks, such as Probe, DoS, User to Root, and Root to Local to generate adversarial
attack data have been studied in this research.

Shahriar et al. [50] introduced a GAN-based IDS named G-IDS for the detection
of attacks. In this work, G-IDS is compared with a standalone IDS (S-IDS) that is not
trained with adversarial attack samples. Although the results indicate a better performance
of G-IDS in terms of precision, recall, and F1-score, the model is not evaluated against
polymorphic attacks.

Zhang et al. [51] proposed a hybrid model named VAE-GAN for intrusion detection.
This model combines a Variational Autoencoder (VAE) and a Generative Adversarial
Network (GAN) to classify attack and normal instances. While the results of three IDS
models, such as CNN, MLP, and RNN show improvements after training with samples
generated using the VAE-GAN model, no evaluation is provided on polymorphic attacks.

2.3. Problem Statement

Research works based on generating adversarial attacks using GAN mainly focus
on generating adversarial data and studying IDS for the possibility of attack detection.
Most of the state-of-the-art research does not focus on training the IDS with adversarial
data generated by the GAN and testing if the IDS can detect similar kinds of attacks in
the following cycles. The current research work also lacks the idea of polymorphic at-
tacks, i.e., to update the attack feature profile by manipulating the features of training
data and trying to generate a new variety of adversarial data to evaluate the IDS function-
ality gradually. In addition, research shows that the traditional variant of GAN models
based on Goodfellow et al. [6] does not scale with a large dataset, and is unstable with
large-scale applications [52].

In this research, we aim to generate an AI-based adversarial DDoS/DoS attack using
WGAN. Moreover, this attack will be profile-based and polymorphic, which means the
attack will change its feature profile periodically.

The main objective of the research is to build a model that generates feature profile-
based polymorphic DDoS/DoS attacks and evaluates if it can evade the IDS. This work
also includes monitoring the performance of the GAN model to study the number of cycles
the polymorphic adversarial DDoS/DoS attack can evade the IDS. We also apply the SHAP
feature selection technique to distinguish essential features from the entire dataset.
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3. Deep Learning-Based Techniques in Cybersecurity
3.1. Generative Adversarial Networks

In this section, we provide an overview of GAN architecture. Generative Adversarial
Network is a paradigm based on machine learning models that can generate synthetic data
from the original input data. It consists of two neural networks known as the Generator
and the Discriminator [6].

The discriminator can be simply called a classifier that distinguishes the generated
data as original or fake. It takes two forms of data: Original data and the data generated by
the generator. The discriminator uses original data as a positive example and generated
data as negative/adversarial examples during training. LD represents the penalty to the
discriminator. When the discriminator cannot detect or correctly differentiate the data, the
penalty increases and decreases otherwise. To update the weights of the discriminator, it
uses backpropagation. Another loss LG represents a loss of the generator [53]. Figure 1
shows the discriminator training process.
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The generator produces a synthetic dataset by receiving feedback from the discrimina-
tor and learns to produce data in order that the discriminator classifies the synthetic data
as the original.

The training of the Generator includes the following steps:

• A random input noise.
• The generator, to produce synthetic data from the random data.
• The discriminator, to distinguish the synthetic data and original data.
• Loss LG that fines the generator if it is unable to produce data, which can deceive

the discriminator.

As discussed, there are two variants of neural networks in the GAN. Therefore, it
needs to train the generator and the discriminator alternately. Moreover, it is important to
check if GAN is converged or not. The alternative training works as follows:

(1) Training of the generator runs for some epochs.
(2) Training of the discriminator runs for some epochs.
(3) Continue repeating steps 1 and 2 until the GAN converges.

To train the GAN more efficiently, we need to keep either of the Neural Networks
constant. For instance, while training the generator, we need to keep the discriminator
constant. Otherwise, it will be difficult to converge [54]. While training the discriminator,
the generator needs to be constant since it needs to learn to differentiate between the
generated and fake data.

