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Abstract: Geopolymer is an eco-friendly material used in civil engineering works. For geopolymer
concrete (GPC) preparation, waste fly ash (FA) and calcined clay (CC) together were used with
percentage variation from 5, 10, and 15. In the mix design for geopolymers, there is no systematic
methodology developed. In this study, the random forest regression method was used to forecast
compressive strength and split tensile strength. The input content involved were caustic soda with
12 M, 14 M, and 16 M; sodium silicate; coarse aggregate passing 20 mm and 10 mm sieve; crushed
stone dust; superplasticizer; curing temperature; curing time; added water; and retention time. The
standard age of 28 days was used, and a total of 35 samples with a target-specified compressive
strength of 30 MPa were prepared. In all, 20% of total data were trained, and 80% of data testing
was performed. Efficacy in terms of mean absolute error (MAE), root mean square error (RMSE),
coefficient of determination (R2), and MSE (mean squared error) is suggested in the model. The results
demonstrated that the RFR model is likely to predict GPC compressive strength (MAE = 1.85 MPa,
MSE = 0.05 MPa, RMSE = 2.61 MPa, and R2 = 0.93) and split tensile strength (MAE = 0.20 MPa,
MSE = 6.83 MPa, RMSE = 0.24 MPa, and R2 = 0.90) during training.

Keywords: fly ash; calcined clay; compressive strength; tensile strength; random forest regressor

1. Introduction

Fly ash (FA) is a byproduct of the thermal power plant electricity-generation pro-
cess [1]. It is carried by the burner gases and collected by using an electrostatic or mechani-
cal separation [2]. Davidovits, a French scientist, first proposed geopolymers. Geopolymer
technology is one of the potential alternatives for increasing the use of fly ash. Regarding
global warming, the alkaline-enabled geopolymer technology using fly ash not only has the
potential to substantially lower the carbon footprint of normal Portland cement concrete
but also has an enormous scope as a supplementary binder for applications in composite
manufacturing [3]. Efficient waste management is important to maintain a safe environ-
ment [4]. The mechanical properties of geopolymer concrete are dependent upon various
factors, including initial temperature required in curing temperature, curing time in hours,
the age of samples in days, percent of total volume aggregate, sodium hydroxide molarity
(M) solution, SiO2 solid % in sodium silicate, and superplasticizer (percent P) [5,6]. Because
of the porosity in the geopolymer network, the compressive strength is poor. Fly ash, how-
ever, needs little H2O and pushes maximal fill-up of particles to lower porous content due
to its round portion shape [7]. Calcined clay and fly ash were mixed and analyzed by roles
of the addition, reactiveness, strength due to compression, structural and microstructural
characteristics, and CC versus FA ratio. Na2SiO3/NaOH was synthesized as an activator
with 0, 25, 50, and 75% fly ash and calcined clay percentage in geopolymer mortar [8].
From the academic research, 357 data points were obtained, and the compressive strength
of high strength concrete was predicted by using an ensemble random forest (RF) and gene
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expression programming (GEP) algorithm. A proportioned blend trial mix requires us to
determine a specific response. However, engineers are now using mathematical models to
simulate a specific response to verify the prediction’s performance, such as linear regression,
neural networks (NN), or support vector regression (SVR). Since the relationship between
attributes and composite properties is strongly nonlinear, everything is achieved [9]. The
dataset provides data on cement ratio, silicate ratio, pulverized time, age of the specimen,
and strength due to compression. With an increasing number of trees in random forest
regression (RFR), the inaccuracy in predicting data beyond the test dataset decreases,
and after 600 tries, the inaccuracy would become steady and very reduced. With an R2

value of 0.89, the random forest model forecasted strength due to compression, using input
datasets obtained by laboratory experiments [10]. Cement/fly-ash-based high-performance
composite has 56 datasets. RFR was used to detect 28 days’ strength due to compression.
The RFR model and the back-propagation neural network (NN) model used a common
dataset to predict strength selection of functions with and without [11]. Ground granulated
blast furnace slag was gathered with 453 experimental samples, using the RFR model, to
calculate the strength due to compression of concrete, including GGBFS [12]. Rubberized
concrete (RC) is a cost-effective and eco-sustainable building material. There are a total
of 138 datasets collected from the literature. The present study suggested establishing the
connection between both the random forest (RF) and beetle antennae algorithm to search
the essential factors of random forest. The result analysis showed the beetle antennae
algorithm adjusted by RF. The correlation coefficient is strong in this case, as the proposed
random forest model can accurately predict rubberized concrete’s compressive strength
with a correlation coefficient of 0.96 [13]. Table 1 offers a brief description of previously
performed random forest regression studies. Fly-ash-and-calcined-clay-based geopolymer
composites have much less research.

