
Citation: Nyholm, H.; Monteith, K.;

Lyles, S.; Gallegos, M.; DeSantis, M.;

Donaldson, J.; Taylor, C. The

Evolution of Volatile Memory

Forensics. J. Cybersecur. Priv. 2022, 2,

556–572. https://doi.org/10.3390/

jcp2030028

Academic Editors: Mário Antunes,

Carlos Rabadão and Danda B. Rawat

Received: 5 April 2022

Accepted: 13 July 2022

Published: 20 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cybersecurity 
and Privacy

Review

The Evolution of Volatile Memory Forensics

Hannah Nyholm * , Kristine Monteith, Seth Lyles, Micaela Gallegos, Mark DeSantis, John Donaldson
and Claire Taylor

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
* Correspondence: nyholm7@llnl.gov

Abstract: The collection and analysis of volatile memory is a vibrant area of research in the cyber-
security community. The ever-evolving and growing threat landscape is trending towards fileless
malware, which avoids traditional detection but can be found by examining a system’s random access
memory (RAM). Additionally, volatile memory analysis offers great insight into other malicious
vectors. It contains fragments of encrypted files’ contents, as well as lists of running processes,
imported modules, and network connections, all of which are difficult or impossible to extract from
the file system. For these compelling reasons, recent research efforts have focused on the collection of
memory snapshots and methods to analyze them for the presence of malware. However, to the best
of our knowledge, no current reviews or surveys exist that systematize the research on both memory
acquisition and analysis. We fill that gap with this novel survey by exploring the state-of-the-art tools
and techniques for volatile memory acquisition and analysis for malware identification. For memory
acquisition methods, we explore the trade-offs many techniques make between snapshot quality,
performance overhead, and security. For memory analysis, we examined the traditional forensic
methods used, including signature-based methods, dynamic methods performed in a sandbox envi-
ronment, as well as machine learning-based approaches. We summarize the currently available tools,
and suggest areas for more research.

Keywords: memory dump; memory acquisition; memory forensics; volatile memory; cyber forensics;
malware identification; survey; machine learning

1. Introduction

The acquisition and analysis of volatile memory to identify cyber threats is currently
an active area of research in cybersecurity. The importance that computer systems play
in modern life continues to grow, and with it, the creativity and capabilities of those who
wish to gain access to them unlawfully. Businesses are currently experiencing 50% more
cyberattacks per week compared to 2020 [1]. In particular, fileless malware, which only
utilizes legitimate programs to infect a computer and leaves no footprint in the file system,
continues to increase in prevalence, and is often capable of evading antivirus software
products. In fact, fileless malware is believed to be 10 times more successful than other
malware types at evading detection [2]. Because of this, we remain in the dark about the full
extent of the damage fileless malware causes. However, one security company saw fileless
malware attacks increase by 900% during 2020 [3]. As the use of fileless malware continues
to skyrocket, memory forensics will remain a central pillar of forensic methods moving
forwards. Even in the absence of fileless malware, the data stored in a system’s random
access memory (RAM) is of high forensic value. Volatile memory contains fragments
of encrypted files’ contents, lists of running processes, and lists of network connections.
Due to the rising use of full disk encryption and other protective measures, it is much
more difficult, and often impossible, to extract such information from the file system.
When passing through RAM, however, this obscured information can be extracted in an
unencrypted, readily available format. Because of this usefulness, a lot of research has

J. Cybersecur. Priv. 2022, 2, 556–572. https://doi.org/10.3390/jcp2030028 https://www.mdpi.com/journal/jcp

https://doi.org/10.3390/jcp2030028
https://doi.org/10.3390/jcp2030028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcp
https://www.mdpi.com
https://doi.org/10.3390/jcp2030028
https://www.mdpi.com/journal/jcp
https://www.mdpi.com/article/10.3390/jcp2030028?type=check_update&version=1


J. Cybersecur. Priv. 2022, 2 557

been conducted on the best ways to extract volatile memory, including ways to address
the challenges of page-smearing, slow performance, storage costs, and subversion from
malware itself.

1.1. Contributions

In this work, we summarize and compare the approaches used to both collect volatile
memory and to analyze it for the purpose of malware identification. Previous surveys have
been conducted on acquisition [4], but to the best of our knowledge, this is the first survey
to cover both acquisition and analysis. In Section 2, we reference existing survey literature
on the topics of memory acquisition and volatile memory forensics. In Section 3, we discuss
the different techniques used to dump memory images, as well as issues of access level
hierarchy, the memory snapshot quality, tool deployment timing, and the effects of the tools
on the system’s state. In Section 4, we discuss tools (both open source and commercial) used
for parsing memory dumps, traditional forensic approaches such as signature scanning
and dynamic analysis in a sandbox environment (Section 4.2), and novel forensic methods
including machine learning (Section 4.3).

1.2. Threat to Validity

In order to ensure this review considered all relevant works for inclusion, we utilized
the following search methods and inclusion/exclusion criteria.

For our survey of volatile memory acquisition (Section 3), we queried the Google
Scholar, Scopus, and Elsevier databases with the following key words: Memory Dump,
Memory Acquisition, Memory Forensics, Volatile Memory. The results of these queries
were added to our list of potential sources. Additionally, we included each document’s
references as well as subsequent works that cited the documents to our body of literature.
To this body of literature we employed the following inclusion/exclusion criteria. To avoid
redundancy, works were not considered here if they were referenced in a previous survey
that we in turn referenced. We also excluded literature regarding the acquisition of Android
and Internet-of-Things (IoT) device memory, which we leave to future work.

For our survey of volatile memory analysis (Section 4), we again queried the Google
Scholar, Scopus, and Elsevier databases with these key words: Volatile Memory Analysis,
Memory Forensics, Memory Analysis, RAM Analysis, Memory Dump Forensics, Memory
Dump, and Malware Identification. The relevant documents produced by these queries
were considered potential sources. Again, we also reviewed each of these documents’
references and works that cited each of these documents to find additional relevant work.
Then, we employed the following inclusion/exclusion criteria. Works were included if their
methodology was intended for the identification of malware and included some element
of volatile memory in that methodology. Works were not considered here if they did not
utilize artifacts from the system’s volatile memory. Again, we excluded works related to
the analysis of volatile memory from Android or IoT devices; there is a broad range of
literature on that subject, which we leave to future work. Additionally, in order to keep this
survey relevant for modern operating systems, we excluded methods that were published
more than a decade ago.

1.3. Limitations

The main limitation of this review is the potential that we unintentionally excluded rel-
evant references. To the best of our knowledge, we included all relevant sources published
prior to this review.

2. Literature Review

Here, we review other surveys and systematizations of knowledge on the topics of volatile
memory acquisition and analysis. This work serves as an addition to several excellent existing
reviews on the topic of memory acquisition. The area of malware identification using artifacts
from volatile memory has only been indirectly or briefly addressed in previous surveys.



J. Cybersecur. Priv. 2022, 2 558

2.1. Memory Acquisition Literature

VöMel and Freiling [5] lay the groundwork in this topic area with a survey of
acquisition and analysis methods for the Windows operating system. More recently,
Or-Meir et al. [6] devoted a section of their work for acquisition through both software
and hardware means, explaining the mechanisms and trade-offs of each. Sudhakar [7]
thoroughly covered the means by which fileless malware operates as well as the challenges
this poses for timely detection. Taylor et al. [8] experimented with different acquisition
tools to determine the correctness, impact, and efficacy of memory acquisition tools, partic-
ularly by examining the tools’ ability to correctly capture read-only memory in order to
detect firmware rootkits. Latzo et al. [4] also provided an extensive review of acquisition
methods, including specific tools. They defined a taxonomy that still adequately character-
izes state-of-the-art memory acquisition tools. We used this taxonomy later to define and
compare features of acquisition tools. To this superb review, we simply add subsequent
developed methods.