The loss function represents the difference value between the generated data and the
adversarial data as follows:

min
G

max
D

V(D, G) = Ex∼pdata (x)[log(D(x))] + Ez∼pz(z)[log(1− D(G(z)))] (1)
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The authors in [6] introduced a loss function named min-max loss. They trained the
discriminator D to maximize the average of the D(x), with D(x) denoting the estimated
probability of data as original, and the log(1− D(G(z))). G(z) represents the output
synthesized by the generator from the noise z. D(G(z)) is the approximate value of the
discriminator that the generated data is real. EX represents the expected value over the
original data, pz(z) is input noise variables, and Ez represents the expected value of the
random data inputs to the generator. Moreover, the authors concurrently train the generator
G, which seeks to minimize the log (1−D(G(z))) predicted by the discriminator for synthetic
data. The discriminator D and the generator G play a min-max game with the following
value function V (D, G).

To minimize the loss at the generator, we need to minimize the value of the log
(1 − D(G(z)). The lower loss at G indicates that the generator produces synthetic data that
can be classified as the original.

According to the research in [46,52,54], most of the common challenges in training a
GAN are as follows:

- Convergence problem: Classification performance of the discriminator decreases in
the following cycles. Training the GAN from this point indicates that the generator
trains with less meaningful data. This state is known as the convergence problem.

- Mode collapse: In ideal conditions, a GAN can produce a good variety of data. How-
ever, if a generator learns to produce a specific set of data in order that the discrimina-
tor classifies them as the original, then the generator will only produce these sets of
data and easily deceive the discriminator. This condition is called mode collapse.

3.2. Wasserstein GAN

To overcome the above-mentioned issues, Arjovsky et al. proposed a method known
as Wasserstein GAN [17]. Wasserstein GAN provides a better approximation of distributed
data that was given in the training set. WGAN uses a discriminator with a critic that
provides a score of how real or fake generated data is. In contrast, a discriminator in
traditional GAN predicts and classifies the generated data only as original or fake, a binary
selection. Figure 1 shows the WGAN model architecture.

In Figure 1, fD loss represents a loss function that provides critique values for the
discriminator, and fG loss represents a loss function for the generator. The following are the
differences in the implementation of WGAN. A critic score < 0 depicts real data, and a
score > 0 depicts fake or synthetic data.

It trains or updates the discriminator/critic multiple times as compared to the gen-
erator in each cycle. Two loss functions used by WGAN are discriminator/critic loss and
generator loss, which are given below:

LD = ∇w
1
m ∑m

i=1 [ fw(x(i))− fw(gθ(z(i))) ] (2)

Equation (2) [46] specifies the discriminator/critic loss that can be simplified as a
difference between the average critic score of real data and the average critic score of
fake data. Here, fw

(
x(i)

)
represents an average critic score on real data and fw(gθ(z(i)))

represents an average critic score on fake/generated data:

LG = ∇θ
1
m ∑m

i=1 fw

(
gθ

(
z(i)

))
(3)

Equation (3) specifies the generator loss that can be simplified as 1 − fw

(
gθ(z(i))

)
,

in which fw

(
gθ

(
z(i)

))
depicts the average critic score of fake data. Overall, the main

advantages of WGAN include the fact that it does not suffer from the mode collapse
problem, and the generator learns well even if the critic accurately discriminates the
adversarial data. Both of the loss functions motivate a separation between a score for
synthetic data and real data, which is not necessarily positive and negative [55].
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It suffices to say that WGAN has been proven to generate high-quality synthetic attack
data. We have followed a similar methodology to generate synthetic DDoS attack data in
this research.

4. Dataset and Feature Selection
4.1. Dataset Properties

As detection systems evolved with time, various new attacks have also emerged
that could compromise networking systems. The training dataset needs to be updated
with the latest attack features. The Canadian Institute for Cyber Security has developed a
dataset from real-time simulations, and has published various datasets involving numerous
attacks, such as Android malware, Botnet, DoS, DDoS, etc. Their Intrusion Detection
Evaluation Dataset known as CICIDS2017 [56] contains benign data and commonly known
attacks, such as Brute Force, SSH, DoS, Web Attack, Botnet, and DDoS. To produce a
reliable dataset, the authors have considered critical criteria, such as complete network
configuration, complete traffic, labeled dataset, complete interaction, complete capture,
available protocols, attack diversity, feature set, and metadata. The dataset consists of more
than 80 features that are important as per the latest network standards, and most of them
were not available in the previously known datasets. In addition, none of the other datasets
have considered these benchmarks. The CICIDS2017 data consist of eight different files
that contain regular traffic and attack traffic data. Table 1 depicts the properties of the
CICIDS2017 dataset.

