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Abstract: Access control (AC) policies are a set of rules administering decisions in systems and they
are increasingly used for implementing flexible and adaptive systems to control access in today’s
internet services, networks, security systems, and others. The emergence of the current generation
of networking environments, with digital transformation, such as the internet of things (IoT), fog
computing, cloud computing, etc., with their different applications, bring out new trends, concepts,
and challenges to integrate more advanced and intelligent systems in critical and heterogeneous
structures. This fact, in addition to the COVID-19 pandemic, has prompted a greater need than ever for
AC due to widespread telework and the need to access resources and data related to critical domains
such as government, healthcare, industry, and others, and any successful cyber or physical attack can
disrupt operations or even decline critical services to society. Moreover, various declarations have
announced that the world of AC is changing fast, and the pandemic made AC feel more essential than
in the past. To minimize security risks of any unauthorized access to physical and logical systems,
before and during the pandemic, several AC approaches are proposed to find a common specification
for security policy where AC is implemented in various dynamic and heterogeneous computing
environments. Unfortunately, the proposed AC models and metamodels have limited features and
are insufficient to meet the current access control requirements. In this context, we have developed a
Hierarchical, Extensible, Advanced, and Dynamic (HEAD) AC metamodel with substantial features
that is able to encompass the heterogeneity of AC models, overcome the existing limitations of the
proposed AC metamodels, and follow the various technology progressions. In this paper, we explain
the distinct design of the HEAD metamodel, starting from the metamodel development phase and
reaching to the policy enforcement phase. We describe the remaining steps and how they can be
employed to develop more advanced features in order to open new opportunities and answer the
various challenges of technology progressions and the impact of the pandemic in the domain. As a
result, we present a novel approach in five main phases: metamodel development, deriving models,
generating policies, policy analysis and assessment, and policy enforcement. This approach can be
employed to assist security experts and system administrators to design secure systems that comply
with the organizational security policies that are related to access control.

Keywords: access control; metamodel; heterogeneous systems; security and privacy; IoT; industry
4.0; COVID-19; digital transformation

1. Introduction

Security and privacy in general and the protection of logical and physical resources
from unauthorized access, in particular, are critical and essential issues for today’s orga-
nizations. Their resources are accessed via various types of private and public networks;
this depends on the type of service(s) their information systems (IS) provide. The new
generation of networking environments with digital transformation such as the internet
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of things (IoT), fog computing, cloud computing, etc., is emerging and has various ap-
plications related to several, critical domains. This networking generation has several
interconnections by means of multiple layers of public and private networks constituting
critical cyber-physical infrastructures where an unlimited number of resources are dis-
tributed and accessed from everywhere, anytime, and anyhow. With this fact, controlling
access is a critical objective, especially with the presence of cyber-criminals and cyber-
attacks [1], and a big challenge for deploying secure information ISs. For this purpose,
several AC models have been implemented to control what resources can be accessed by
users, when, and how after checking a predefined set of AC rules. What makes this process
even more challenging is the orientation of the world toward the concept of telework due
to the COVID-19 pandemic and the urgent need to access sensitive and vital resources
related to various domains [2].

With the evolution of technology trends, it is realized that controlling users’ access
and the operations they perform on information cannot be overlooked when developing
approaches related to information security. Moreover, the existing AC models have reached
their limits and are insufficient to answer the increasing demand for security and privacy
standards [3,4]. Common AC models that are implemented to control users’ access to
resources are discretionary access control (DAC), mandatory access control (MAC), role-
based access control (RBAC), and attribute-based access control (ABAC) models [4–7].
Unfortunately, two main issues prevent an IS from following up the evolution of security
threats. First, the focus is on defining the functional IS requirements, while the non-
functional requirements such as authentication and authorization are almost barely handled
at the termination of the development process. Second, the exisiting AC metamodels, which
are proposed to serve as unifying frameworks to include the heterogeneous AC models,
only provide support of defining some AC components for some models which prevent
defining a larger set of organizational AC policies or upgrading the defined ones [4,6,8].
Hence, one of the main steps to solve the first issue is to tackle the second one, in other
words, while developing an IS it is important to set up trusted security policies and provide
the essential tools to define all the needed AC components. This, in turn, would allow
system administrators to set up and manage the defined AC policies in an organization.

Security solutions must be manageable and adaptable to track the evolution of security
threats which accompany technology upgrades. Along with technology progressions,
various research works have been conducted in this domain (in Section 2, we summarize
their development stages). Unfortunately, common AC models have various limitations;
the hybrid models (Section 3.2.1), the extended models (Section 3.2.2), and the abstracted
models (Section 3.2.3) cannot answer all the needed AC requirements; moreover, the
existing AC metamodels have several shortcomings (explained in Section 4) and are not
able to follow technology progressions [5,6,9]. To address this issue, we have developed a
Hierarchical, Extensible, Advanced, and Dynamic (HEAD) AC metamodel with substantial
and advanced features [3] compared to the existing AC metamodels [5,9]. It is generic and
able to include all features of common models (and any other model), dynamic and able
to create the needed components/attributes to express a larger set of static and dynamic
AC rules, extensible since the already defined models can be extended, and it supports the
feature of hierarchy for any component.

In addition to all the above, the emergence of COVID-19 as a global pandemic has had
a huge impact on business and work strategies; moreover, it put the spotlight on access
control. It forced a greater requirement than ever for access control, due to widespread
telework and the need to access resources and data related to critical domains such as
government, healthcare, industry, and others. As stated in Security Distributing and
Marketing (SDM) magazine [10], “The importance of controlling who has access to specific
areas of a facility and the knowledge of who actually accessed specific areas became much
more important” due to the pandemic.

