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Abstract: Skeletal muscle mass reduction might be a consequence of aging (sarcopenia),
disease (cachexia) or inactivity (muscle atrophy). Studying the triggering factors leading to muscle
loss is important in developing therapies to preserve muscle tissue function. The loss of skeletal
muscle proteins is caused by an imbalance between the rate of their synthesis and degradation.
Specifically, the conditions characterized by muscle loss involve an adaptation metabolism of
increased protein degradation (cachexia), decreased muscle protein synthesis (inactivity), or alteration
in both (sarcopenia). Sarcopenia and exercise is the main topic chosen for this review. This is a huge
health problem, poorly discussed in the current literature and the aim of this review is to explain and
help readers to better understand the differences between “sarcopenia”, “cachexia”, “muscle atrophy”
and the relative beneficial effects of exercise used as a possible therapeutic intervention. Sarcopenia
is a component of the fragility syndrome and indicates a significant health issue related to the
progressive decline of muscle tissue quality and strength. Exercise is associated with improved life
quality, reduced health problems, and prolonged lifespan. The latter suggests that exercise should
be considered a fundamental point in the treatment of pathological skeletal muscle mass reduction.
The present scientific contribution also seeks to emphasize to the scientific community the positive
effects of the adapted physical activity in the elderly as a possible non-pharmacologic treatment to
prevent or treat muscle atrophy.

Keywords: exercise; sarcopenia; muscle atrophy; cachexia; whole-body vibration; neuromuscular
adaptations; nutrition; apoptosis; denervation

1. Introduction

Aging is a physiological process, characterized by a decline in all physical functions leading to an
impaired quality of life. Skeletal muscle mass decline occurring with aging is known as sarcopenia.
However, not only the quantity, but the quality of muscle tissue should also be considered as a crucial
factor [1]. Aging determines a decline in muscle force due to a progressive increase of catabolism and
decrease in anabolism. These physiological events are also due to the reduced muscle regeneration
ability. Indeed, the unbalanced turnover of muscle protein and tissue remodeling are associated with
impaired muscle cell recruitment and cell death [1,2]. Muscle aging is a multifactorial irreversible
process associated with significant decline in muscle mass and functions [3]. One of the most efficient
methods to counteract age-related alterations in muscle tissue is represented by physical exercise.
An alternative intervention to improve muscle structure and performance is electrical or mechanical
stimulation. The present scientific contribution would like to emphasize to the scientific community the
positive effects of adapted physical activity in the elderly as a possible non-pharmacologic treatment
to prevent or treat muscle atrophy.
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2. Sarcopenia

Skeletal muscle mass reduction occurs during several conditions such as: aging “sarcopenia”,
disease “cachexia” or inactivity “muscle atrophy”. During skeletal development, the muscle fibers
grow in size and number, manifesting greater body size and strength. Muscle fiber number and/or
size decrease with age, disuse and illness and this is associated with a corresponding decrease in
muscle capacity to generate strength. In the case of muscular atrophy following disuse, the size of
muscle fibers can be restored over time through physical activity. Loss of muscle strength and mass
following illness or sarcopenia is particularly problematic since the quality of muscle fiber is not
so easily recoverable in these cases, producing greater fragility that tends to worsen the pathologic
condition in elderly people and those suffering from chronic illnesses.