Table 1. Properties of the CICIDS2017 dataset.

Feature Values

Total number of flows 2,830,540
Total number of features 83
Number of classes/labels 15

Moreover, the CICIDS2017 dataset consists of various types of attacks along with
the normal network flow. The following Table 2 consists of the attack and benign labels
available in the dataset.

Table 2. Labeled features in CICIDS2017.

Normal/Attack Labels Number of Flows

BENIGN 2,359,087
BOT 1966

DDOS 41,835
DOS GOLDENEYE 10,293

DOS HULK 231,072
DOS SLOW HTTPTEST 5499

DOS SLOWLORIS 5796
FTP-PATATOR 7938
HEARTBLEED 11
INFILTRATION 36

PORTSCAN 158,930
SSH-PATATOR 5897

WEB ATTACK—BRUTE FORCE 1507
WEB ATTACK—SQL INJECTION 21

WEB ATTACK—XSS 652

4.2. Feature Selection

Feature selection is an essential aspect of machine learning. If we train the model
without determining the critical features of the dataset, the predicted results will have
more noise and uncertain results. Moreover, while using a dataset with a higher number of
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feature sets, it is unnecessary to use all the available features since the machine learning
method requires more resources and time to process a large volume of data with additional
features. Among several techniques to select important features from a dataset, we have
employed SHAP in this research.

Feature Selection using SHAP

Shapley Additive exPlanations (SHAP) [18] is a feature selection technique whose
goal is to signify the contribution of each feature to the predicted value. SHAP aims
to satisfy two critical measures to define feature importance, which are consistency and
accuracy. The idea behind Shapley values is that the outcome of each possible combination
(or coalition) of features needs to be examined to determine the importance of a single
feature. The mathematical explanation of this is as follows:

g(z′) = φ0 +
M

∑
j=1

φjz′j (4)

where g represents the overall result of the Shapley values, z′ε {0, 1}M is a coalition vector,
M is the max coalition size, and φj represents the presence of feature j that contributes
towards the final output. In the coalition vector, 0 means the corresponding value is “not
present” and 1 means it is “present”.

Herein, each node represents a coalition of features. Edges represent the inclusion of a
feature that was not present in the previous coalition. Equation (4) trains each coalition
in the power set of the features to find the most critical feature from the dataset. The
advantages of using SHAP are as follows:

- Global Interpretability: This technique provides essential features from a dataset and
a contribution of each feature for a target result and effect of the feature. To calculate
global importance, we need to find an average of SHAP vales.

Ij = ∑n
i=1

∣∣∣φ(i)
j

∣∣∣ (5)

- Local Interpretability: With this method, we can get an impact of an individual feature
across the whole dataset.

We ran the SHAP explainability model on the CICIDS2017 DDoS/DoS data. Figure 2
is known as a summary plot that can represent an effect of the feature, positive or negative,
on the result. Furthermore, the dark red color represents a higher impact of a feature, and
the blue color represents a lower impact of a feature on the output value.

We use the results of the SHAP analysis, such as those in Figure 2, in our feature
selection stage. These results identify the functional features (attack features) that are
used by IDS, and the non-functional features that would be used in creating polymorphic
attacks while keeping functional features constant. SHAP analysis helps us separate
functional and non-functional features by quantifying the impact of each feature on the
correct identification of the attack data.



J. Cybersecur. Priv. 2021, 1 776

1 
 

 
Figure 2. Summary plot with feature impact using SHAP. Red indicates a high-impact attack feature, while blue indicates a
low-impact attack feature.

5. Proposed Framework

The proposed framework involves the WGAN model that produces adversarial attacks
to train the IDS with previously generated adversarial data, as well as the polymorphic
engine to generate polymorphic DDoS/DoS attacks using the polymorphic data to attack
the IDS.

5.1. Adversarial Attack Generation Using Wasserstein GAN

We have used the DDoS/DoS attack data from the CICIDS2017 [56] to train the
proposed model. To generate an adversarial attack, we considered a combination of a
random noise vector of the same size as the selected features from the dataset.