All the aforementioned issues force the need to implement more robust, coherent, and
advanced AC models, which are flexible, dynamic, and able to meet the AC requirements
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and follow technology upgrades. In this paper, we present the new opportunities and
the various research directions which would enhance our HEAD AC metamodel to meet
the expected AC requirements with the presence of various technology trends. The char-
acteristics of the HEAD metamodel open various research directions in the domain, for
example, its unifying structure would facilitate developing many other essential features
(e.g., collaboration and interoperability between various models and migration of AC
policies), developing the necessary tools for policy analysis and assessment, integrating ar-
tificial intelligence techniques to support the necessary intelligent services with the current
era of technologies, and many other directions. HEAD metamodel characteristics can be
summarized as follows [3]:

• Unify the heterogeneous concepts of policy models.
• A new generic metamodel that is able to include the heterogeneity of the existing

models and the proposed metamodels.
• Dynamic with the ability to create any needed component/attribute and the relation-

ships between them.
• Extensible metamodel where any derived AC model can be extended and upgraded.
• Unlimited levels of components hierarchy.
• Allow instantiating non-existing AC models.

However, the contribution of this paper can be summarized as follows:

• Provides a complete plan for a distinct AC framework starting from the metamodel
development phase and reaching to the policy enforcement phase.

• Opens new opportunities to develop and enhance the necessary services to answer the
challenging AC requirements of today’s computing environments based on distinct
design and advanced AC metamodel.

• Assists developers and security experts to include unified and generic components in
designing secure ISs that conform to the organizational AC security policies.

The remainder of this paper is organized as follows. In Section 2, we present the AC
challenges of today’s computing environments. The development stages of AC methods
starting from common models reaching to AC metamodels, which is a recent research topic
in the domain, are summarized in Section 3. In Section 4, we illustrate and explain the issues
and limitations of the existing AC metamodels. In Section 5, we describe our development
approach, the achieved steps, and the remaining ones, starting from the HEAD metamodel
development phase and reaching to the policy enforcement phase. In Section 6, we explain
the new opportunities this approach opens and what essential services can be developed
based on the HEAD metamodel. Section 7 concludes this paper.

2. Access Control Challenges within Dynamic and Heterogeneous Environments

Providing security and privacy, using AC mechanisms, is a very crucial metric within
current ubiquitous computing and pervasive systems. Herein is a set of existing challenges
in this domain [2,3,11–14]:

• Access control serves as a protective shield for the existing resources in organizations,
industries, homes, etc., against security risks that accompany transparency, shareabil-
ity, and interoperability while answering users’ access requests within distributed
and heterogeneous computing environments (e.g., IoT environments) where data is
generated dynamically and on a real-time basis.

• Access control is highly essential to ensure secure communications in open, dynamic,
and heterogeneous environments, especially with the existence of several contexts
(network type, time, location, machine characteristics, etc.). For example, to pro-
vide an access decision, several or multi-level contexts must be considered. The
context itself is a challenge since it could be defined, expressed, and interpreted in
different ways according to the application domain, the needed objectives, and the
existing techniques.
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• Access control mechanism should be flexible and controllable enough to deal with
various situations that confront users while requesting access to different types of
resources, for example, rapid progressions, unexpected events, system failures, highly
dynamic environments that need very quick and controlled response, various hierar-
chical organizational structures, the different contexts, dynamism of IoT devices, huge
number of devices, etc.

• With the large adoption of telework, especially with the COVID-19 pandemic, employ-
ees can work anytime, anywhere, and sometimes using their own personal devices.
With this fact, security and AC issues have been raised, especially that AC mecha-
nisms should be adapted to users’ context, their profiles, their devices, the existing
conditions, and many other parameters to improve system usability. With this fact,
AC needs to be dynamically managed to minimize human intervention.

Besides, the following are the key AC enforcement challenges:

• The heterogeneity of implemented AC models in heterogeneous structures.
• Deciding upon the most relevant AC model(s) to implement in an organization that

conform to its AC rules based on the type and sensitivity of resources they have.
• The necessity to enforce persistent AC policies with the current generation of dynamic

and heterogeneous structures where information flows from the clouds and/or servers
to everywhere (companies, hotels, homes, cars, etc.) without traditional borders.

• The possible need for several AC solutions within the same organization (or industry
sector) where various technologies (e.g., local network, IoT, and cloud) may need to
work in concert to fulfill the needed requirements of AC.

• The importance of upgrading AC policies and enforcing them in accordance with
technology upgrades and due to dynamically changing conditions.

Due to the above challenges, and the limitations of common models, hybrid models,
extended AC models, and abstract AC models in answering the needed AC requirements of
the current computing environments, and since they are unable to follow up the continuous
technology progressions [5,6,12], the research interest for developing AC metamodels has
gained attention in the last decade [9].

3. Access Control Models

Over the decades, various information technologies (IT) have been developed, and
this imposed the need to implement various AC methods to find secure communication
environments. In the following sections, we summarize the background of the proposed
AC models in the literature and the development stages to enhance them.

3.1. The Background

To ensure security and privacy, different AC models are implemented in the literature
to enforce AC policy and prevent any illegal access to resources. Figure 1 summarizes
the features of common AC models, DAC, MAC, RBAC, and ABAC, and their major
components which are used to formulate and enforce organizational AC policies [6,15].

3.2. The Development Stages

With the evolution of technology trends, it is realized that the aforementioned models
are insufficient to answer the needed AC requirements, and computing environments need
more enhanced AC models. Hence, various works are proposed to (1) combine features of
two or more AC models called hybrid models, (2) extend AC models, (3) raise their level of
abstraction, and (4) develop more advanced and abstract models, called AC metamodels.
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The Traditional AC models

DAC

MAC

RBAC

ABAC

•A user-centric model.
•object owner determines permissions to other subjects to access his object(s).
• the major components are objects, subjects, and permissions.

•AC policy is managed in a centralized manner.
•based on the concept of security levels associated with each subject and object.
• the major components are objects, subjects, security levels, and permissions.