2.2. Volatile Memory Analysis Literature

To the best of our knowledge, there exists no comprehensive, detailed, and current review
on the topic of volatile memory analysis methods, and we especially seek to address that need
with this review. Memory analysis methods have been widely researched and published, and
we attempt to systematize that knowledge for the research community. Some authors have
touched on the topic in a broad manner, and we summarize the relevant points below.

Sanjay et al. [9] provided a useful, generalized discussion of the types of fileless mal-
ware and the problems they pose. They outlined four categories that characterized mem-
ory forensic methods: sandboxing, execution emulation, heuristics, and signature-based
methods. We add to this work by specifying memory analysis tools, and by discussing
more recent machine learning approaches, which warrant another category. Case and
Richard [10] provided a list of shortcomings that current memory forensic techniques expe-
rience, including the lack of methodologies aimed at userland malware, application-specific
analysis tools, and changes made in Windows 10 that affect memory forensics. They also
pointed out that while most cyberattacks continue to happen on PCs, the number of attacks
on other devices (iOS, Chromebooks, IoT devices) is bound to rise, and that there are few if
any tools to collect or analyze memory from these devices. We found this work to be useful
in delineating the future research needs in the area of volatile memory forensics.

3. Memory Acquisition

The quality of any volatile memory analysis is highly dependent on the quality of the
memory dump taken from that system, and obtaining a quality memory dump is not a
trivial task. VöMel and Freiling [11] describe the qualities that make for a good forensic
memory image: correctness, atomicity, and integrity. A memory image is correct if the
snapshot contains only values that were present in the memory when the snapshot was
taken. Atomicity implies that the memory snapshot was taken within an uninterrupted
atomic action, or that the snapshot is free of the signs of concurrent system activity—usually
those produced by the memory acquisition tool. Lastly, a snapshot is considered to have
integrity if the memory region’s values have not changed since the specific point of time
chosen by the investigator. These qualities can be measured and compared to evaluate
the quality of different memory acquisition techniques. Page smearing, which occurs
when the acquired page tables reference physical pages whose contents have changed
during acquisition, along with other memory inconsistencies, are prevalent issues that
memory acquisition tools face. They often cause memory snapshots to fall short in these
qualities [12]. Latzo et al. [4] provided a useful overview of memory acquisition techniques
and a taxonomy (Figure 1) that describes the techniques. We use their taxonomy and add
new tools and techniques to their overview.



J. Cybersecur. Priv. 2022, 2 559

Figure 1. Taxonomy for memory acquisition methods as defined by Latzo et al. [4].

3.1. Taxonomy

One dimension of Latzo’s taxonomy [4] is the access hierarchy level in which the
memory acquisition tool exists. Acquisition tools that run in a higher access level are less
likely to be subverted by malicious content. The hierarchy levels are: user level, kernel
level, hypervisor level, synchronous management level (SML), and asynchronous device
level (ADL).

The second dimension of the taxonomy involves whether an acquisition tool must
be installed pre-incident or post-incident. Some tools require pre-incident deployment,
which is not always possible if the incident has already occurred. Aljaedi et al. [13]
demonstrated how post-incident tools usually lead to a decrease in the integrity of the
snapshot, as some of the memory is overwritten by the tool itself. The last dimension of the
taxonomy differentiates terminating and non-terminating acquisition tools. A terminating
tool requires programs to abort; a non-terminating tool does not. Non-terminating tools
are preferred over terminating tools because they preserve forensic evidence more cleanly
and do not interfere with system operations.

3.2. Acquisition Techniques

Here, we review memory acquisition techniques, along with their classifications in
Latzo et al.’s taxonomy [4]. We present these acquisition tools subdivided by the access
hierarchy level they reside in (Table 1).

3.2.1. User Level

At the user access level, the acquisition of memory could theoretically be accomplished
via a software emulator, although these are rarely used in practice for a couple of reasons. Em-
ulating software incurs a high performance overhead and requires low access level, making it
highly vulnerable to attack. Because the emulator itself executes the program while dumping
the data, it must be deployed pre-incident. Emulators are also non-terminating [4]. Kernel
debuggers and virtual machines (in Sections 3.2.2 and 3.2.3, respectively) have largely sup-
planted user level tools because they have higher performance and increased isolation from
the host system.

3.2.2. Kernel Level

At the kernel level, there are many techniques for acquisition, implementing tools as
kernel drivers, generating crash dumps or hibernation files, and debuggers running on top
of executables. Tools implemented as kernel drivers can typically be deployed post-incident,
at the expense of some atomicity and integrity. WinPmem (an open source, Windows-based
memory dump tool included in the Rekall suite) [14], LiME (an open source Linux kernel
module) [15], and ProcDump and WinKD (Windows-based tools from Sysinternals which



J. Cybersecur. Priv. 2022, 2 560

contain several functionalities, including memory dump capabilities) [16,17] are specific
examples of tools implemented as kernel drivers. These tools can create memory dumps
from the command line while a target program is running or be configured to watch for
certain events, such as a process crash or window hang. Another technique, the utilization
of crash dumps, relies on the operating systems’ integrated memory acquisition abilities.
When the system encounters a critical state, an image of the virtual memory is taken by
the operating system for investigative reasons. Because crash dumps are built into the
operating system (OS), they should be considered pre-incident, but the programs and the
OS need to be properly configured in order to produce dumps. However, crash dumps
are, by nature, terminating. Similarly, file hibernation is a built-in capability (and thus a
pre-incident tool) that can be used for memory acquisition. When a computer hibernates,
most of its physical memory is written to the disk in a hibernation file for storage while
the power is not available. This file contains the volatile memory, and can thus be used for
analysis as long as there is not full disk encryption on the system and the hibernation mode
has been enabled. In Windows, for example, the hibernating file is located at C:\\hiberfil.sys,
needs no setup to produce, and can be read by Volatility [18].

Lastly, software debuggers can be employed for memory acquisition because the
debugger has full access to the debuggee’s memory. Most modern operating systems
come with debugging system calls that can accomplish this. A debugger can be deployed
pre-incident by launching the debuggee from the debugger, or post-incident by attaching
the debugger to a running process. The GNU Project Debugger (GDB) [19] is commonly used
for UNIX systems and WinDbg [20] or Visual Studio [21] for Windows systems. GDB can
attach to a running process via the command line, or WinDbg can attach from its graphical
user interface (GUI) menu.

3.2.3. Hypervisor Level

Because rootkits and other attacks are capable of elevating their privileges to the kernel
level, memory acquisition tools running at the kernel level are still not immune to subver-
sion. In some instances, it is desirable to acquire memory from a higher hierarchy access
level. Many virtualization tools, such as VMware [22] and LibVMI [23], have integrated
functionality capable of acquiring the guest’s memory from the hypervisor level; these
tools can be accessed via GUI, command line, and libraries with accessible APIs. These
tools must typically be deployed pre-incident, but there are some exceptions, including
HyperSleuth [24], Vis [25], and a tool by Cheng [26]. These tools are unavailable for further
analysis but offer architectures that, for instance, rely on thin virtualization layers located
outside of even the host operating system. Virtual machines can be paused, and the mem-
ory collected via tools provided by the service vendor. VMware provides vmss2core.exe, and
similarly LibVMI is packaged with dump-memory.

3.2.4. System Management Level

The system management level is an operating mode present on a systems’ architecture
that is independent of all normal system operations. The system management level only
handles low-level operations such as Basic Input/Output System and Unified Extensible
Firmware Interface (BIOS/UEFI), not the operating system or user applications, and it has
higher privileges than a hypervisor. Because of the independence from the operating system
and virtual machines, memory acquisition at this level is an attractive option. However,
there are few implementations of acquisition tools at this level. A potential explanation for
the dearth of BIOS-level memory capture tools is that BIOS tooling development typically
has a slower iteration speed and is less portable than the development for higher-level
tools. SmmBackdoor [27] is a rare example of such a tool, but its installation is complex and
quite specific to computer model. To use SmmBackdoor, a user provisions the software
directly to the UEFI system in order to “infect” the System Management Module and
capture memory. The author of this tool intended it as an example of an exploit rather than



J. Cybersecur. Priv. 2022, 2 561

a typical, blue-team forensic aid. Additionally, it appears that SmmBackdoor is limited in
memory scope to the System Management Module’s System Management RAM.