The generator in this framework is a feed-forward neural network that consists of five
linear layers. The input layer consists of neurons as per the selected number of features,
and the output layer consists of two neurons. The input layer receives a set of features
according to the experiment, and the output layer generates the desired data. The generator



J. Cybersecur. Priv. 2021, 1 777

consists of three hidden layers that are optimal for this scenario and prevent overfitting the
training data.

In the next step, the generated adversarial attack combined with the benign network
flow data will be fed to the Intrusion Detection System. The IDS will detect the attack
and send predicted labels to the discriminator, which is the detection success rate, and the
discriminator will send the critique to the generator using the backpropagation, in order
that in the next cycle, the generator can improve the production of adversarial DDoS/DoS
attack. The IDS consists of four layers, in which the input and output layer consists of two
neurons each. The IDS consists of two hidden layers that are ideal since it only detects if
the test data consist of an attack or are benign.

We used a signature-based black-box Intrusion Detection Systems to test the detection
rate of the adversarial DDoS/DoS attacks. The reason for using this system is that most of
the time, the type of attack detection system is unknown to the attackers. Attackers rely on
the responses received from the detection system, and black-box IDS is the right choice for
this model.

Finally, the critic or discriminator consists of four layers. The input layer accepts two
types of data from the black-box IDS. The output layer provides two critics, one for the
generator and one for itself.

To calculate the loss, we have used loss functions for the generator and the discrimina-
tor, which are as follows [49]:

PG = EM∈Sattack , N − D(G(M, N)) (6)

where PG represents the penalty to the generator. M is an m-dimensional attack vector,
and N is an n-dimensional noise vector. E is the estimated value over the random inputs
to the generator. Sattack represents the original training attack data. A lower penalty to
the generator means that it is performing well and produces attack data that can bypass
the IDS.

PD = AS∈BBenign D(s) + AS∈BAttack − ES∈BAttack D(s) (7)

where PD represents the penalty to the discriminator. E is the overall estimated feature
values of the generated adversarial attack data. A is the actual feature value of benign
and the attack data. A lower penalty to the discriminator indicates that the discriminator
performs well. It calculates if the generated data are closer to the DDoS/DoS attack or
benign data. Algorithm 1 shows the process that is represented in Figure 3.

Algorithm 1. Adversarial attack generation

Input:
Generator—noise vector N, DDoS/DoS Attack Data
Critic/Discriminator—Sattack, and Sbenign

Output:
Trained Critic/Discriminator and Generator

for epochs = 1, . . . , MAX EPOCHS do
for G-iterations do

Generator creates adversarial network attacks using Sattack, and updates the penalty using PG function once it receives the
critique.

end
While generating adversarial DDoS/DoS data and feeding the data to IDS to test if it detects the attack.
for D-iterations do
Receive detected labels from the IDS and send a critique to the Generator. Update the
penalty using PD function.
end

end

5.2. Train the Generator to Create an Adversarial Attack

The generator needs to maintain constant values for the features that have higher
SHAP values. An example of how the generator produces an adversarial attack by the
proposed technique is shown in Figure 4, in which the darker shade explains the values of
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the features that are contributing to the attack, whereas non-highlighted values depict the
feature value of a regular or non-attack feature.

As shown in Figure 4, to maintain the intensity of the attack we need to keep the func-
tional attack features constant and only change the feature values that are not contributing
to the attack. Therefore, to evade the black-box IDS, the generator changes the values of
the features that are not contributing to the DDoS/DoS attack.
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5.3. Training an IDS with the Generated Adversarial Data

In this section we will discuss the training of the IDS in order that we can evaluate the
performance of the IDS with the adversarial data.

We consider three inputs to train the IDS: Normal or benign data, new adversarial
data, and previously generated adversarial data. The IDS learns about the adversarial data
and tries to detect the DDoS/DoS attack data.
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5.4. Polymorphic Engine to Generate a Polymorphic Attack

We evaluated different methods for updating the attack feature profile to generate
polymorphic adversarial DDoS/DoS attacks. The following approaches were considered:

Approach 1: Select a subset of non-functional features in a polymorphic attack cycle.
Randomly increase the values of these features in the attack profile by a small percentage to
generate new data for training the attacker, which in turn synthesizes a polymorphic attack
each time IDS detects the previous adversarial polymorphic attack. Repeat this process
until the attacker runs out of features or until the IDS can classify all of the polymorphic
attacks.