• facilitates the AC policy administration.
•users can be assigned several roles and a role can be associated with several users.
• the major components are subjects, roles, permissions, actions, and objects.

•has the ability to support dynamic attributes.
•grant or deny user requests are based on attributes.
• a set of policies are specified in terms of attributes and conditions.
•The major components are attributes of subjects, objects, and environment, actions, and permissions.

Figure 1. The common AC models.

3.2.1. Combining AC Models

With the continuous technology upgrades and distributed computing environments,
the presence of security threats also increases. This imposes the need to find hybrid AC
models by combining features of two or more AC models to allow defining more AC
policies and enhance the process of access management [5]. Several hybrid AC models are
proposed in the literature that combine features of RBAC and ABAC, for example, [16–18];
DAC, MAC and RBAC, for example, [19]; MAC and RBAC, for example, [20]; and many
other hybrid models. Figure 2 illustrates the idea of hybrid models.

DAC Model

MAC Model

RBAC Model

ABAC Model
▪

▪

▪

Hybrid Model

Hybrid Model

Combine Features from MAC & RBAC

Combine Features from RBAC & ABAC

▪

▪

▪

ACn Model Hybrid Model Combine Features from RBAC, ABAC, and ACn

Figure 2. Hybrid AC models.

3.2.2. Extending AC Models

Other works extend AC models by adding new components to them such as new
types of roles, permissions, and relationships. For example, the core or flat RBAC model
with major components such as subjects, objects, permissions, actions, and roles is extended
to hierarchical RBAC where a new component is added to support role hierarchy. More-
over, it is extended to constrained RBAC where a new component is added to enforce
the separation of duties. Then, symmetric RBAC which includes hierarchical RBAC and
constrained RBAC [21]. In [22], a higher-order attribute-based access control (HoBAC)
model is proposed as an extension for the ABAC model, which extends the basic concepts
of ABAC with aggregation operations that yield hierarchies. Another ABAC model exten-
sion is presented in [23], called the hierarchical group and attribute-based access control
(HGABAC), where groups and hierarchies of subjects and objects are added. Moreover,
several other AC model extensions are proposed in this domain, for example, [24]. Figure 3
illustrates the concept of AC model extension.
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AC model

new components

AC model extension

Figure 3. Illustration for AC model extension concept.

3.2.3. Abstracting AC Models

Some AC models are abstracted, then new components are added to enhance their
features and allow expressing a larger set of AC policies. Subsequently, the derived AC
model is an extended model with the old and new AC features. For example, Nguyen et al.,
in [25], add a delegation component to the abstracted RBAC model (RBAC metamodel) to
have an RBAC-based delegation model. In addition to defining RBAC permission rules,
their approach would allow defining delegation rules to specify which actions are accessible
to users by delegation. Moreover, in [26], a business and system role-based access control
(B&S-RBAC) metamodel is proposed where business and system roles are defined and
mapped to overcome the weakness of business role definitions and RBAC models. Hence,
the RBAC model is abstracted, a system and business role component is added, then it
is extended for business usage. Moreover, Adda et al. [27] propose a generalization for
the ABAC model where the core concepts of HoBAC [22] are first revisited and refined,
then present new concepts to complete and reinforce its theoretical foundations. Figure 4
illustrates the concept of AC model abstraction.

AC model

AC metamodel

AC ’ model

extension

components

Figure 4. Illustration for model abstraction concept.

3.2.4. Access Control Metamodels

Access control metamodels are proposed to serve as frameworks that unify and include
most or all features of AC components to derive various instances of AC models [5,6].
Figure 5 illustrates the concept of the AC metamodel. However, AC metamodels should
handle all of the above concepts (combining AC models, extending AC models, and
abstracting AC models). In other words, having an abstract model (metamodel) that is able
to include all AC models components, or have the ability to define the needed ones, would
allow combining and extending different AC models.

AC metamodel AC1 model
AC1 model
AC2 model
AC3 model

Hybrid AC1 / AC2

Hybrid AC1 / AC3 / ACn

ACx model 
….

…
.

ACn model

Figure 5. Illustration for AC metamodel concept.

The continuous technology progressions impose developing different stages of AC
methods; the AC metamodels stage is the recent development stage in this domain.

The current generation of networking environments is composed of heterogeneous
networks, platforms, applications, devices, etc. Controlling access to resources in such
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environments is a challenging task and needs advanced AC frameworks. Within the decade,
a limited number of AC metamodels are proposed in the literature (Table 1) and they can
be summarized as follows [5,9]:

• Some AC metamodels are proposed as generic metamodels [28–31].
• Some others are proposed as hybrid metamodels to provide a generic base metamodel

concept [7,32].
• Others are proposed as metamodel extensions for some of the existing metamodels

and some software development frameworks [33,34].

Unfortunately, the proposed metamodels lack some key features and are insuffi-
cient to answer the AC requirements of the current networking generation (explained in
Section 4) [5,9].

Table 1. Access control metamodels: the state-of-the-art [5,9].

ref. Year Proposed for Metamodel Based on Instances Modeling
Language

AC metamodels are proposed as generic metamodels

Barker [28] 2009 Enterprise Barker’s
metamodel

DAC, MAC,
RBAC RBAC, MAC Rule/logic

language

Bertolissi et al. [29] 2014
Distributed
system of

several sites

Distributed
metamodel

DAC, MAC,
RBAC

Hybrid models of
DAC, MAC, RBAC

Rewrite-based
operational
semantics

Khamadja et al. [30] 2013 Cloud
computing

CatBAC
metamodel

DAC, MAC,
RBAC

Hybrid models of
DAC, MAC, RBAC First-order logic

Trninić et al. [31] 2013 Set of systems PolicyDSL RBAC models RBAC and hybrid
models Textual DSL

AC metamodels are proposed as hybrid AC metamodels

Slimani et al. [32] 2011 Enterprise UACML
metamodel

DAC, MAC,
RBAC

Group based, MAC,
RBAC, hybrid

model

Object
constraint

language (OCL)