3.2.5. Asynchronous Device Level

Hardware-assisted memory acquisition, or acquisition at the ADL level, makes use of
external hardware to capture memory. PCILeech [28] and Inception [29] are direct memory ac-
cess (DMA)-based frameworks that can be deployed post-incident and are non-terminating.
They use external hardware to access memory over system buses, such as peripheral com-
ponent interconnect express (PCIe); these tools require provisioning drivers for the capture
hardware and the tool software itself to interact with that hardware. Once provisioned,
PCILeech can be invoked via a command line utility, for example:

pcileech.exe dump -force -device usb3380://usb=2

Because the system continues to run uninterrupted, obtaining atomic memory snap-
shots is impossible. Another tool, Snipsnap [30], utilizes a hardware thread control block
(TCB) and an untrusted kernel driver that captures memory in the target OS. This method
requires a modest modification of the on-chip memory controller and CPU register file—
making it a non-atomic method. However, it offers performance isolation for the appli-
cations executing on the target system. Another hardware-based approach, the cold boot
technique, takes advantage of the fact the DRAM is not immediately erased after a reset or
power cut. To dump the frozen memory during a cold boot, it is possible to use dumping
software using a preboot execution environment (PXE), to boot from a USB drive, or to
include a dumping routine in the BIOS/UEFI.

Table 1. A summary of memory acquisition tools according to the taxonomy [4]. An ’x’ in a column
indicates that a tool’s category resides in that classification. An ’x’ is listed in both the Pre-Incident
and Post-Incident column if a category of tools contains examples of both classifications.

Access Level Type Tool Name Pre-Incident Post-Incident Terminating Non-Terminating

Kernel Level

Kernel Drivers
Pmem [14]
LiME [15]
ProcDump [16]

x x

Crash Dump Files Built in x x
Hibernation Files Built in x x

Debuggers
GNU Project Debugger [19]
WinDbg [20]
Visual Studio [21]

x x x

Hypervisor Level

Hypervisor VMWare [22]
LibVMI [23]

x x

Hypervisor
Hypersleuth [24]
Vis [25]
Cheng et al. [26]

x x

System
Management
Level

BIOS-level SmmBackdoor [27] x x

Asynchronous
Device Level

Direct Memory Access
PCILeech [28]
Inception [29]

x x

Hardware Thread
Control Block

Snipsnap [30] x x

Cold Boot Built in x x

3.3. Discussion

Of the developed memory acquisition tools, none provide a perfect memory image
that is also practical to deploy and maintains complete security. The available tools capable
of delivering correct, atomic snapshots with integrity tend to be impractical for perfor-
mance reasons or because they require the termination of the system. Acquisition tools that
have faster, non-terminating performance typically do so at the expense of the atomicity
or integrity of the snapshot. However, if the overwritten or evolving memory sections
are small enough, it has been argued that the memory snapshots are almost atomic, and



J. Cybersecur. Priv. 2022, 2 562

therefore, good enough for most purposes [25]. Pagani et al. [12] disagreed, arguing that
changes in memory across time and space must be accounted for in order to reasonably
use non-atomic snapshots. Another issue that many of the acquisition tools suffer from
is vulnerability to anti-forensic methods. Memory acquisition tools executed from the
hypervisor level and above can be detected and subverted by malware that can identify the
presence of the hypervisor or through other sophisticated techniques [31]. Even straight
hardware-based approaches can be compromised by time-based detection from the mal-
ware [6]. Acquisition tools that are more resistant to anti-forensic methods tend to have
higher levels of page-smearing and thus lower atomicity, because the tool does not interrupt
the host. Thus far, tools implemented at the system management level have great promise
to meet these competing demands of quality, performance, and security, but more research
and development is needed in this area.

4. Memory Analysis

Once a memory dump has been obtained, there are numerous methods available to
analyze that memory dump for the presence of malware. Generically, the analysis process
(Figure 2) includes parsing the memory dump to extract useful information, and then
using that information in a specific analysis approach. Several tools, including Volatility
and Rekall, have been created to parse the memory dumps. Some older, more established
methods for memory analysis include the signature scanning or heuristic scanning of the
memory dump. Newer dynamic methods involve executing malware in a sandbox or
another instrumented environment and characterizing it with various features. Lastly,
new machine learning techniques are being explored that take the features from dynamic
analysis methods and use them to train machine learning classifier algorithms.

Figure 2. The typical process of acquiring a memory dump and analyzing it for the purpose of
malware identification. Malware is executed (usually in a sandbox environment) and a memory
dump of the system is taken. Then, the memory dump is parsed using Volatility and additional
analysis is performed upon the output from Volatility.

4.1. Tooling

Several memory analysis tools have been created that allow a user to parse memory
dumps for useful artifacts. The open source examples of such tools include Volatility [18] and
Rekall [32], and commercial tools include Cellebrite Inspector [33], FireEye Redline [34], Magnet
AXIOM [35], and WindowsSCOPE [36]. Almost all research methods make use of the Volatility
software, and most commercial solutions expose or leverage Volatility within their product.
Here, we describe some of the features of these tools. Commercial tools typically add features
not natively found in Volatility, such as enterprise-level remote endpoint management with
additional analysis. These additional features, while quite valuable for managing enterprise
resources and boosting the efficacy of current methods, do not introduce drastically new
practices to the topic here—namely, analyzing memory on individual devices.



J. Cybersecur. Priv. 2022, 2 563

4.1.1. Volatility

In discussing volatile memory forensic tools, one cannot neglect to mention Volatility—an
open source, Python-based framework for analyzing memory dumps [37]. Volatility is
capable of analyzing memory dumps from Windows, Linux, or Macintosh machines,
supports many different types of file dump formats, and has an extensible application
program interface (API). It also has excellent feature-creating functionality and is reasonably
efficient in its implementation. Volatility has emerged as the largest and best-supported
framework because of its large base of contributors and independently authored plugins,
many of which are geared toward platform-specific forensics [38]. The framework and
many of the plugins, especially the plugins for analyzing Windows systems, are mature
and stable enough to pass fuzz testing attempts [39]. Fuzz testing is a software testing
method that injects invalid or unexpected inputs into a program to reveal defects and
vulnerabilities. Most of the novel memory forensic tools discussed in later sections of this
paper are implemented as a Volatility plugin or utilize the Volatility code base.

A main drawback of Volatility is that it is typically run from the command line interface,
which makes it inaccessible to some potential users. In order to flatten the learning curve
associated with using Volatility, a graphical user interface (GUI) has also been developed
by Meyers et al. [40] that allows inexperienced memory forensic investigators to use basic
Volatility commands via a plugin in the software Autopsy.

While Volatility contains many different modes and commands, a typical invocation
takes the following form:

python3 vol.py -f <dumpfile> windows.pslist

In this example, Volatility extracts the Windows process list at the time of the memory
image dump.

Performance

Volatility developers claim it to be more efficient than other memory forensic software,
including Rekall [37,41], although an independent assessment of the software’s performance
was not found. Volatility developers assert that Volatility2 was capable of “list[ing] kernel
modules from an 80 GB system in just a few seconds” [37]. Furthermore, during the public
release of the Volatility3 beta, developers claimed major performance improvements over
Volatility2 and Rekall, in many instances [41].

Basic Capabilities

Here, we describe some of the basic capabilities of Volatility that are widely used for
memory forensics. Ligh et al. [42] provided a more thorough discussion and tutorial with
an example code for all major architectures.