Table 1. List of RFR-related literature reviews.

Reference Model Output Description

[7] RFR Compressive strength of cement

[8] RFR and Backpropagation
neural network

Strength due to compression of
cement/fly-ash-based

high-performance composite

[9] RFR and GEP Compressive strength of high
strength composite

[10] RFR Strength due to compression of
GGBFS composite.

[11] RFR
Strength due to compression of GGBFS

rubberized geopolymer composite
compressive strength

In the current study, 35 samples were gathered from experimental work. As FA and
CC are available as waste materials, they were mixed at varying proportions of 5%, 10%,
and 15%, along with different ingredients, such as coarse aggregate (passing 10 mm and
20 mm IS sieve), stone dust as fine aggregate, NaOH (12M, 14M, and 16M), Na2SiO3,
superplasticizer, and added water; and different curing temperatures were used, such as
ambient, 80 ◦C, and 100 ◦C, with different curing durations, such as 24 and 48 h. The actual
compressive strength obtained was predicted by using random forest regression. A total of
80% of samples were tested, and 20% of samples were trained by using RFR. The R square
value describes the acceptability of a model. This machine learning approach saves the cost
and time of tedious laboratory work.

2. Materials and Methods
2.1. Fly Ash

Fly ash following IS 3812-2003 specification was collected from Suratgarh thermal
power plant, Rajasthan. The particle density of the fly ash was 2250 kg/m3. The chemical
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composition of fly ash and % of the mass are mentioned in Table 2. The 5%, 10%, and
15% of fly ash were substituted with calcined clay. The physical properties of fly ash
were fineness retained on the 45-micron sieve; activity index test results lie between
80 and 86%, with a specification of minimum 75% at 28 days and 95–103% specification of
minimum 85% at 90 days. The particle size distribution of fly ash has a significant impact
on geopolymer concrete [14]. Raising the curing temperature has a beneficial compression-
strength influence. Because of the porosity in the geopolymer network, the compressive
strength declines.

Table 2. Chemical composition of fly ash and % of mass.

Component Composition

Silica 50–52.5
Alumina 28.5–30.5

Ferric oxide 2–3
Calcium oxide 6–9.5

Magnesium oxide 2–2.5
Potassium oxide <1

Na equivalent <1.5
Titanium dioxide 1.5–2.0

2.2. Calcined Clay

The calcined clay was prepared generally by burning the clay at 550 ◦C for one hour.
The mechanical activation was accomplished by milling the clay for 4 h in a ring mill. This
was bought from a place named Alwar in Rajasthan, India. It is obtained by calcining
clay at a higher temperature. Clay is available as a natural source in abundance in many
places. Calcined clay was used with 5%, 10%, and 15% variations of fly ash in geopolymer
concrete. The calcined clay was used in geopolymer mortar preparation in one study, but
no study was found using it in geopolymer concrete [14].

2.3. Sodium Silicate Solution

Na2SiO3 is called water glass, and it is also accessible as a gel. The ratio of SiO2 to
Na2O in this study was 1.95 to 2.3. It was obtained from the market in liquid solution
form. The chemical composition of it was Na2O 13.5%, SiO2 33%, and water. The chemical
composition can be seen in Table 3.

Table 3. Percentage mass composition of chemical compounds of sodium silicate activator.

Component SiO2 Water Na2O

Composition 33 53.5 13.5

2.4. Sodium Hydroxide

Sodium hydroxide was purchased from the local market from Bhiwadi (Rajasthan) in
solid-chip form. It was mixed with drinking water to obtain 12 M, 14 M, and 16 M of NaOH
solution. By blending calcined clay and fly ash with the alkaline agent, the geopolymers
pastes were prepared. The activator’s alkalinity was adjusted by mixing it with different
molarity sodium hydroxide.

2.5. Superplasticizer

Polycarboxylate ether was used as a superplasticizer. Its amount was kept as 1% of
the total amount of fly ash.
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2.6. Aggregate
2.6.1. Fine Aggregate/Crushed Stone Dust

There is a ban on sand, and its availability is very costly, so sand was replaced by
stone crusher dust. Stone dust was available in abundance in nearby places in Rajasthan,
and it was abundantly used in concrete. Thus, the same stone crusher dust was used in
geopolymer concrete. This is following IS 383 specifications. Table 4 shows the physical
properties of stone dust.

Table 4. Physical characteristics of the stone dust.