Approach 2: Add a new set of features from the predefined list of features in the
current attack profile to train the attacker after the IDS detects previous adversarial at-
tacks. Keep repeating this process for each polymorphic attack until the attacker runs
out of features or until the IDS can classify all of the polymorphic attacks. This approach
employs both manual feature selection, as well as automated feature selection using
Reinforcement learning.

In the above techniques, we assumed that an attacker could modify the feature profile
and train the generator model with the new feature profile every time after the IDS detects
a polymorphic attack.

Algorithm 2 shows the process for training the IDS, and Algorithms 3 and 4 are
employed to synthesize a polymorphic adversarial attack. In the case of Algorithm 3, we
select a set of five non-functional (non-attack) features from the training data and randomly
increased their values by 5%. The functional (attack) features are kept constant to preserve
the attack characteristics. The generator is then trained using the new dataset to synthesize
polymorphic attacks and evade detection by the IDS. Then, the IDS is retrained with new
synthesized adversarial data using Algorithm 2. The polymorphic attack generation phase
is repeated by adding another set of five non-functional features and the IDS performance
is evaluated again. This process is repeated until the attacker has no more features left or
until the IDS can successfully identify all of the attacks.

Algorithm 2. Training IDS with the adversarial attack data.

Input:
Generator—N noise + Original Attack Data
IDS—Benign or Normal Data, Adversarial Data, and Previously Generated Adversarial Data
Critic/Discriminator—Sattack and Sbenign

Output:
Trained Critic/Discriminator, Generator, and IDS

for epochs = 1, . . . , MAX EPOCHS do
for G-iterations do

Generator creates adversarial network attacks using Sattack and updates loss using PG function
end
for D-iterations do

Critic/Discriminator classifies the network data to Bbenign and Battack. Update loss using PD function
Feed Battack (Adversarial data) and Previously Generated Adversarial Data to the IDS

end
end

Algorithm 4 works in a slightly different manner. Here, in the first cycle, a subset of
three non-functional features is selected and their values are randomly increased by 5%
to create new training data for the attacker, which can synthesize polymorphic attacks.
The IDS performance against these polymorphic attacks is evaluated and retraining is
performed to improve its detection results. In the next phase of polymorphic attack
generation, we select a new subset of six non-functional features to synthesize another
polymorphic attack. This process is repeated until the attacker has no more features left or
until the IDS can successfully identify all of the attacks.
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Algorithm 3. for generating the polymorphic adversarial attack.

Input:
Generator—Noise, Sattack, Xattack
Critic/Discriminator—Sattack, Xpoly, Sbenign

Output:
Trained Critic/Discriminator and Generator

F_tot = total number of features
Feature Set = S (1: F_tot)
N = total number of non-functional features in F_tot
nf = number of non-functional features selected for mutation in the first cycle of polymorphic attacks
steps = range (N/nf)
/* Data preparation for the Attacker and Polymorphic attack generation */
for i = 1 to steps do
Choose a subset Si (0: i*nf-1) of non-functional features from Sattack. Randomly increase the selected feature values by a small percentage

to create Xattack
for epochs = 1 to MAX EPOCHS do
for G-iterations do
Generator creates adversarial polymorphic attacks (Xpoly) using Xattack + Noise. Update loss
using PG function
end
/* Training the Discriminator model */
for D-iterations do
Discriminator classifies the network data to Bbenign and Battack. Update loss using PD function

end
end
end

Algorithm 4. for generating the polymorphic adversarial attack.

Input:
Generator—Noise, Sattack, Xattack
Critic/Discriminator—Sattack, Xpoly, Sbenign

Output:
Trained Critic/Discriminator and Generator

F_tot = total number of features
Feature Set = S (1: F_tot)
N = total number of non-functional features in F_tot
nf = number of non-functional features selected for mutation in the first cycle of polymorphic attacks
steps = range (N/nf)
prev = 0
/* Data preparation for the Attacker and Polymorphic attack generation */
for i = 1 to steps do
if (prev < N)
Choose a subset Si (prev: prev + (i×nf) − 1) of non-functional features from Sattack. Randomly increase the selected feature values by a

small percentage to create Xattack
Update the value of prev to {prev + (i×f)}

for epochs = 1 to MAX EPOCHS do
for G-iterations do
Generator creates adversarial polymorphic attacks (Xpoly) using Xattack + Noise. Update loss
using PG function
end
/* Training the Discriminator model */
for D-iterations do

Discriminator classifies the network data to Bbenign and Battack. Update loss using PD function
end

end
end

6. Experiment Setup

The following are the libraries used in the overall work of this research.