Sarcopenia is a loss of muscle mass linked to age that is responsible for the decline in muscle
strength. It forms the main factor in the pathogenesis of fragility [4]. Older people with sarcopenia
exhibit a reduced body mass and muscular strength. There is also accumulation of fat in the muscle,
called myosteatosis, that causes a decrease in muscle strength leading to functional dysfunction and
physical disability [5]. Unlike this condition, obese people often have a body fat percentage greater
than normal people. These people can become fragile if they do not exercise properly and develop
disabilities [6]. Muscle tissue is not static. It shows a continuous process of atrophy and hypertrophy.
It is a cyclical process of death and renewal. Muscle proteins undergo degradation when developing,
leading to atrophy [7]. Cells are also subject to apoptosis [1]. However, there are cell renewals after the
integration of amino acids. This causes the synthesis of proteins leading to muscular hypertrophy [7].
There is also stimulation of stem cells that lead to the production of satellite cells capable of repairing
damaged muscles [4]. Food intake should be adequate to maintain proper muscle function. Protein
and creatine play an important role for muscle disorders [8]. The motor units decrease with the
advancement of age. There is a decrease in neutrophilic ciliary factor levels and this is associated
with decreased muscle strength [6]. High levels of cytokines, such as tumor necrosis factor (TNF)-α
and interleukin (IL)-6, are associated with a reduction in muscle fiber strength [8]. Muscle strength
decreases in different disorders (Table 1) such as diabetes mellitus. Muscle renewal is affected by the
development of atherosclerosis as it causes a drop in blood supply to the muscle. Older people can
become fragile. Frailty refers to a condition in which a person exhibits reduced ability to undertake
essential social activities of daily life in less stressful environmental situations. There is a reduction in
the reserves in the physiological function of different organs of the body to carry out important daily
activities and to maintain adequate homeostasis [9]. In this context, any minor disease or adverse drug
effects involve an unbalanced loss of function, an increased risk of disability and an increased risk
of death for the effects of a stressor. It should be noted that such a quantity of stress does not cause
disturbance in a physically fit person of the same age and sex [10]. Disadvantaged people may develop
functional decline and disability following exposure to stressors such as an infection, death, and death
of a spouse or the addition of a new drug to the treatment routine. These individuals do not have the
resources to respond and maintain proper homeostasis. The same stresses cause small disturbances
in a suitable person of the same age. Many different body systems become dislocated on anatomical,
molecular and physiological levels when people get older [11]. Some of these systemic changes are
more apparent in people who are psychophysically fragile. Studies have linked fragility to increased
inflammation and blood clotting activity. There is a decline in humoral and cell-mediated immunity
with age advancement [11]. There is also overexpression of cytokines, decreased levels of hormones,
loss of muscle mass, muscle strength or sarcopenia [12].

Sarcopenia is a natural consequence of aging. Studies demonstrated that this process may be
slowed down, interrupted and even inverted [13]. Although atrophy, cachexia and sarcopenia share a
common feature in muscle loss, there are distinct differences in the biochemical processes that promote
them. Sarcopenia is characterized by a muscle fiber loss in size and number [14–17]. In muscle atrophy,
the fiber size is reduced but the fiber number is maintained [18] and characterized by a transition trend
of type I fiber to type II [19,20]. The tissue loss in cachexia involves both fatty and skeletal muscle
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tissues [21]. The loss of muscle tissue is mainly directed towards type II fibers [22], while congestive
heart failure tends to degrade contractile type I or IIA fibers [23,24]. In each of these conditions (aging,
disuse and cachexia), atrophy and weakness are generated, however, it is difficult to separate them
due to corresponding signaling systems.

Table 1. Possible diseases associated with sarcopenia.

Presence of angiotensin-converting enzyme D allele
Age-related loss of muscle fiber
Atherosclerosis
Diabetes mellitus
Decreased physical activity
Obesity in some individuals
Decreased food intake including protein and creatine
Decreased testosterone level
Decreased intake of vitamin D
Decreased insulin-like growth factor-1
Mechano-growth factor
Increased cytokines (tumor necrosis factor-α, interleukin-6)
Decreased motor unit acuity with a decrease in ciliary neurotrophic factor
Loss of muscle mass and strength
Overexpression of myostatin, a transforming growth factor
Fracture with low bone mass, or both
Osteoporosis and Osteoarthritis
Cancer
Cardiorespiratory and dismetabolic disorders
Chronic kidney disease
Chronic liver disease
Malnutrition
Amyotrophic lateral sclerosis
Atherosclerosis
Anorexia
Primary depression
Malabsorption
Hyperthyroidism
Inflammation
Insulin resistance

Sarcopenia, as described by the European Working Group on Sarcopenia in 2010, is a progressive
and generalized loss of the skeletal muscle mass and function [25]. Evans [26] adds that sarcopenia
is age-related and is a different condition than cachexia. Although atrophy is considered the source
of the resulting functional loss, some researchers believe that loss of muscle function cannot be fully
explained by impressive atrophy [27–29]. In any case, the phenomenon of sarcopenia has devastating
consequences for older populations because they experience loss of muscle mass and strength to the
point of losing their independence.