Using Volatility, one can extract the current and previous process handles running
on a system, a process’s loaded dynamic-link libraries (DLLs), any commands an attacker
entered through a console shell, memory resident pages, and process executables. It can also
extract information about the process’s virtual address descriptor (VAD) nodes, including
the addresses of the VAD structure in kernel memory, the VAD tag, the VAD flags, control
flags, and the name of the memory mapped file if one exists. It can obtain data about the
kernel drivers loaded on the system, including those hidden in physical memory or in
files on a disk. Likewise, it finds process thread objects in physical memory with pool tag
scanning. Lastly, Volatility is capable of obtaining information about the connections the
system has made. Specifically, it extracts TCP connections that were active at the time of
memory acquisition, listening sockets for any protocol, residual data and artifacts from
previous sockets, and network artifacts, including TCP endpoints, TCP listeners, UDP
endpoints, and UDP listeners.



J. Cybersecur. Priv. 2022, 2 564

4.1.2. Rekall

Rekall originated as a fork of Volatility in 2011, but grew to be an advanced forensic and
incident response framework. Like Volatility, Rekall can parse dumps from Windows, Linux,
and Mac OS, providing much of the same information regarding a system’s processes,
memory structures, and network connections. When provisioned to a system, Rekall
also has a memory dump functionality and enables live memory analysis, similar to that
provided in forensic mode by Volatility. Rekall contains other features such as a useful
GUI and methods that better support different operating system versions [32,43]. Rekall
is no longer maintained by its developers; however, thus limiting its usefulness to future
memory forensic researchers.

4.1.3. Discussion

Both of these tools supply a reverse engineer with many tools to manually examine the
contents of a memory dump file. They can provide information about the computer system,
process memory, the kernel memory and objects, and network connections. These tools
are not, on their own, however, an end-to-end platform that can automatically detect
the presence of a malicious code in a computer system. They require an experienced
operator behind the wheel in order to extract and interpret the contents of the volatile
memory. While manual reverse engineering was an important first step in the development
of forensic methods, it is time-intensive and requires significant subject matter expertise.
Because the rate of malware creation far outpaces experts’ ability to reverse engineer them,
these tools are most powerful when paired with other software (such as those examined
subsequently) that provide some automation in the process of malware detection.

4.2. Traditional Memory Forensic Approaches

Many traditional memory forensic methods for malware identification can be divided
into the following categories: a scanning method or a dynamic analyses performed within a
sandbox. In this section, we discuss established tools and new extensions of these approaches.

4.2.1. Scanning Methods

A scanning approach in cyber forensics involves searching the forensic data of an
infected system—files, memory dumps, process lists, network connections—for evidence
of the infection. In this article, we only focus on scanning techniques applied to memory
dump files. Scanning the physical memory provides an inherently incomplete picture
of a malware’s behavior, and can be bypassed by malware authors using obfuscation
techniques. However, scanning techniques are fast, making them a good first-response
technique. Furthermore, because cyberattacks are often made with recycled malware,
scanning techniques can provide a quick and effective forensic for most infections. Some
scanning techniques are signature based, and look for specific strings or byte sequences.
Others are heuristic based, and instead look for certain commands, logic, or instructions.

Signature Scanning

Signature scanning looks to match the signatures of known malware with the contents
of memory dump files from infected systems. A signature is a footprint or pattern, typically
including byte patterns and strings, that are unique to the malware type. YARA signatures
have emerged as the industry de facto method for scanning, and are directly supported
in Volatility [44]. The YARA matching engine compares a given sample with a large
database of signature rule formats that each represent a type of malware or malware family.
The following authors have used signature scanning in their memory forensic approaches.

When evaluating memory with scanning techniques, one can either scan the virtual
address space or the memory image directly. Cohen [45] proposed a “context aware”
scanning method that uses the Windows Page Frame Number (PFN) database to rapidly
identify the owner of each physical page, and where it is mapped in its virtual address



J. Cybersecur. Priv. 2022, 2 565

space. This method improves the matching speed and accuracy since the virtual address
space need not be reconstructed for every process.

A large obstacle memory forensics techniques face in practice is the amount of storage
required to keep a large number of memory dump files. Efforts to create a public repository
of memory dump files for the purposes of memory forensics are attempting to address
this [46], but we can assume that the storage size will continue to be an issue if malware
prevalence continues to increase exponentially. To this end, the use of compression utili-
ties on memory dump files [47], and the creation of signatures based on the compressed
memory files, has been considered. However, because malware typically modifies only
a small portion of a machine’s memory, the majority of data in memory dumps is redun-
dantly stored. Brengel and Rossow [48] address this with their MemScrimper methodology.
This method involves taking a snapshot of the memory of the clean system, taking a mem-
ory snapshot after exploding a single malware sample, finding the difference between those
snapshots, saving and compressing the difference, reverting to the clean snapshot, and then
repeating for each malware sample to be analyzed. Because the large benign portions of the
memory dumps are not compressed and saved, this method is even more space efficient
than simply using compression utilities.

Heuristic Scanning

Heuristic scanning is a method that detects threats using rules and algorithms to
look for commands or instructions that may indicate malicious intent. The heuristic
rules are more generalizable than signatures, allowing heuristics to identify previously
unseen malware that shares characteristics with previously identified malware. In practice,
heuristic scanning and signature scanning are often used in conjunction with each other.
Scanning techniques are often significantly faster than sandboxing techniques. A recent
heuristic scanning method for memory forensics was made by Pendergrass et al. [49].
Their contribution, the USIM toolkit, is a set of integrity measurement collection tools that
look at the abstractions of the operating system and search for violations of invariants
that indicate deviation from the expected run-time behavior. Primarily, they examine the
abstractions of the namespaces, filesystems, networking and communication channels,
environment variables, and runtime linkers/loaders. They also look at abstractions of
the virtual memory management. These abstractions are then gathered into a single,
graph-based structure, which is appraised by a set of rules defined by the administrator.
This toolkit, while a potentially valuable resource for reverse engineers, was not built
with the intent to automatically detect the presence of malware, but to allow analysts to
better dive deeper into the structure of both memory and non-memory forensic data using
rule-based heuristics.

4.2.2. Dynamic Analysis within a Sandbox

Sandboxing can provide a dynamic approach to cyber forensics. Malware is allowed to
execute in a controlled environment, called a sandbox, and its behavior and characteristics,
including information about its volatile memory, can be recorded [50]. Analyses of the
information collected in the sandbox environments can be used to help identify future
threats. Sandboxes are a necessary aspect of dynamic forensic techniques, as they protect
the analysts’ systems from unwanted infection. Bare-metal runs, malware runs outside a
sandbox, are not practically scalable because they require a full system reinstall after each
malware run to restore the analyst system to a clean slate.

There are two main approaches used to set up a sandbox, virtualization and emulation,
and they differ in how the controlled environment is created.

Virtualized Environments

Virtualized environments, called virtual machines, are controlled by a hypervisor. The
hypervisor software controls the access of different programs to the underlying hardware,
so the virtual machines can be isolated from other virtual machines or programs on the



J. Cybersecur. Priv. 2022, 2 566

same hardware. However, the hypervisor and the virtual machine cannot be run at the
same time, making it difficult to gather detailed data on the program’s execution. The
presence of the hypervisor is also difficult to hide from the malware, and malware authors
are known to use evasive coding techniques that identify the presence of the hypervisor
and subsequently modify the program’s behavior [50].

Software Emulators

An emulator is a software program that simulates the functionality of a program or of a
piece of hardware. Emulators can simulate the operating system, but due to the complexity
of most modern versions, it is often easier to emulate the underlying hardware instead.
Since emulators implement their functionality through software, they are wonderfully
flexible. An emulator can be built to run guest programs on completely different hardware
CPU architectures than that for which they were designed. Furthermore, while the guest
program is running, the analyst can obtain an instruction-by-instruction view of what the
malware is doing. One typical drawback of execution emulators, however, is a significant
performance penalty that is incurred due to the addition of a software level. Furthermore,
similarly to hypervisors, emulators can be detected and bypassed by malware through
evasive techniques [50].