- PyTorch [57] is an open-source machine learning platform that is based on the Torch
library. We used PyTorch library to create neural networks for Black-box IDS, the
generator, and the discriminator or critic. For example, to generate random noise, we
have used a “torch.Tensor” method.

- Scikit-learn [58] is a machine learning library for python that supports various classifi-
cations, regressions, and clustering techniques. Examples include sklearn.utils and
sklearn.metrics.
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- Pandas [59] is a python library that is used to read, manipulate, and analyze the
dataset. For example, to read CSV files, we use the read_csv() method from this library.

6.1. Hyperparameter Adjustment

Hyperparameters are essential properties that define the characteristics of the training
process of machine learning or a deep learning model. For a deep neural network, hyper-
parameters are variables that explain its structure. Table 3 depicts hyperparameters that
are used to optimize the generator and discriminator in WGAN for this research.

Table 3. Hyperparameters.

Hyperparameter Description

Batch_Size Defines the number of samples to consider for one iteration
learning_rate Controls the weights of a neural network
Critic_Iters Critic_iters for each generator cycle

Optimizer Methods used to update the attributes of the neural networks,
e.g., Adam, Rmsprop, Adagrad

Epochs Number of training cycles

We train the WGAN model for a total of 100 epochs with a batch_size of 512, learn-
ing_rate set to 0.001, critic_iters equal to 5, and the optimizer selected using trial and error
is RMSprop. Batch_size, learning_rate, critic_iters, and epochs are optimization hyperpa-
rameters related to the optimization and training process of the model. In comparison, an
optimizer is a model-specific hyperparameter.

6.2. Evaluation Metrics

The following metrics are employed to evaluate the performance of IDS in this work:

• Detection Rate (DR) or Precision—a ratio between the correctly detected attack sam-
ples over all the samples classified as an attack by the IDS. It is also known as a ratio
between True Positives and the sum of True Positives and False Positives.

DR =
TP

TP + FP
(8)

• Recall—a ratio between the correctly detected attack samples over the total attack
sample data. It is also known as a ratio between True Positives and the sum of True
Positives and False Negatives.

Recall =
TP

TP + FN
(9)

• F1_Score—represents the harmonic mean of precision and recall.

F1_Score = 2× (precision × recall)
(precision + recall)

(10)

• True Negative Rate (TNR)—a ratio between the correctly detected benign samples
over the total benign sample data. It is also known as a ratio between True Negatives
and the sum of True Negatives and False Positives.

TNR =
TN

TN + FP
(11)

where TP, FP, TN, and FN represent True Positives, False Positives, True Negatives, and
False Negatives, respectively.

The following metric is employed to evaluate the performance of the attacker:

• IDS Evasion Success Rate (ESR)—the rate of increase of undetected adversarial poly-
morphic attack samples by IDS compared to the original attack samples.
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ESR = 1− (Adversarial polymorphic detection rate)
(Original detection rate)

(12)

7. Results and Discussion

This section describes the results of various experiments for different scenarios and
the analyses of the findings.

The first step of the research is to generate adversarial DDoS/DoS data that can evade
detection by the Black-box IDS. We have selected a tree-based Random Forest classifier
as the IDS model for our experiments. Figure 5 represents the results of the IDS against
adversarial attacks. As seen in the graph initially, after training the attack generator for
100 epochs, it learns to synthesize adversarial data and is successful in evading the IDS by
reducing the Detection Rate (DR) close to zero. After retraining the IDS with the previously
generated adversarial DDoS/DoS data, the performance improves significantly.