Abd-Ali et al. [7] 2015 Enterprise Integration
metamodel

CW, BLP, BIBA,
RBAC Hybrid models First-order logic

AC metamodels are proposed as metamodel extension for some of the existing metamodels

Alves et al. [33] 2014 Enterprise
Obligations in

CBAC
metamodel

DAC, MAC,
RBAC

Hybrid models of
DAC, MAC, RBAC

Rewrite-based
operational
semantics

Korman et al. [34] 2016
Enterprise

architecture
framework

Unified
metamodel

DAC, BLP, Biba,
CW, RBAC,

ABAC

DAC, BLP, CW,
RBAC, ABAC ArchiMate

4. Issues and Limitations of the Existing AC Metamodels

Although the proposed AC metamodels in the literature come with some advancement
for some scenarios and use cases, they have several limitations and shortcomings which
are explained and illustrated in the following:

4.1. Generality

In the literature, the metamodels proposed as generic are not generic enough and they
do not include all features of AC models. They are hybrid templates to derive some AC
models that are employed in their core structure rather than metamodels [9]. A generic
AC metamodel should include all features and components of common AC models and
other models. In Figure 6, we illustrate the concept of generic metamodel where all AC
components are included, with the relationships between them.



J. Cybersecur. Priv. 2022, 2 49

Generic AC metamodel

Components of DAC

Components of MAC

Components of RBAC

Components of ACx

Components of ABAC

Other AC Components

Figure 6. The concept of generic AC metamodel.

Figure 7 summarizes AC model features which are employed in the core structure
for each of the proposed metamodels. As we can see, in Table 1, the metamodels by
Barker et al. [28], Bertolissi et al. [29], Khamadja et al. [30], and Trninic et al. [31] are
proposed as generic by including DAC, MAC, and RBAC features and components, and by
Slimani et al. [32] and Abd-Ali et al. [7] as hybrid by combining DAC, MAC, and RBAC
AC features and components. In [34], Korman et al. extend the ArchiMate development
framework to support features and components of DAC, MAC, RBAC, and ABAC models.
Alves et al. [33] extend the category-based AC (CBAC) metamodel which includes features
of DAC, MAC, and RBAC to support obligations. Hence, the proposed approaches are
not generic enough and do not include or combine all AC features and components. As
illustrated in Figure 7, the generic metamodel should include the features and components
of common AC models and other models.

DAC

RBAC

MAC

ABAC

Bertolissi et al. [29], Khamadja et al. [30], 
Barker[28], Slimani et al. [32], Alves et al. 
[33], Abd-Ali et al. [7]

Korman et al. [34]

Trnini´c et al. [31] 

Other

Generic AC Metamodel

Figure 7. AC features in the core structure for each of the proposed metamodels.

4.2. Dynamism

Security solutions must be manageable and adaptable to track the evolution of security
threats which come along with technology upgrades. In this context, an AC metamodel
must be upgradable due to changing conditions or rules. The structure of a metamodel
should be dynamic and describe how its properties can be modified over time, for example,
due to changing conditions (e.g., system, environment, etc.). The metamodel is dynamic if it
allows defining new types of attributes, for example, contextual attributes, and components
with the relationships between them in order to update and formulate different models;
hence, it allows defining a larger set of policies for static and dynamic enforcement. In
reference to Table 1, the concept of a dynamic metamodel is not considered since none of
them allow defining new components/attributes. Consequently, dynamism is an additional
feature that can be implemented for a generic metamodel. Figure 8 illustrates the concept
of a dynamic metamodel.
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AC metamodel with n defined 
components (& attributes) and 

their relationships

Component 1

Component 2

Component 3

Component x

…

…
Component n

AC metamodel with n+i (i>0) 
components (& attributes) can be 
defined with their relationships

Component 1

Component 2

Component 3

Component x

Component n Component x+1

Component n+1
…

…

Figure 8. The concept of dynamic AC metamodel.

4.3. Extensibility

Beside designing a generic and dynamic AC metamodel, it is important to consider
the feature of extensibility. Extensible metamodel means that new components could be
defined and integrated with already existing models and frameworks to support new AC
features in addition to the previous ones. However, the proposed metamodel extensions,
Table 1, in [33,34], extend some of the existing AC metamodels and software development
frameworks to support some AC features of some AC models, but they do not explain
how their approaches could be extended beyond the proposed limit. In other words, they
are extended but not extensible. In Figure 9, we illustrate the concept of the extensible
AC metamodel.

instantiation Model AC

Model AC’

n policies are defined

(n + x) policies can be 
defined/upgraded (x ≥1)

Generic & 
dynamic AC 
Metamodel

Model AC’’

(n + x + y) policies can be 
defined/upgraded (y ≥1)

instantiation

instantiation

Access control components ……

Ne
w 

co
m

po
ne

nt
s c

an
 be

 de
fin

ed
 

an
d a

dd
ed

Figure 9. The concept of extensible AC metamodel.

4.4. Hierarchy of Components

The concept of hierarchy is important to define multi-level components (e.g., roles,
actions, objects, etc.). It reflects the structure of an organization and, for example, the respec-
tive responsibilities/priorities of the hierarchical components. A component hierarchy, e.g.,
role, defines roles that have unique attributes and may contain other roles; one role may
implicitly include the actions that are associated with another role. Within this structure,
access rights are determined by an entity’s place in the hierarchy, for example, in complex
scenarios (e.g., IoT), administrators can start with creating a number of entities then add
their hierarchy. This would help in controlling access to data with less maintenance costs
compared to creating a large number of non-hierarchical entities. Hence, hierarchical
authorization is the authorization determined based on the hierarchy. Figure 10 represents
examples of hierarchy in an organization or industry sector (e.g., role hierarchy, Figure 10a;
action hierarchy, Figure 10b; object hierarchy, Figure 10c; context hierarchy, Figure 10d). For
example, in an academic and research situation, a role called Dean could contain the roles
of Director and Team Leader, Figure 10a. This means that subjects (users) of the role Dean
are implicitly connected with the actions associated with their roles as Director and Team
Leader without the administrator having to explicitly list the Director and Team Leader
actions. In the literature, several models and metamodels are extended to support the
feature of hierarchy for some components, but in complex scenarios and highly dynamic
environments, it is important to consider this feature for all components, for example,
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none of the proposed metamodels consider context hierarchy. The metamodels proposed
in [29,30] support hierarchy of category (e.g., role, groups, etc.); [32] supports hierarchy of
category, action, object; and [7,31,34] support hierarchy of roles.