Sandbox Tools

There are many commercial sandbox systems based on virtualization or emula-
tion, including AnyRun [51], Crowdstrike Falcon Sandbox [52], FireEye [53], JoeSecurity [54],
Palo Alto WildFire [55], and VirusTotal [56]. Many such systems would well suit the needs
of a corporate computer security team, but are not entirely free or open source, making
them less suitable for the research teams focused on memory forensics. Some free, open
source sandbox tools include Cuckoo [57], DRAKVUF [58], Sandboxie [59], and SpeakEasy [60].
Virtually all behavior-based malware detection research efforts incorporate some sort of
sandbox system [61–63]. Users interface with these systems—providing programs and
configurations to test and retrieve data to analyze—in a variety of ways, from command line
utilities to web requests (via web GUI or HTTP APIs) and local GUIs. For instance, a typical
task-creation request for a Cuckoo instance running at “<server>” takes the following form:

curl -H "Task Name" -F file=@/program http://<server>/tasks/create/file

Despite their ubiquity, sandbox systems are not without limitations. Sandbox sys-
tems can be difficult to configure correctly so that they effectively counter anti-analysis
techniques. There is a plethora of research regarding the evasive techniques employed by
malware authors [64,65] and countermeasures to combat sandbox evasion [31,66]. Research
has also been conducted to improve the performance and compatibility of sandbox systems.
Tien et al. [63] proposed a novel sandbox system which leverages VM introspection and
memory forensic techniques. Because most sandbox systems must capture all system call
behaviors, they must modify the event monitoring routines of VMExit in the hypervisor
kernel, which is highly dependent on the virtualization hypervisor. To decrease this hyper-
visor dependency and increase the compatibility and scalability, Tien et al. proposed a novel
system. The proposed system works by setting up a Xen hypervisor on a system, accessing
the virtual machine’s memory with LibVMI, and then using the Volatility framework to
analyze system behavior. A few details were provided about the implementation of the
system. The authors claim that this approach could be used to analyze live memory data,
but appear to only apply it to memory dumps. The accuracy rates of the system at detecting
malicious behavior individually in the process, file, and registry systems were somewhat
low, but when combined, yielded accuracies as high as 90%.

4.3. Machine Learning Approaches

The use of machine learning (ML)-based approaches in malware detection has become
widespread in recent years [67–70]. This is unsurprising because of the great success such



J. Cybersecur. Priv. 2022, 2 567

algorithms have achieved at classification problems in a wide variety of domains. In this
section, we explore attempts at using ML algorithms in the space of malware detection,
specifically with volatile memory forensics. These ML approaches could be classified into
two groups, a feature engineering approach and a computer vision-based approach.

4.3.1. Feature Engineering Approaches

Many of the attempts at a machine learning volatile forensic method involved execut-
ing malware in a sandbox system, acquiring a memory dump, extracting features from the
dump using Volatility (or another tool, such as Rekall). The creation of these features is often
termed feature engineering in machine learning literature. The features can then be used in
a classification algorithm. Such was the case with [61,71–73].

Aghaeikheirabady et al. [71] compared sequential minimal optimization, random
forest, decision tree, naïve Bayes, and instance-based classifiers at the task of malware
detection on volatile memory. The data used included 350 instances of malware, and
200 instances of benign executables. The classifiers were built using 130 features extracted
from the VAD tree, the file mapped in memory, registry keys from the process handle table,
and registry changes. Specific features were not provided by the authors. As the success of
the above-listed classifiers is highly dependent upon the features used to build them, we
believe a more thorough discussion of the selected features and the feature importance is
needed to replicate these results.

Similarly, Murthaja et al. [61] built machine learning classifiers on extracted features
regarding the API calls, DLL injections, registry, and network connections. These features
were used to fit several classification algorithms, including naïve Bayes, support vector
clustering, K-nearest neighbors, logistic regression, a decision tree, random forest, and linear
discriminant analysis, to create a final feature set. A recurrent neural network was then fit
with the finalized feature set, and it led to >93% accuracies at detecting malicious processes.

Arfeen et al. [72] extracted 15 features (9 of which were ultimately used after feature
selection) from 900 memory dumps. These features were used in an XGBoost classification
algorithm to identify the presence of ransomware on the system. Only five families of
ransomware were used in the dataset, and they were compared against only three benign
processes. The algorithm was able to identify the ransomware with 89% accuracy.

Lashkari et al. [73] extracted 36 features (provided as a list by the authors) from
memory dumps, that described the system’s processes, DLLs, handles, loaded modules,
code injections, connections, sockets, services and drives, and callbacks. These features
were fed into randomized decision trees which achieved a 93% true positive rate and a
6.6% false positive rate. However, their 1900 samples were derived from only 7 malware
families and a few benign samples.

The promising results in these papers indicate that there is potential for malware
detection based off feature engineering from volatile memory snapshots.

4.3.2. Computer Vision Approaches

The following authors adapted the methods used in computer vision to the prob-
lem of volatile memory forensics. They re-framed the data to an image (or image-like
representation) and then applied computer vision techniques.

Xu et al. [74] divided program execution into epochs and summarized the data access
patterns with four histograms of the random memory access. Each histogram considers
a different type of memory access: (1) far calls, with an absolute address; (2) near calls,
with a relative address; (3) branch instructions; and (4) load/store instructions. Using
these histograms as the feature set, logistic regression, a support vector machine (SVM),
and random forest classifiers were built for kernel rootkit executions and for user-level
memory corruption malware. Results for the kernel rootkit classifiers achieved almost
100% accuracy at detecting rootkits, with a false positive rate of <1%, albeit on a small
dataset. For the userland malware, the rate of true positive predictions was high compared
to malware-aware processes detection (88%), even when the allowable false positive rate



J. Cybersecur. Priv. 2022, 2 568

was small (1%). The unique contribution of this work is the ability to turn it into a live
detection system, as well as a unique representation of the data.

Furthermore, taking a cue from computer vision research, Bozkir et al. [75] rendered
the memory dumps of processes as images, with a variety of rendering schemes. Then,
visual feature descriptors (GIST and HOG) were applied to the images to compute visual
features. The visual features were then used in a random forest, XGBoost, linear SVM,
sequential minimal optimization (SMO), and J48 classifiers. When treated as a multi-
class classification problem, the best model was able to predict the malware family of a
new sample with accuracies as high as 96%. While the results of these experiments were
promising, the data only contained 10 different malware families.

4.4. Discussion

Each of the many varied tools used to analyze volatile memory have strengths and
weaknesses, and some offer fundamentally different approaches to the problem. Table 2
summarizes the features of these tools and shows how they have evolved over the last
decade. Although dynamic analysis and machine learning are arguably better approaches
to malware detection, signature scanning remains a mainstay in how industry antivirus
companies provide protection to their customers. Signature scanning is established, fast,
and it reliably identifies the majority of security threats that their customers face. However,
it is incapable of identifying new threats. Machine learning-based approaches, although
widely talked about, have yet to be widely used in industry. This is at least partially
due to the quality of the datasets on which these methods have been tested and the lack
of replication of results. In the machine learning approaches reviewed in this survey,
all of the datasets used contained a limited number of samples from a few benign and
malicious families. While the development for a large publicly available datasets of memory
dump images is already underway [46] and will surely aid with this issue, in general,
machine learning-based methods still need to be verified on larger, more diverse, and more
realistic datasets. However, once larger datasets are used, researchers are likely to run into time
complexity issues that often accompany large machine learning models. Secondly, some of the
research regarding ML methods reviewed here did not provide enough implementation details
to replicate similar results. Providing enough details for replication, or even better, making
code bases publicly available, will aid in establishing machine learning as a reliable method for
malware detection in volatile memory forensics. Eventually, the publication of trained machine
learning models, or transfer learning, as is done in the natural language processing and image
recognition spaces, could result in more participation and innovation from those researchers
who lack the necessary resources to train large ML models and store the data.