Serial No. Property Natural Sand Stone Dust IS Codes

1 Specific Gravity 2.6 2.53–2.68 IS2386(Part III)-1963
2 Bulk Density 1460 1710–1850 IS2386(Part III)-1963
3 Absorption nil 1.2–1.5 IS2386(Part III)-1963

4 Moisture
Content 1.5 nil IS2386(Part III)-1963

5 Sieve Analysis Zone II Zone II IS 383-1970

2.6.2. Coarse Aggregate

Locally available aggregate varying from 10 to 20 mm in size was used as aggregate.

2.7. Sample Preparation and Testing Method

First, 12M, 14M, and 16M of NaOH solution were prepared one day before use by
dissolving solid caustic soda in water. The prepared sodium oxide solution was then mixed
with sodium silicate solution to prepare an alkaline activator. The alkaline activator ratio
was kept at 2.5. To obtain a uniform mix, all the dry ingredients, such as fly ash, calcined
clay, stone dust, and aggregate, were mixed for 3 min, as mentioned in Table 5, before
adding an alkaline activator. Later, the alkaline activator and superplasticizer and required
amount of water were added to the dry mixture and rotated in the concrete mixture for
two minutes. After preparing the geopolymer concrete mixture, it was poured into a
100 mm cube mold to test the compressive strength and tensile strength. All concrete-filled
specimens were kept for drying at room temperature for a day. Then the samples were
removed from the mold and kept for curing at different temperatures. The geopolymer
concrete was prepared with a 5–15% variation of fly ash with calcined clay. The prepared
samples were then cured at ambient temperature, 80 ◦C, and 100 ◦C for 24 and 48 h. Thus,
heat-cured samples were removed from the oven after 24 and 48 h and kept at room
temperature. Then 28-day compressive strength and the 28-day tensile strength were
found. The slump of above-prepared concrete was also found.

Table 5. Description of mix proportions for different FA–CC-based geopolymer concrete.

Samples FA (%) CC (%) NaOH
(M)

Temperature
Curing (◦C)

Duration of
Curing

(h)

Aging Time
(days)

Added
Water

5C1FA 95 5 12 30 24 28 56.92
5C2FA 95 5 12 80 24 28 56.92
5C3FA 95 5 12 80 48 28 56.92
5C4FA 5 5 12 100 24 28 56.92
5C5FA 95 5 12 100 48 28 56.92
5C6FA 95 5 14 30 24 28 39.5
5C7FA 95 5 14 80 24 28 39.5
5C8FA 95 5 14 80 48 28 39.5
5C9FA 95 5 14 100 24 28 39.5
5C10FA 95 5 14 100 48 28 39.5
5C11FA 95 5 16 30 24 28 47.36
5C12FA 95 5 16 80 24 28 47.36
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Table 5. Cont.

Samples FA (%) CC (%) NaOH
(M)

Temperature
Curing (◦C)

Duration of
Curing

(h)

Aging Time
(days)

Added
Water

5C13FA 95 5 16 80 48 28 47.36
5C14FA 95 5 16 100 24 28 47.36
5C15FA 95 5 16 100 48 28 47.36
10C1FA 90 10 12 30 24 28 59.2
10C2FA 90 10 12 80 24 28 59.2
10C3FA 90 10 12 80 48 28 59.2
10C4FA 90 10 12 100 24 28 59.2
10C5FA 90 10 12 100 48 28 59.2
10C6FA 90 10 14 30 24 28 49.3
10C7FA 90 10 14 80 24 28 49.3
10C8FA 90 10 14 80 48 28 49.3
10C9FA 90 10 14 100 24 28 49.3

10C10FA 90 10 14 100 48 28 49.3
15C1FA 85 15 14 30 24 28 45.3
15C2FA 85 15 14 80 24 28 45.3
15C3FA 85 15 14 80 48 28 45.3
15C4FA 85 15 14 100 24 28 45.3
15C5FA 85 15 14 100 48 28 45.3
15C6FA 85 15 16 30 24 28 51.3
15C7FA 85 15 16 80 24 28 51.3
15C8FA 85 15 16 80 48 28 51.3
15C9FA 85 15 16 100 24 28 51.3

15C10FA 85 15 16 100 48 28 51.3

Abbreviations: FA, fly ash; CC, calcined clay; NaOH, sodium hydroxide.

3. Modeling Technique

A prediction of the compression strength and tensile strength of the fly ash–calcined
clay geopolymer composites was performed with random forest regression in the current
study. The following are briefly described.