7.1. Polymorphic Adversarial DDoS/DoS Attack Generation

In this section, we discuss the performance of a Random Forest-based IDS in different
polymorphic adversarial attack cycles based on Algorithm 3. In Figure 6, the red-colored
graph suggests the polymorphic attack phase and the blue-colored graph depicts the results
after retraining the IDS with previously synthesized polymorphic adversarial data. During
polymorphic cycle 1, the DR for the IDS is reduced to almost 25%. After retraining the
IDS in the same cycle, we observe significant improvements in the DR values. A similar
behavior is observed in cycle 2. However, in cycle 3, we notice that the DR of IDS against
polymorphic attacks has improved to approximately 82% as compared to cycles 1 and 2.
Finally, in cycle 4, the IDS can no longer be evaded by the attacker. The DR of IDS does not
drop to a lower value in the attack phase. Therefore, no retraining is required for this cycle.
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Figure 7 depicts the DR results of the Random Forest IDS against polymorphic attacks
synthesized by implementing Algorithm 4. We observe that the DR is dropped to almost
zero after 100 epochs in cycle 1. After retraining, the DR improves to 70% which is lower
as compared to cycle 1 in Figure 6. Gradually, after multiple attacks and retraining cycles
(2–3), the IDS can capture the pattern of polymorphic attacks and can no longer be evaded.

Figure 8 represents the evaluation of the attacker model based on the IDS Evasion
Success Rate (ESR). It measures the success of the polymorphic adversarial attack in evading
detection by the IDS. As shown in Figure 8, ESR in the adversarial cycle and attack cycles
1–2 is higher indicating that the attacker can successfully evade detection in these attack
cycles. However, ESR reduces gradually after continuous updating and retraining of the
IDS, indicating that it has learned the pattern and can now identify the attack with higher
detection rates.

Table 4 shows the performance evaluation and comparison of overall metric values,
such as Recall (TPR), TNR, and F1-score for the Random Forest IDS model on different
adversarial polymorphic attacks. The results show that during the attack cycle, the attacker
is successful in evading detection by the IDS as depicted by the low TPR values. After
each retraining phase, the IDS eventually learns the attack pattern until the attacker can no
longer launch successful attacks on the victim.
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The Random Forest IDS is also evaluated against the polymorphic attacks generated
using Approach 2 [60]. The strength of these polymorphic attacks is measured using the
Evasion Success Rate metric. In this case, multiple experimental scenarios are studied with
different training data feature combinations (both manual and automatic feature selection).
Six different experiments are performed with a different number of selected features for
generating a polymorphic attack. For manual feature selection, 10 features are selected
during the first test, followed by 20 features in the second test. Automated tests using
Reinforcement learning were conducted with 40 features, 50 features, 60 features, and
76 features.

Figure 9 depicts the success rate for polymorphic adversarial attacks created using
manual feature selection (20 features). Figure 10 depicts the polymorphic adversarial attack
synthesized using automated feature selection (40 features) successfully evading the IDS.
The red bars indicate the success of the polymorphic attack engine in evading IDS. As
expected, each training session (yellow bar) improves the IDS detection rate against the
attack. The number of cycles indicates how many times the attack generator is able to
evade the IDS until the IDS is fully trained with all of the features or the attack engine runs
out of features. Throughout our study, we also observed that using fewer features (e.g.,
five instead of 10) improves the evasion rates, but offers fewer options for synthesizing
more polymorphic attacks.
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Table 4. Performance evaluation and comparison for random forest IDS on different adversarial
polymorphic attacks using Algorithms 3 and 4 (Approach 1).

Performance Attack Type Random Forest IDS

(Algorithm 3) Attack Cycle Retrain Cycle

Recall (TPR)

Adversarial 9.91% 98.40%
Polymorphic 1 46% 98.20%
Polymorphic 2 56.70% 98.30%
Polymorphic 3 90.60% 98.40%
Polymorphic 4 100% N/A

TNR

Adversarial 98.60% 95.60%
Polymorphic 1 98.60% 95.60%
Polymorphic 2 98.60% 95.60%
Polymorphic 3 98.60% 95.70%
Polymorphic 4 98.60% N/A

F1_Score

Adversarial 12.30% 98.60%
Polymorphic 1 56.80% 98.50%
Polymorphic 2 70.00% 98.50%
Polymorphic 3 94.30% 98.60%
Polymorphic 4 99.30% N/A
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Table 4. Cont.