Table 2. A visual summary of the non-commercial volatile memory analysis tools. Ordered by the
year the tool was released, we see the increasing popularity of ML methods. We also notice that the
use of Volatility and sandboxing methods is well established. Interestingly, very few tools are capable
of live malware detection.

Tool Name First Author Year Sandbox Analysis Scanning Method ML Method Utilizes Volatility Live Detection Automated

Graziano 2012 x x

YARA 2013 x x

Aghaeikheirabady 2014 x x

AMAL Mohaisen 2015 x x x

Tien 2017 x x x

Cohen 2017 x x x

Fowler 2017 x x

Xu 2017 x x x



J. Cybersecur. Priv. 2022, 2 569

Table 2. Cont.

Tool Name First Author Year Sandbox Analysis Scanning Method ML Method Utilizes Volatility Live Detection Automated

MemScrimper Brengel 2018 x x

Murthaja 2019 x x x

USIM Toolkit Pendergrass 2019 x x

SpeakEasy 2020 x

Lashkari 2021 x x

Bozkir 2021 x x x

Arfeen 2022 x x x

4.5. Future Work

There is a continuing need for research in the space of volatile memory acquisition
and analysis. The further development of memory acquisition tools, particularly tools that
reside in the system management level, is needed to develop atomic, efficient, and secure
tools. The further research and validation of memory forensic methods utilizing machine
learning algorithms is needed to confirm the effectiveness of those methods. Lastly, the
topic of volatile memory forensics on Android and IoT devices was not considered here,
but the survey of those methods is also warranted.

5. Conclusions

The landscape of volatile memory acquisition and analysis research is evolving quickly
as it has proven to be a valuable forensic method. A variety of memory acquisition tools
have been created for the major operating systems, but these tools vary in their accuracy,
speed, and practicality. Continuing research and development is needed to create an
acquisition tool capable of meeting these competing demands.

Volatility has established itself as the leading memory extraction tool and is utilized
in conjunction with most memory forensic methods by researchers. Memory forensic
methods can be classified as dynamic analysis from within a sandbox, a scanning method,
or a machine learning approach. Methods employing a sandbox characterize malware
behavior better than scanning methods, but can be ineffective against malware containing
the sandbox evasion code. Scanning methods are fast to implement and already widely
used in commercial software, but they fail to identify previously unseen malware and
provide only a limited view of the behavior of the malware. The use of machine learning
classification algorithms for volatile memory forensics shows promise, but these results
need verification on larger datasets in most cases.

Author Contributions: Conceptualization, K.M. and H.N.; investigation, H.N.; resources, H.N. and
K.M.; writing—original draft preparation, H.N.; writing—review and editing, C.T., J.D., M.G., M.D.,
K.M. and S.L.; supervision, K.M.; funding acquisition, K.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cyberattacks 2021: Statistics from the Last Year. 2022. Available online: https://spanning.com/blog/cyberattacks-2021-phishing-

ransomware-data-breach-statistics/ (accessed on 12 July 2022).
2. What Is Fileless Malware? Available online: https://www.trellix.com/en-us/security-awareness/ransomware/what-is-fileless-

malware.html (accessed on 12 July 2022).

https://spanning.com/blog/cyberattacks-2021-phishing-ransomware-data-breach-statistics/
https://spanning.com/blog/cyberattacks-2021-phishing-ransomware-data-breach-statistics/
https://www.trellix.com/en-us/security-awareness/ransomware/what-is-fileless-malware.html
https://www.trellix.com/en-us/security-awareness/ransomware/what-is-fileless-malware.html


J. Cybersecur. Priv. 2022, 2 570

3. WatchGuard Technologies, I. New Research: Fileless Malware Attacks Surge by 900% and Cryptominers Make a Comeback,
While Ransomware Attacks Decline. 2021. Available online: https://www.globenewswire.com/news-release/2021/03/
30/2201173/0/en/New-Research-Fileless-Malware-Attacks-Surge-by-900-and-Cryptominers-Make-a-Comeback-While-
Ransomware-Attacks-Decline.html#:~:text=Among%20its%20most%20notable%20findings,in%202020%20compared%20to%
202019 (accessed on 12 July 2022).

4. Latzo, T.; Palutke, R.; Freiling, F. A universal taxonomy and survey of forensic memory acquisition techniques. Digit. Investig.
2019, 28, 56–69. [CrossRef]

5. VöMel, S.; Freiling, F.C. A Survey of Main Memory Acquisition and Analysis Techniques for the Windows Operating System.
Digit. Investig. 2011, 8, 3–22. [CrossRef]

6. Or-Meir, O.; Nissim, N.; Elovici, Y.; Rokach, L. Dynamic Malware Analysis in the Modern Era—A State of the Art Survey. ACM
Comput. Surv. 2019, 52, 88 . [CrossRef]

7. Sudhakar, Kumar, S. An emerging threat Fileless Malware: A survey and research challenges. Cybersecurity 2020, 3, 1. [CrossRef]
8. Taylor, J.; Turnbull, B.; Creech, G. Volatile Memory Forensics Acquisition Efficacy: A Comparative Study towards Analysing

Firmware-Based Rootkits. In Proceedings of the 13th International Conference on Availability, Reliability and Security—ARES
2018, Hamburg, Germany, 27–30 August 2018; Association for Computing Machinery: New York, NY, USA, 2018. [CrossRef]

9. Sanjay, B.; Rakshith, D.; Akash, R.; Hegde, V.V. An approach to detect fileless malware and defend its evasive mechanisms. In
Proceedings of the 2018 3rd International Conference on Computational Systems and Information Technology for Sustainable
Solutions (CSITSS), Bengaluru, India, 20–22 December 2018; pp. 234–239. [CrossRef]

10. Case, A.; Richard, G.G., III. Memory forensics: The path forward. Digit. Investig. 2016, 20, 23–33. [CrossRef]
11. Vömel, S.; Freiling, F.C. Correctness, atomicity, and integrity: Defining criteria for forensically-sound memory acquisition. Digit.

Investig. 2012, 9, 125–137. [CrossRef]
12. Pagani, F.; Fedorov, O.; Balzarotti, D. Introducing the Temporal Dimension to Memory Forensics. ACM Trans. Priv. Secur. 2019,

22, 8. [CrossRef]
13. Aljaedi, A.; Lindskog, D.; Zavarsky, P.; Ruhl, R.; Almari, F. Comparative Analysis of Volatile Memory Forensics: Live Response vs.

Memory Imaging. In Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011
IEEE Third International Conference on Social Computing, Boston, MA, USA, 9–11 October 2011; pp. 1253–1258. [CrossRef]

14. Stüttgen, J.; Cohen, M. Anti-forensic resilient memory acquisition. Digit. Investig. 2013, 10, S105–S115. [CrossRef]
15. Sylve, J. Lime-linux memory extractor. In Proceedings of the 7th ShmooCon Conference, Washington, D.C., USA, 2012.
16. Russinovich, M.; Richards, A. ProcDump v10.11. 2022. Available online: https://docs.microsoft.com/en-us/sysinternals/

downloads/procdump (accessed on 12 July 2022).
17. Safitri, C. A Study: Volatility Forensic on Hidden Files. Int. J. Sci. Res. 2013, 2, 71–75.
18. Volatility. Available online: https://github.com/volatilityfoundation/volatility (accessed on 12 July 2022).
19. GDB. Available online: https://www.sourceware.org/gdb/ (accessed on 12 July 2022).
20. WinDbg. Available online: https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/ (accessed on

12 July 2022).
21. Visual Studio. Available online: https://docs.microsoft.com/en-us/visualstudio/debugger/using-dump-files?view=vs-2022

(accessed on 12 July 2022).
22. VMWare. Available online: https://www.vmware.com/ (accessed on 12 July 2022).
23. LibVMI. Available online: https://github.com/libvmi/libvmi (accessed on 12 July 2022).
24. Martignoni, L.; Fattori, A.; Paleari, R.; Cavallaro, L. Live and Trustworthy Forensic Analysis of Commodity Production Systems.