3.1. Random Forest Research (RFR)

Ho [15] was the first to develop the general method of random decision forest in 1995.
Leo Breiman [16] created an extension of the algorithm. The term “random forest” refers to
a collection of decision tree algorithms. As a classifier, the random forest algorithm consists
of two phases, one is a selection of the feature, and the other is classification. Random
forest (RF) is a group classifications used to increase precision. There are many decision-
making trees in the random forest. In comparison to traditional classification algorithms,
random forests have low ranking errors. Minimum size and number of trees, nodes,
and characteristics are used to split each node [17]. Random forest is a non-parametric
method derived from classification and regression trees. RF includes a mixture of several
trees, where each bootstrap sample is generated for every tree, having left around one-
third of the total validation sample. A random subset of the determinants at every node
is used to determine each split of the tree. The result is that all trees have averaged
results [18]. Random forest is a machine learning approach governed by a group that has
just evolved [19]. The toughness of an independent decision tree and the relationships
between base trees are important elements in determining the random forest classifier’s
generalization error [16]. In this way, research has been conducted to attempt to restrain the
decision trees and discover the best subset of the random forest. Random forest trimming
will result in a productive random forest regression for training, as well as testing. Because
of bootstrap samples and, in particular, randomized classification techniques at every level
of the tree, the random forest produces good results [20].
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3.2. Projected Approach/Proposed Strategy

Figure 1 depicts the methodological approach for our suggested method.
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Figure 1. Experimental setup of fly-ash/calcined-clay-based geopolymer concrete.

Data Collection

Experimental data on calcined clay and fly ash were collected from laboratory work.
A total of 35 datasets were prepared from an experimental approach. Out of 35 datasets,
28 were trained on the random forest model, and the testing of 7 datasets was conducted.
Figure 2 well explain the procedure of collected data modeling. The following Algorithm 1
is our proposed work.

Algorithm 1 Random forest modeling.

Input-Calcined clay, fly ash geopolymer concrete dataset.
Output-Strength due to compression and tension of FACC based geopolymer composite.

Stage-by-stage procedure of RFR modeling:
Stage 1: Data loading.
Stage 2: Use a preprocessing method.
Stage 3: Divide the dataset into training and test categories.
Stage 4: Random forest is used to train on the dataset.
Stage 5: For classification, the test dataset is supplied into a random forest.
Stage 6: Calculate the accuracy, errors, and precision.
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3.3. Analysis of Model Performance

Different metrics were used to demonstrate the feasibility of each prototype and to
analyze the performance. Every other indicator has the formula of deducting the model’s
performance. The commonly used metrics include root mean square error (RMSE), mean
absolute error (MAE), mean squared error (MSE), and R2. These factors are described
below in mathematical terms.

MAE =
1
n

n

∑
i=1
|xi − x| (1)

MSE =
1
n

n

∑
i=1

(
ypred − yre f

)2
(2)

RMSE =

√√√√
∑

(
ypred − yre f

)2

n
(3)

R2 = 1−
Yn − Ypred

Yn − Ymean
(4)

where n was the total number of datasets, x and yref were reference values in the dataset,
and xi and ypred were predicted values of models. The performance of the model was also
assessed in this paper by using the coefficient of determination (R2). The reflective practice
that reveals the connection between experimental and expected outputs was the value
obtained through the model [21].

4. Results and Discussion

The prediction efficiency of the developed random forest regressor models was as-
sessed in by utilizing training and testing datasets. The training set was utilized to evaluate
the design and model parameters. The test dataset, on the other hand, was used only if the
succeeding regressor had been defined to assess the model’s quality.

(1) Tables 6–9 illustrate the results of the various statistical metrics of the models for
both the training and testing phases, based on the projected values for compressive
strength and split tensile strength.

(2) In the case of compressive strength RFR, the R2 was determined to be 0.93 in the train-
ing dataset. Similarly, the R2 was obtained as 0.58 in the testing phase. Furthermore,
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RFR was shown to have the best value among the statistical measures used in testing
as (MSE = 10.41, RMSE = 3.22, MAE = 3.07). The RFR model excels at capturing the
nonlinear interactions between geopolymer mix design proportions and temperatures
with compressive strength, which could explain its supremacy. Consequently, since
it relies on empirical analytical evaluations, it may be inferred that the RFR model
produced the desired results [8,22].