(a)

Actions

Private network access

Update Read Write

Public network access

Send Receive view 

(b)

Roles

Consultant Dean

Director Team leader

Projects

Folders

Objects

Engineering

Project A Project B

Sales

Tax 
declarations

(c)

Context 

Context 
User

User 
profile

Context 
Environment

Local

Time Location 

Network

Type 

Context 
Service

Version

(d)

Figure 10. Examples for hierarchy of (a) roles, (b) actions, (c) objects, and (d) contexts [3].

4.5. Collaboration and Interoperability

In pervasive computing environments, the software enables the connection between
various heterogeneous devices and users within a dynamic and heterogeneous environ-
ment; it carries out the needed mappings between each task and the required services
that users need. In the field of AC, and with the current technologies, AC policies are
employed to administer decisions in systems. They are increasingly used for implementing
flexible and adaptive systems to control access to resources in today’s internet services,
networks, security systems, and others. An AC metamodel should deal with the dynamicity
of devices and objects used, events, situations encountered, users accessing systems and
the environments from which they are connected, and others. It should be highly adaptable
and flexible, and it should be able to integrate many devices and information systems to
provide the needed services for users (and organizations) and ensure homogeneity and
collaboration between its components. Moreover, it should provide the administrative
required tasks and enable interoperable interactions between several derived AC mod-
els. Figure 11 illustrates the collaboration and interoperability concept an advanced AC
metamodel should provide.

System A

DAC model

System B
MAC/RBAC 

model System C
ABAC model

System D
RBAC/ABAC 

model

System E
ACx model

System F
ACx/ACy/ACz

model

Collaboration Space
AC Metamodel

Figure 11. The concept of collaboration and interoperability of AC models.
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4.6. Migration

Due to continuous technology upgrades, it is essential to consider the concept of
migration where different software components are transferred from one computing envi-
ronment to another. This concept must also be considered for AC models where the AC
migration is a kind of modernization for AC policies (set of rules that are generated using
different AC components) from one model to another covered by a generic, dynamic, and
extensible AC metamodel. Though, none of the proposed approaches tackle the concept of
migrating AC policies. In Figure 12, we illustrate the concept of policy migration from one
model to another.

ACx model

Migration
Policy (X):
Rule1 

Rule 2

C11 C12 C1n…

C21 C22 C2n…

……

ACy model
Policy (Y):
Rule1 

Rule 2

Rule 3

C11 C12 C1n…

C21 C22 C2n…

……

C2j

Cij: AC components to define rules, e.g., subject, objects, action, etc. 

C31 C32 C33 …

Figure 12. The concept of migration from one AC model to another.

5. HEAD Metamodel: Development Approach to Access Control in Dynamic and
Heterogeneous Environments

Security issues are dynamic and ever-changing due to continuous technology pro-
gressions and unexpected conditions, so designing, implementing, and testing software
for security is a challenging task. Accordingly, a security policy should be updatable and
modifiable at any time, and it must be kept aligned with software extension or devel-
opment. In Section 3, we present the development stages of AC methods and how AC
models are combined, extended, abstracted, reaching to the concept of AC metamodels.
Developing an advanced AC metamodel is a recent research issue; in Section 4, we explain
why the proposed metamodels are not enough to answer the AC needs of the current
networking generation.

The world of AC is changing fast [10] and, as shown in Table 1, the last metamodel
was proposed in 2015 [7]. Moreover, the last extended framework to support AC features
was ArchiMate in 2016 [34]. This reflects the lack of having an advanced AC metamodel
in the domain and the importance of developing and having a new and advanced one
with essential features that is able to face the existing challenges which accompany the
various variants of technology and digital transformation. For this purpose, we have
developed the HEAD metamodel [3] and, in this paper, we explain the new opportunities
and research directions it opens in the domain. As we can see in Figure 13, the generic
and hybrid metamodels which are proposed by Barker et al. [28], Bertolissi et al. [29],
Khamadja et al. [30], Slimani et al. [32], Abd-Ali et al. [7], and Alves et al. [33] include
features of DAC, MAC, and RBAC so they are not generic enough and do not support
the feature of adding/defining new components/attributes. The metamodel proposed by
Trninic et al. [31] is not generic since it only includes RBAC and RBAC extensions; also,
the metamodel which is extended to support the features of common models is ArchiMate
framework [34], it does not allow defining new components to formulate new AC models,
and it is extended but not extensible.
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DAC, MAC, and RBAC

Barker et al. [28]
Bertolissi et al. [29]
Khamadja et al. [30]
Slimani et al. [32]
Abd-Ali et al. [7]
Alves et al. [33]

RBAC and RBAC extended 
models

Trninic et al [31]

DAC, MAC, RBAC, and 
ABAC

Korman et al [34]

Figure 13. The components that the proposed metamodels include.