In Recent Advances in Intrusion Detection; Jha, S.; Sommer, R.; Kreibich, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 297–316.

25. Yu, M.; Qi, Z.; Lin, Q.; Zhong, X.; Li, B.; Guan, H. Vis: Virtualization enhanced live forensics acquisition for native system. Digit.
Investig. 2012, 9, 22–33. [CrossRef]

26. Cheng, Y.; Fu, X.; Du, X.; Luo, B.; Guizani, M. A lightweight live memory forensic approach based on hardware virtualization.
Inf. Sci. 2017, 379, 23–41. [CrossRef]

27. Oleksiuk, D. Building Reliable SMM Backdoor for UEFI Based Platforms. 2015. Available online: http://blog.cr4.sh/2015/07/
building-reliable-smm-backdoor-for-uefi.html (accessed on 12 July 2022).

28. PCILeech. Available online: https://github.com/ufrisk/pcileech (accessed on 12 July 2022).
29. Inception. Available online: https://github.com/carmaa/inception (accessed on 12 July 2022).
30. Cox, G.; Yan, Z.; Bhattacharjee, A.; Ganapathy, V. Secure, Consistent, and High-Performance Memory Snapshotting. In

Proceedings of the CODASPY’18: Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy,
Tempe, AZ, USA, 19–21 March 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 236–247. [CrossRef]

31. Besler, F.; Willems, C.; Hund, R. Countering innovative sandbox evasion techniques used by malware. In Proceedings of the 29th
Annual FIRST Conference, San Juan, Puerto Rico, 11–16 June 2017.

32. Rekall. Available online: https://github.com/google/rekall (accessed on 12 July 2022).
33. Cellebrite Inspector. Available online: https://cellebrite.com/en/inspector/ (accessed on 12 July 2022).
34. FireEye Redline. https://www.fireeye.com/services/freeware/redline.html (accessed on 12 July 2022).
35. Magnet Axiom. Available online: https://www.magnetforensics.com/products/magnet-axiom/ (accessed on 12 July 2022).

https://www.globenewswire.com/news-release/2021/03/30/2201173/0/en/New-Research-Fileless-Malware-Attacks-Surge-by-900-and-Cryptominers-Make-a-Comeback-While-Ransomware-Attacks-Decline.html#:~:text=Among%20its%20most%20notable%20findings,in%202020%20compared%20to%202019
https://www.globenewswire.com/news-release/2021/03/30/2201173/0/en/New-Research-Fileless-Malware-Attacks-Surge-by-900-and-Cryptominers-Make-a-Comeback-While-Ransomware-Attacks-Decline.html#:~:text=Among%20its%20most%20notable%20findings,in%202020%20compared%20to%202019
https://www.globenewswire.com/news-release/2021/03/30/2201173/0/en/New-Research-Fileless-Malware-Attacks-Surge-by-900-and-Cryptominers-Make-a-Comeback-While-Ransomware-Attacks-Decline.html#:~:text=Among%20its%20most%20notable%20findings,in%202020%20compared%20to%202019
https://www.globenewswire.com/news-release/2021/03/30/2201173/0/en/New-Research-Fileless-Malware-Attacks-Surge-by-900-and-Cryptominers-Make-a-Comeback-While-Ransomware-Attacks-Decline.html#:~:text=Among%20its%20most%20notable%20findings,in%202020%20compared%20to%202019
http://doi.org/10.1016/j.diin.2019.01.001
http://dx.doi.org/10.1016/j.diin.2011.06.002
http://dx.doi.org/10.1145/3329786
http://dx.doi.org/10.1186/s42400-019-0043-x
http://dx.doi.org/10.1145/3230833.3232810
http://dx.doi.org/10.1109/CSITSS.2018.8768769
http://dx.doi.org/10.1016/j.diin.2016.12.004
http://dx.doi.org/10.1016/j.diin.2012.04.005
http://dx.doi.org/10.1145/3310355
http://dx.doi.org/10.1109/PASSAT/SocialCom.2011.68
http://dx.doi.org/10.1016/j.diin.2013.06.012
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://github.com/volatilityfoundation/volatility
https://www.sourceware.org/gdb/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/visualstudio/debugger/using-dump-files?view=vs-2022
https://www.vmware.com/
https://github.com/libvmi/libvmi
http://dx.doi.org/10.1016/j.diin.2012.04.002
http://dx.doi.org/10.1016/j.ins.2016.07.019
http://blog.cr4.sh/2015/07/building-reliable-smm-backdoor-for-uefi.html
http://blog.cr4.sh/2015/07/building-reliable-smm-backdoor-for-uefi.html
https://github.com/ufrisk/pcileech
https://github.com/carmaa/inception
http://dx.doi.org/10.1145/3176258.3176325
https://github.com/google/rekall
https://cellebrite.com/en/inspector/
https://www.fireeye.com/services/freeware/redline.html
https://www.magnetforensics.com/products/magnet-axiom/


J. Cybersecur. Priv. 2022, 2 571

36. WindowsSCOPE. http://www.windowsscope.com/windowsscope-cyber-forensics/.
37. Volatility Foundation. Available online: https://www.volatilityfoundation.org/ (accessed on 12 July 2022).
38. Volatility Community Plugins. Available online: https://github.com/volatilityfoundation/community (accessed on 12 July 2022).
39. Case, A.; Das, A.K.; Park, S.J.; Ramanujam, J.R.; Richard, G.G. Gaslight: A comprehensive fuzzing architecture for memory

forensics frameworks. Digit. Investig. 2017, 22, S86–S93. [CrossRef]
40. Meyers, C.; Ikuesan, A.R.; Venter, H.S. Automated RAM analysis mechanism for windows operating system for digital

investigation. In Proceedings of the 2017 IEEE Conference on Application, Information and Network Security (AINS), Miri,
Sarawak, Malaysia, 13–14 November 2017; pp. 85–90. [CrossRef]

41. Auty, M.; Case, A. Volatility 3 Public Beta: Insider’s Preview. In Proceedings of the OSDFCon 2019, Open Source Digital Forensics
Conference, Herndon, VA, USA, 15–17 October 2019.

42. Ligh, M.H.; Case, A.; Levy, J.; Walters, A. The Art of Memory Forensics: Detecting Malware and Threats in Windows, Linux, and Mac
Memory; John Wiley & Sons: Hoboken, NJ, USA, 2014.

43. Cohen, M. Forensic analysis of windows user space applications through heap allocations. In Proceedings of the 2015 IEEE
Symposium on Computers and Communication (ISCC), Larnaca, Cyprus, 6–9 July 2015; pp. 237–244. [CrossRef]

44. Available online: http://virustotal.github.io/yara/ (accessed on 12 July 2022).
45. Cohen, M. Scanning memory with Yara. Digit. Investig. 2017, 20, 34–43. [CrossRef]
46. Orgah, A.; Richard, G., III; Case, A. MemForC: Memory Forensics Corpus Creation for Malware Analysis. In Proceedings of the

International Conference on Cyber Warfare and Security, 25–26 February 2021; pp. 249–256.
47. Fowler, J.E. Compression of Virtual–Machine Memory in Dynamic Malware Analysis. J. Digit. Forensics Secur. Law 2017, 12, 9.

[CrossRef]
48. Brengel, M.; Rossow, C. MemScrimper: Time-and Space-Efficient Storage of Malware Sandbox Memory Dumps. In Proceedings

of the International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Saclay, France, 28–29
June 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 24–45.

49. Pendergrass, J.A.; Hull, N.; Clemens, J.; Helble, S.; Thober, M.; McGill, K.; Gregory, M.; Loscocco, P. Technical report: A toolkit for
runtime detection of userspace implants. arXiv 2019. arXiv:1904.12896.