(3) The R2, MAE, and RMSE of the predicted values, using the RFR, were also calcu-
lated [23]. For split tensile strength the training dataset, MSE, RMSE, R2, and MAE
values were 0.88, 0.25, 0.88, and 0.0256, respectively. Using the RFR technique, calcu-
late the R2, MAE, and RMSE of the anticipated values [24]. This research could help
engineers choose optimal supervised learning models and parameters for geopoly-
mer concrete manufacturing. This graph suggests that employing the RFR model
could be beneficial. To forecast the strength due to compression of geopolymer con-
crete at various temperatures, 12 input variables are sufficient and have reasonable
precision. Using a set of 12 input variables could be justified and useful for practi-
cal and engineering applications, according to the findings. R2 is regarded as very
weak, low, medium, or strong if ranges as >0.3, 0.3 < r < 0.5, 0.5 < r < 0.7, or r > 0.7,
respectively [25].

(4) The highest R2 score and the fewest other errors have shown some positive results
with appropriate dimensions [26]. Figure 3, has an R2 score of 0.93, which show
that model is highly trained.The mean MSE for RFR is 6.35 and 5.803 for training
and testing data. The predictive precision and widespread potential of the RFR are
high [11]. There is a loss of training and testing data that can be sorted when the
model is taught from an enormous dataset. For MAE, the average MAE is 1.826 and
2.288 for training and testing. Losses are not so much in training as they are in testing
data [27].

(5) Figures 4 and 5 show a graphical representation of experiment value (actual) and
projected strength due to compression of fly-ash, calcined-clay-based geopolymer
concrete at various temperatures, using RFR supervised learning algorithms for the
training and testing phases. These data show that RFR models performed as per
training and testing in forecasting geopolymer concrete compressive strength at
various temperatures in terms of statistical performance.

(6) Supervised learning models, such as other artificial intelligence systems, have a lim-
ited range of scope and are heavily case-dependent. As a result, their generalizability
is constrained, and therefore can only be used with a limited collection of trained
data. Moreover, in contrast to other models, the created RFR model is capable of
correctly and effectively predicting the compressive strength at varying temperatures.
However, as the latest data arrive, this model can be adjusted to perform better.

Table 6. The training phase (compressive strength) with available RFR models’ yielded statistical
data from the applied prediction models.

Model
Results of Training Performance

MSE RMSE R2 MAE

RFR 6.83 2.61 0.93 1.85

Table 7. The testing phase (compressive strength) with available RFR models’ yielded statistical data
from the applied prediction models.

Model
Results of Testing Performance

MSE RMSE R2 MAE

RFR 10.41 3.23 0.58 3.07
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of fly-ash, calcined-clay-based geopolymer concrete.

Table 8. The training phase (split tensile strength) with available RFR models’ yielded statistical data
from the applied prediction models.

Model
Results of Training Performance

MSE RMSE R2 MAE

RFR 0.065 0.256 0.88 0.213

Table 9. The testing phase (split tensile strength) with available RFR models’ yielded statistical data
from the applied prediction models.

Model
Results of Testing Performance

MSE RMSE R2 MAE

RFR 0.28 0.53 0.57 0.36

5. Conclusions

1. In this work, RFR was used to predict the compressive strength at ambient temper-
ature, 80 ◦C, and 100 ◦C curing temperature for 24 and 48 h. The best result was
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shown by FACC geopolymer concrete for 5% calcined clay and 12 M NaOH solution
at 100 ◦C for 48 h curing.

2. The RFR model’s predictive skills were evaluated by using statistical measure criteria,
such as R2, MAE, and RMSE. The R2 value comes out to be 0.58 for the testing phase
of RFR, which is an acceptable value of the coefficient of correlation. The training
results of R2 as 0.935 are also good for 28 days of compressive strength.

3. The findings of the testing phase demonstrated that the supervised learning models
developed in this work were successful in predicting geopolymer concrete compres-
sive strength at various ranges of temperature. This paper predicted 28 days of
compressive and tensile strength.

4. Statistics research reveals that the RFR model is effective. Correctness is improved by
reducing the erroneous gap between the actual and forecasted parameters. Various
metrics, such as MAE, RMSE, R2, and MSE, were the deciding parameters.

5. As a result, the use of RFR in the domain of forecasting compressive strength at
various temperatures as an alternative to destructive testing methods is reasonable
and can be considered as a viable option, and the same is applied to tensile strength.

6. Due to the addition of weak classifiers (decision tree), random forest is an ensemble
strategy that delivers a consistent performance between observed and forecasted
values and gives the coefficient of determination R2 as 0.58.
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Abbreviation
Designation Full Form
FACC fly ash calcined clay
RFR random forest regressor
NaOH sodium hydroxide
Na2SiO3 sodium silicate
GEP genetic-algorithm-based
RMSE root mean square error
MAE mean absolute error
R2 coefficient of correlation
MSE mean squared error
GGBFs ground granulated blast furnace slag
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