Until today, several approaches were proposed to develop and enhance AC models
in order to solve various AC problems and to also enhance model features by combining
or extending them. Nevertheless, these approaches are insufficient since they focus on
some AC models and upgrading them requires modifying the core model design then
following all the necessary steps of implementation and testing. This process increases
the complexity in controlling access within organizations due to loss of time and cost,
especially in the current age of digital transformation, and ubiquitous computing and
pervasive systems. Hence, it is very essential for organizations and industry sectors now to
rethink how to control access to resources through modern and advanced AC methods. In
this section, we present a complete development approach to AC in today’s dynamic and
heterogeneous computing environments, starting from the AC metamodel development
phase and reaching to the policy enforcement phase. Figure 14 summarizes the main phases
and the steps. Note that the gray squares indicate the achieved phases and steps, which are
explained in detail in [3], and we provide a summary, in this paper, in order to link them
with the remaining steps and explain the new opportunities and research directions that
could be achieved in this domain based on the HEAD metamodel.

5.1. Metamodel Development

In the literature, heterogeneous AC models with heterogeneous components (e.g.,
subject, object, role, category, permission, action, etc.) have been implemented. Figure 15
shows an example of heterogeneous models where AC policies are expressed differently. To
develop an advanced AC metamodel, the main step is to encompass the heterogeneity of AC
models (common models and others). In [3], we have developed a Hierarchical, Extensible,
Advanced, and Dynamic AC metamodel, named HEAD metamodel, that addresses the
limitations of the existing metamodels. After reviewing and investigating different AC
policies in different computing environments [5,6,15], we have realized that the first step to
develop a generic metamodel is to unify the heterogeneous components of AC models. In
the following, we explain the achieved steps of this phase.

5.1.1. Unify AC Components of Heterogeneous Models

To unify the heterogeneous components and make them adaptable to all AC models,
we categorize them into [3]:

• EXPLICIT (Ex) components, those that refer to something that is real and exists (e.g.,
subjects and objects).

• IMPLICIT (Im) components, those that refer to something described or explained in
the guidelines or rules, and they include:

– AUTHORIZATION UNITs (AU) (e.g., roles, security levels, categories, etc.).
– PROCEDURAL UNITs (PU) (e.g., actions, permissions, etc.).

• SETTING (St), which refers to components that are included to have more accurate
and regulated access to resources (e.g., context, constraints, etc.).
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Figure 14. The development approach.
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Extended 
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Figure 15. Heterogeneous models with different policy expressions.
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Figure 16 shows a hybrid policy example where heterogeneous components need to be
expressed in an AC policy. Hence, a metamodel must allow deriving a model that includes
all these components.

Object 

Object 

Object Object 

Action 

Action 

Subject

Subject

Subject

Constraint

Constraint

Constraint

attributes 

Rule#1: Before check-in, each worker has to wear a face mask

Rule#2: The maximum number of visitors in each room is 15

Rule#3: Machine operators can only enter the labs during working hours

Hybrid Policy

attributes 

Figure 16. An example of hybrid policy.

5.1.2. HEAD Metamodel: Meta-Components and Relationships

The unified AC components of the previous step have been used to develop the needed
metamodel. The meta-components Ex, Im (AU and PU), and St and the relationships
between them form the HEAD metamodel. As shown in Figure 17 [3]:

• The relationship between Ex and AU is to assign, for example, zero or many (0..*)
subjects to roles, groups, categories, or any other authorization unit.

• The relationship between AU and PU, and PU and Ex, is to represent which AUs are
able to perform zero or many PU (e.g., actions, permissions, etc.) and access some, for
example, objects or services.

• Ex and Im components might have zero or many St (e.g., contextual and/or non-
contextual constraints) before accessing/performing tasks on some other Ex components.

• The self-association edge exists on each of the classes to allow formulating AC models
and hybrid models for different policies by allowing AUs to be associated with other
AUs, PUs to be associated with other PUs, and so on.

• The hierarchical relationships are depicted by aggregation association for each of the
entities, Ex, AU, PU, and St, to create a hierarchy of classes.

The importance of the HEAD metamodel is that it even allows defining any new
component/attribute for non-existing model(s) to formulate new model(s), besides its
ability to derive the common models.

Implicit

attributes

   

 

 

 

 

accesstype

0..*

0..*

0..*

0..* 0..*
Setting

attributes

ProceduralUnit

attributes

AuthorizationUnit
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StHierarchy0..*

auHierarchy0..* puHierarchy0..*
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0..*

0..*

0..*

Explicit
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Figure 17. HEAD metamodel [3].
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5.1.3. The DSL Definition of HEAD Metamodel

The domain-specific language (DSL), using Eclipse Xtext, for the HEAD metamodel
is able to represent a variety of AC models in a generic way by defining any compo-
nent/attribute for any AC model (common models, hybrid models, new models, etc.).
Figure 18 shows part of the DSL which is used to define the explicit, implicit, and setting
components and their attributes (the detailed DSL definition is explained in [3]).

Figure 18. Sample of DSL of HEAD metamodel [3].

5.1.4. Meta-Policy Expression

The meta-policy is expressed in terms of the meta-components Ex, Im, and St:

Metapolicy = 〈Ex, Im, St〉

5.2. Deriving Models

HEAD metamodel is (1) generic and allows deriving instances of different models
and hybrid models, (2) dynamic and allows defining new components with the relation-
ships between them, (3) extensible to upgrade any defined policy, and (4) supportive of
defining hierarchies.

5.2.1. Specification of AC Models: Components and Relationships

This step consists of analyzing and expressing the AC requirements of a system and
identifying the Ex (e.g., subject, object, etc.), Im (e.g., AU = role, group, etc., and PU = action,
permission, etc.), and St (e.g., context, constraints, etc.) model components. The inputs of
this phase are the identified components for modeling a policy, and the outputs are the
specification diagrams (UML diagrams).

5.2.2. Formalization of the Specified AC Models

In this step, we encode the obtained AC models from the previous step, after specifying
the needed AC components, using the DSL of the HEAD metamodel as an AC modeling
language. The power of the DSL language of the HEAD metamodel is that it is simple and
flexible to appropriately express any AC policy requirements, overcomes the complication
of existing language expressions, and it is also independent of specific AC models. The
flowchart in Figure 19 explains how this DSL works to instantiate various policy models. It
can be interpreted as follows:
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No

End
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Yes

No

Figure 19. Instantiation of AC models using the DSL of HEAD metamodel.