50. Kruegel, C. Full system emulation: Achieving successful automated dynamic analysis of evasive malware. In Proceedings of the
BlackHat USA Security Conference, 2–7 Aug 2014, Las Vegas, NV, USA, 2014; pp. 1–7.

51. AnyRun. Available online: https://any.run/ (accessed on 12 July 2022).
52. CrowdStrike Falcon. Available online: https://www.crowdstrike.com/products/threat-intelligence/falcon-sandbox-malware-

analysis/ (accessed on 12 July 2022).
53. FireEye. Available online: https://www.fireeye.com/ (accessed on 12 July 2022).
54. Joe Security. Available online: https://www.joesecurity.org/ (accessed on 12 July 2022).
55. Palo Alto Wildfire. Available online: https://www.paloaltonetworks.com/products/secure-the-network/wildfire/ (accessed on

12 July 2022).
56. VirusTotal. Available online: https://www.virustotal.com/gui/ (accessed on 12 July 2022).
57. Cuckoo Sandbox. Available online: https://cuckoosandbox.org/ (accessed on 12 July 2022).
58. Drakvuf. Available online: https://drakvuf-sandbox.readthedocs.io/en/latest/ (accessed on 12 July 2022).
59. Sandboxie. Available online: https://github.com/sandboxie (accessed on 12 July 2022).
60. FireEye SpeakEasy. Available online: https://github.com/fireeye/speakeasy (accessed on 12 July 2022).
61. Murthaja, M.; Sahayanathan, B.; Munasinghe, A.; Uthayakumar, D.; Rupasinghe, L.; Senarathne, A. An Automated Tool for

Memory Forensics. In Proceedings of the 2019 International Conference on Advancements in Computing (ICAC), Malabe,
Sri Lanka, 5–6 December 2019; pp. 1–6. [CrossRef]

62. Mohaisen, A.; Alrawi, O.; Mohaisen, M. AMAL: High-fidelity, behavior-based automated malware analysis and classification.
Comput. Secur. 2015, 52, 251–266. [CrossRef]

63. Tien, C.W.; Liao, J.W.; Chang, S.C.; Kuo, S.Y. Memory forensics using virtual machine introspection for Malware analysis. In
Proceedings of the 2017 IEEE Conference on Dependable and Secure Computing, Taipei, Taiwan, 7–10 August 2017; pp. 518–519.
[CrossRef]

64. Afianian, A.; Niksefat, S.; Sadeghiyan, B.; Baptiste, D. Malware dynamic analysis evasion techniques: A survey. ACM Comput.
Surv. (CSUR) 2019, 52, 126. [CrossRef]

65. Yokoyama, A.; Ishii, K.; Tanabe, R.; Papa, Y.; Yoshioka, K.; Matsumoto, T.; Kasama, T.; Inoue, D.; Brengel, M.; Backes, M.; et al.
Sandprint: Fingerprinting malware sandboxes to provide intelligence for sandbox evasion. In Proceedings of the International
Symposium on Research in Attacks, Intrusions, and Defenses, Paris, France, 19–21 September 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 165–187. [CrossRef]

66. Chailytko, A.; Skuratovich, S. Defeating sandbox evasion: How to increase the successful emulation rate in your virtual
environment. In Proceedings of the ShmooCon 2017, Washington, DC, USA, 13–15 January 2017.

67. El Merabet, H.; Hajraoui, A. A survey of malware detection techniques based on machine learning. Int. J. Adv. Comput. Sci. Appl.
2019, 10, 366–373. [CrossRef]

68. Singh, J.; Singh, J. A survey on machine learning-based malware detection in executable files. J. Syst. Archit. 2020, 112, 101861.
[CrossRef]

http://www.windowsscope.com/windowsscope-cyber-forensics/
https://www.volatilityfoundation.org/
https://github.com/volatilityfoundation/community
http://dx.doi.org/10.1016/j.diin.2017.06.011
http://dx.doi.org/10.1109/AINS.2017.8270430
http://dx.doi.org/10.1109/ISCC.2015.7405522
http://virustotal.github.io/yara/
http://dx.doi.org/10.1016/j.diin.2017.02.005
http://dx.doi.org/10.15394/jdfsl.2017.1437
https://any.run/
https://www.crowdstrike.com/products/threat-intelligence/falcon-sandbox-malware-analysis/
https://www.crowdstrike.com/products/threat-intelligence/falcon-sandbox-malware-analysis/
https://www.fireeye.com/
https://www.joesecurity.org/
https://www.paloaltonetworks.com/products/secure-the-network/wildfire/
https://www.virustotal.com/gui/
https://cuckoosandbox.org/
https://drakvuf-sandbox.readthedocs.io/en/latest/
https://github.com/sandboxie
https://github.com/fireeye/speakeasy
http://dx.doi.org/10.1109/ICAC49085.2019.9103416
http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1109/DESEC.2017.8073871
http://dx.doi.org/10.1145/3365001
http://dx.doi.org/10.1007/978-3-319-45719-2_8
http://dx.doi.org/10.14569/IJACSA.2019.0100148
http://dx.doi.org/10.1016/j.sysarc.2020.101861


J. Cybersecur. Priv. 2022, 2 572

69. Souri, A.; Hosseini, R. A state-of-the-art survey of malware detection approaches using data mining techniques. Hum.-Centric
Comput. Inf. Sci. 2018, 8, 3. [CrossRef]

70. Shaukat, K.; Luo, S.; Varadharajan, V.; Hameed, I.A.; Xu, M. A Survey on Machine Learning Techniques for Cyber Security in the
Last Decade. IEEE Access 2020, 8, 222310–222354. [CrossRef]

71. Aghaeikheirabady, M.; Farshchi, S.M.R.; Shirazi, H. A new approach to malware detection by comparative analysis of data
structures in a memory image. In Proceedings of the 2014 International Congress on Technology, Communication and Knowledge
(ICTCK), Mashhad, Iran, 26–27 November 2014; pp. 1–4.

72. Arfeen, A.; Asim Khan, M.; Zafar, O.; Ahsan, U. Process based volatile memory forensics for ransomware detection. Concurr.
Comput. Pract. Exp. 2022, 34, e6672. [CrossRef]

73. Lashkari, A.H.; Li, B.; Carrier, T.L.; Kaur, G. VolMemLyzer: Volatile Memory Analyzer for Malware Classification using Feature
Engineering. In Proceedings of the 2021 Reconciling Data Analytics, Automation, Privacy, and Security: A Big Data Challenge
(RDAAPS), Hamilton, ON, Canada, 18–19 May 2021; pp. 1–8. [CrossRef]

74. Xu, Z.; Ray, S.; Subramanyan, P.; Malik, S. Malware detection using machine learning based analysis of virtual memory access
patterns. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland,
27–31 March 2017; pp. 169–174.

75. Bozkir, A.S.; Tahillioglu, E.; Aydos, M.; Kara, I. Catch them alive: A malware detection approach through memory forensics,
manifold learning and computer vision. Comput. Secur. 2021, 103, 102166. [CrossRef]

http://dx.doi.org/10.1186/s13673-018-0125-x
http://dx.doi.org/10.1109/ACCESS.2020.3041951
http://dx.doi.org/10.1002/cpe.6672
http://dx.doi.org/10.1109/RDAAPS48126.2021.9452028
http://dx.doi.org/10.1016/j.cose.2020.102166

	Introduction
	Contributions
	Threat to Validity
	Limitations

	Literature Review
	Memory Acquisition Literature
	Volatile Memory Analysis Literature

	Memory Acquisition
	Taxonomy
	Acquisition Techniques
	User Level
	Kernel Level
	Hypervisor Level
	System Management Level
	Asynchronous Device Level

	Discussion

	Memory Analysis
	Tooling
	Volatility
	Rekall
	Discussion

	Traditional Memory Forensic Approaches
	Scanning Methods
	Dynamic Analysis within a Sandbox

	Machine Learning Approaches
	Feature Engineering Approaches
	Computer Vision Approaches

	Discussion
	Future Work

	Conclusions
	References