Performance Attack Type Random Forest IDS

(Algorithm 4) Attack Cycle Retrain Cycle

Recall (TPR)

Adversarial 22.50% 98.40%
Polymorphic 1 34.10% 69.70%
Polymorphic 2 33.20% 89.60%
Polymorphic 3 100% N/A
Polymorphic 4 100% N/A

TNR

Adversarial 98.60% 95.50%
Polymorphic 1 98.60% 95.70%
Polymorphic 2 98.70% 95.60%
Polymorphic 3 98.70% N/A
Polymorphic 4 98.60% N/A

F1_Score

Adversarial 24.70% 98.50%
Polymorphic 1 41.30% 81.60%
Polymorphic 2 48.30% 93.80%
Polymorphic 3 99.30% N/A
Polymorphic 4 99.30% N/A
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eral state-of-the-art machine learning models are employed as black-box IDS. The adopted
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Multiple IDS models are initially trained using CICIDS2017 data one by one, and
then evaluated against adversarial polymorphic attacks using our framework. Figure 11
provides a comparative analysis of these models against adversarial polymorphic attacks.
During the first attack cycle, the models are trained using the original training dataset and
their performance is evaluated against adversarial attacks. As seen in all of the subfigures
above, the adversarial detection rates of all the models are very low in the first phase.
For SVM and NB, the adversarial detection rates are close to zero. The models are then
retrained with previous adversarial data from the attack cycle and again evaluated in the
retraining cycle. The results indicate improvement in IDS performances. In the next attack
cycle, the attacker mutates the feature profile using the value-based approach (approach 1)
and relaunches the attack on the IDS. During this phase, the detection rates go down again,
yet show better results than phase 1. This process is repeated until the IDS cannot be
evaded by the polymorphic attacker. Figure 11 shows that RF, DT, and KNN models do
not need retraining for the last two phases since these IDSs can easily identify the attack,
whereas SVM and NB still have lower detection rates in the last phase of the polymorphic
attack. From Figure 11, we notice that the proposed WGAN framework for polymorphic
adversarial training is effective in improving the performance of the machine learning-
based black-box IDSs against rapidly evolving polymorphic attacks. Further performance
improvement is expected in the future when the model is trained with other classes of
polymorphic network attacks.
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8. Conclusions and Future Work

In this paper, we proposed a Wasserstein GAN-based framework to generate polymor-
phic adversarial DDoS/DoS attacks using a CICIDS2017 dataset. In order to synthesize
these attacks, we applied two different approaches to change the feature profile of the
attack. For the first approach, we employed a value-based feature mutation to synthesize
new data for the attacker, which then generates a polymorphic attack. In the second ap-
proach, the feature selection-based method was employed to generate new data for the
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attacker, which can in turn synthesizes a polymorphic attack. The second approach is
based on both the manual as well as the automated feature selection.

From the results, we demonstrated that the Generator can produce polymorphic
adversarial DDoS/DoS attacks to effectively evade the IDS during the initial phases.
However, after several retraining steps, the IDS learns the pattern of attacks and eventually
identifies all of the attacks. Additionally, we have provided an extensive comparison
of multiple machine learning models against these attacks. The results indicate that the
WGAN based adversarial training has improved the performance of several IDSs against
polymorphic attacks.

In this paper, the work represented the introduction of a novel concept in network
security, namely, polymorphic network attacks. Therefore, this work can be extended and
built upon extensively for application to different security attack types, and IDS systems.
While the proposed model has employed WGAN, there are several other variants of GAN,
such as DCGAN [61], Conditional GAN [62], BiGAN [63], and Cycle GAN [64] that can be
used to generate adversarial network attack data. On the IDS side, our results indicate that
the polymorphic attackers can evade detection, albeit for a limited number of cycles. It is
imperative to develop new techniques and models for the IDS that could, if not eliminate,
at least shorten the window of vulnerability against polymorphic attacks.

Our work has focused on the signature-based IDS, primarily since the anomaly-based
IDS is considered to have a high false positive rate, which would unnecessarily reduce
the network throughput. It would be interesting to run our attack generator against the
anomaly-based IDS, compare the results with the signature-based IDS, and evaluate the
advantages and disadvantages.

Additionally, while our proposed model is generic enough to be used with any type of
network attack, our performance evaluation and results were focused on a selected number
of DoS/DDoS attacks. Furthermore, we would extend our research to employ multiple
generators for each type of attack, and evaluate the performance of the IDS against all
types of polymorphic adversarial network attacks.
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