• Before defining any component(s), policy model should be specified with the needed
attributes, for example, policy type (e.g., RBAC policy, ABAC policy, etc.), organiza-
tion, etc.

• At least one (or more) Ex component must be created (with the needed attributes)
since any AC model must include Ex entities (e.g., subject, object).

• Im components (AUs and/or PUs) should be identified and created. Note that an AC
model might not include an AU component(s) if, for example, the needed AC model
is DAC. If the model to be instantiated is MAC or RBAC, then there exists an AU
component (security level or role). Moreover, an AC model must include at least one
PU component, for example, action, and it should be created.

• An AC model might not include St component(s), for example, in the DAC model
context, and constraint components do not exist.

• If there exists additional components/attributes, they should be created, for example,
to upgrade a policy. The HEAD metamodel allows for adding them.

• Finally, if all the needed components/attributes are created, then associations of
components are handled while expressing the needed rule(s).

Figure 20 shows an example of MAC instance as a result of this step. MAC com-
ponents/attributes are defined and then the needed rule is expressed in terms of MAC
elements (subject, object, security level, and operation).
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Figure 20. Example: MAC instance [3].

5.2.3. Policy Expression

Based on the meta-policy expression (Section 5.1.4), different AC policy definitions
can be expressed as shown in Figure 21.

Meta-policy = 〈Ex, Im , St〉⇒

Meta-policy = 〈Ex, AU, PU , St〉

DAC policy = 〈subject, object, action〉

MAC policy = 〈subject, object, securitylevel, operation〉

ABAC policy = 〈subjectAttr, objectAttr, actionAttr, contextAttr〉

Figure 21. Examples of policy expressions using the meta-policy of HEAD metamodel.

5.3. Generating Policies

After specifying and defining the needed policy (or policies), this phase aims to
generate then verify the defined policies before analyzing and assessing them.

5.3.1. Generation of AC Policies from the Specified Models

The input of this step is the outputs of the previous one where the derived models are
encoded using Eclipse Xtend notation (Figure 22 shows a sample), an expressive dialect
of Java, to represent the concrete instance of an AC policy and generate the needed java
code. This step is a preliminary step that allows formally verifying the policy concepts
and properties.

5.3.2. Formal Verification of the Generated AC Policies

The input of this step is the generated java code from the previous step. This step
consists of formally verifying the accuracy and the coherence of the concrete instance of the
AC policy, which is formalized in the previous step, before proceeding to its implementation.
This can be achieved, for example, by injecting the generated java code of the previous step
into the Next Generation Access Control (NGAC) framework [35] to represent the AC rules
of a system in a graph—the objects, the relationships between them, and the subjects that
interact with the system in a way that adheres the semantics of an organization.
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Figure 22. A sample of Eclipse Xtend notation.

5.4. Policy Analysis and Assessment

Policies with minimum quality may lead to situations, for example, preventing users
from accessing data they are allowed to access or releasing data to unauthorized parties.
In some other cases, the AC model may not even have a policy concerning some requests
which may lead to uncertainties concerning the obtained AC decision. For higher confirma-
tion of security for data and resources, it is important to investigate whether such policies
fit for their purposes [36,37]. This phase is to analyze and assess the obtained policies
before enforcing them. It consists of two main sub-phases or steps.

5.4.1. Analysis of Quality Requirements of a Policy

This step consists of assuring the quality of the obtained AC policies and making sure
that they are consistent, relevant, minimal, complete, and correct with respect to the actions
needed to be performed by subjects on some objects [13,36].

• Consistency means investigating that the obtained policies do not include both an
allow and deny decision to the same subject for the action of an object.

• Relevance means checking if the obtained policies do not contain rules that do not
apply to any action performed by subjects. In other words, making sure that subjects
do not have any authorization to access object(s) and perform action(s) that they are
not expected to execute.

• Minimality refers to investigating that the obtained policies do not include redundant
or unnecessary policies.

• Completeness means that, for a given access request to access an object, there must be
a corresponding policy, and any action to be executed by the subjects on any object
the default decision that should be taken by AC model is to deny the access.

• Correctness refers to the process of checking that the policies conform with their
intended goals and are in compliance with the system requirements.
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Hence, this phase is of major importance while implementing AC rules in highly
dynamic and heterogeneous computing environments, especially IoT environments. Unfor-
tunately, although several methods for policy analysis and assessment are proposed [13,38],
they have major shortcomings. For example, they do not address all the quality require-
ments, e.g., they only address consistency and minimality, they analyze and assess the
obtained policies of only some AC models (e.g., RBAC policies), and they also require
all possible AC requests as input [13]. Hence, the proposed methods are not suitable for
dynamic and distributed environments. Moreover, developing an approach for analyzing
the quality requirements of a policy at runtime is of major importance, especially for today’s
environments such as IoT and industry 4.0 where data are generated in real-time basis.

5.4.2. Assessing Policy Enforceability

Policy assessment is the process of predicting and evaluating the possible impacts
of policy options by, for example, testing policies with respect to a set of scenarios to
determine their enforceability. The enforceability of AC policies is a challenging task due
to its high dependence on contexts, for example, some policies can be easily enforced
within an organization, and the same policy may not be enforceable in the IoT context.
Assessing enforceability of policies may require monitoring the intended system and
gathering information about some unexpected events, delays, system failures, etc., and
based on this information, the AC system could assess the difficulty or impossibility of
enforcing certain policies [13,39]. Moreover, AC systems should also allow identifying
constant policy abusers and provide the required evidence to exclude users who do not
respect the best practices of an organization. For example, by controlling who goes where
in a certain context, to ensure that accessing sensitive areas are limited to users with the
needed permission, the AC system should hence be able to detect intruders and prevent
them from accessing these areas.

Assessing policy enforceability is critical for a new networking generation such as IoT
computing environments due to the huge number of interconnected devices, millions of
users, the various contexts, and other facts. The ability to detect inappropriate or unusual
behavior, assess it as a real event, and use the evidence to support additional system
training or enforcement is of tremendous value for any organization.

5.5. Policy Enforcement

Policy enforcement is where all the previous phases and steps come together to serve
an organization and where the final decision is triggered to subsequently enforce the valid
AC decisions. One of the fundamental capabilities of organization security systems is their
ability to support security, organization standards, and AC policy enforcement. A policy
enforcement entity could be a network device on which policy decisions are enforced. This
phase is usually handled by software or hardware that serves as proxy, gateway, or any
other centralized control point in a network. The defined AC policies must specify the
needed action(s) if breaches occur. If so, the software or hardware, which works as a policy
enforcement point in the network, (1) detects the breaches by comparing the request status
with the assessed policy in Section 5.4 (previous phase), then (2) takes the needed action by
allowing or denying the access request [40].

6. Open Issues and New Opportunities

The emergence of new technologies, especially IoT and industry 4.0 systems, needs
the application of robust and advanced security mechanisms. However, security models
and AC solutions were not developed to address the current challenges of highly dynamic
environments. They are not able to meet the needs of transparency, scalability, shareability,
interoperability, and end-to-end security. Accordingly, several studies confirm that a deep
revision and adaptation of those mechanisms need to be considered [41,42]. In this paper,
we present a development approach in AC for complex, dynamic, and heterogeneous
environments. The characteristics of the HEAD metamodel, and the development approach
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for its phases, explained in Section 5, allow developing essential issues in the domain and it
opens new opportunities and various research directions which will be summarized in this
section. Hence, having an advanced AC metamodel, that is generic, dynamic, extensible,
and supports the hierarchy of components, allows for developing and integrating various
other important issues such as:

• HEAD metamodel could be enhanced to dynamically generate AC policies according
to users’ context, profile, device, etc., since is based on a multi-level rule engine.

• In collaborative computing environments, distributed multiple cyber-physical areas
interoperate with each other to provide an intelligent environment for users to achieve
their collaborative activities. Hence, the features of the HEAD metamodel would
facilitate fulfilling the collaboration and interoperability between the derived and
heterogeneous AC models and their components among distributed multiple cyber-
physical areas.

• The continuous technology upgrades impose the need to migrate AC policies from one
model to another. The HEAD metamodel supports all the necessary tools to enhance
with this new feature, in addition to its features.

• HEAD metamodel could be enhanced to implement and include built in packages
or set of tools with predefined AC models, for example, the most used models DAC,
MAC, RBAC, and ABAC. This could minimize the technical implementation efforts
and facilitate administrative efforts to define policies.

• Since the definition for hundreds of thousands of attributes, expressing rules and
policies, and performing implementation require a lot of time and resources, artificial
intelligence (AI) techniques could be used, for example, object recognition to identify
objects and define their attributes. Hence, the administrator could modify, add, or
remove some attributes instead of creating hundreds of objects and thousands of
attributes, especially in very large and complex systems.

• It could be enhanced and implemented to extract the data flow of an organization
to define the rules after extracting the entities and attributes, then the administrator
could be notified if there are some missing rules that must be defined.

• The features of the HEAD metamodel allow integrating AC to other systems, for
example, intrusion detection systems.

• The flexible, upgradable, and dynamic nature of the HEAD metamodel makes it
adaptable and applicable to distributed systems; hence, it allows developing and
implementing blockchain-based AC systems.

Each of the above points is itself an opportunity (in addition to many other opportuni-
ties) for enhancing AC in today’s computing environments using a unifying framework. In
summary, the HEAD metamodel contributes to the development of knowledge in the field
and can be considered as a paradigm shift toward reshaping the existing models and AC
methods, especially in the field of industry.

7. Conclusions

The ability to control access to sensitive data and resources in conformity with AC
policy is a fundamental security requirement. Despite the access control research over the
decade, the significant technology progressions and the limited ability of the existing AC
mechanisms force the need to develop and enhance AC methods. Hence, the development
stages of AC models over the decades produce heterogeneous AC models which impose
the need to develop AC metamodels to encompass the heterogeneity of the existing models
and find more advanced AC features. Unfortunately, the proposed AC metamodels are
not generic enough to define and enforce the essential AC requirements, especially with
the presence of various challenges such as the emergence of ubiquitous computing and
pervasive systems, the revolution of industry 4.0, the adoption of telework due to the
COVID-19 pandemic, the digital transformation, and many other facts. All these oblige
the need for defining and enforcing a larger set of static and dynamic AC policies and the
requirement to set up a new and general approach.
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However, as explained in this paper, there is a limited number of the proposed AC
metamodels, and the existing ones have several limitations and cannot follow the needed
upgrades which must accompany the various technology progressions. For this purpose,
we have proposed the HEAD AC metamodel with advanced features. In this paper, we
explain our development approach starting from the metamodel development phase and
reaching to the policy enforcement phase. We explain the achieved steps and the remaining
ones in order to employ this metamodel in developing many other essential phases in
this domain. The aim of this is to draw a complete strategy instead of tackling each issue
separately. In our experience so far, AC research and practice focuses on one phase and
confuses issues that cut across multiple phases. The purpose of this paper is to explain and
clarify the functionality of all phases to close the enormous gaps between them. To the best
of our knowledge, this is the first paper that considers all the needed phases and steps and
opens new opportunities in the domain based on an advanced AC metamodel, especially
since the last AC metamodel was proposed in 2015 and another extended one was in 2016.
This reflects the importance of setting up new strategies, methods, and opportunities to
share with researchers and experts in the domain, a new approach that tackles the different
facets and is based on an unconventional AC metamodel.
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