Even if the term sarcopenia started to be used to define the muscle mass decline occurring with
aging, today it is also associated with the severity of muscle atrophy, which is not necessarily linked to
aging [30,31]. Indeed, the muscle mass decline due to several pathological conditions such as cirrhosis,
cardiovascular and cardiorespiratory diseases, HIV infection, dismetabolic problems, ovariectomy,
and cancer, is described by the term sarcopenia in several papers present in literature [32–34].
Perhaps the biggest concern for this point regards the consideration of whether muscle atrophy
may be the result of processes which are distinct from aging.

Some authors use the histological analysis of aging muscle to differentiate the sarcopenia of aging
from other causes of muscle atrophy, even if in these last cases it is described as sarcopenia [35]. It is
interesting to note that several morphological features of sarcopenia (Figure 1) are similar to the ones
observable in muscle with sporadic denervation, like in amyotrophic lateral sclerosis [36].
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Figure. 1. (A) Hematoxylin & Eosin staining in order to highlight possible structural alterations in 
muscle tissue from young, healthy Wistar Rats. Muscle fibers of young healthy rat did not show any 
damaged histological structure. The samples were examined with a Zeiss Axioplan light microscope 
(Carl Zeiss, Oberkochen, Germany) and a digital camera (AxioCam MRc5, Carl Zeiss) was used to 
take the pictures. Lens magnification: 20×. Scale bars: 50 µm; (B) Morphometric analysis of the 
perimeter (µm) (mean ± SD) of the muscle fibers from young healthy Wistar Rats. In the morphometric 
analysis of the perimeter (µm) (mean ± SD) of the muscle fibers, the young healthy rat shows normal 
muscle trophic. The perimeter of muscle fibers was considered and calculated using software for 
image acquisition (AxioVision Release 4.8.2-SP2 Software, Carl Zeiss Microscopy GmbH, Jena, 
Germany). Lens magnification: 20×. Scale bars: 50 µm; (C) Hematoxylin & Eosin staining in order to 
highlight possible structural alterations in muscle tissue from elderly Wistar Rats. Muscle fibers of 
elderly rat show damaged histological structure as focal perimisio fibrosis. The samples were 
examined with a Zeiss Axioplan light microscope (Carl Zeiss, Oberkochen, Germany) and a digital 
camera (AxioCam MRc5, Carl Zeiss) was used to take the pictures. Lens magnification: 20×. Scale bars: 
50 µm; (D) Morphometric analysis of the perimeter (µm) (mean ± SD) of the muscle fibers from elderly 
Wistar Rats. In the morphometric analysis of the perimeter (µm) (mean ± SD) of the muscle fibers, the 
elderly rat shows a highly significant muscle fiber hypotrophy and exhibits remarkable fiber size 
heterogeneity. The perimeter of muscle fibers was considered and calculated using software for image 
acquisition (AxioVision Release 4.8.2-SP2 Software, Carl Zeiss Microscopy GmbH, Jena, Germany). 
Lens magnification: 20×. Scale bars: 50 µm. 

The existing evidence strongly implicates sporadic and repeating cycles of denervation-
reinnervation in the histopathology of aging muscle, including fiber size heterogeneity, fiber type 
grouping, and coexpression of myosin heavy chain (MHC). Such alterations differentiate sarcopenia 
from cancer cachexia and may also be distinct from other clinical conditions where aging is not the 
cause of muscle atrophy but which are currently using the term sarcopenia. Sarcopenia has been 
initially defined as the decrease of muscle mass and function during aging. Hepple et al. [35] indicate 
that this definition has been extended to muscle atrophy conditions such as malnutrition or acute 
catabolic states (ACS) like sepsis and cancer. Sarcopenia is not the result of pathology and has been 
reported among well-nourished, healthy, physically active elderly subjects [37]. The slow erosion of 
muscle mass during aging is partly explained by a lower sensitivity of muscle anabolism to meal 
intake [38]. Therefore, the approaches used for limiting muscle loss during aging are probably not 

Figure 1. (A) Hematoxylin & Eosin staining in order to highlight possible structural alterations in
muscle tissue from young, healthy Wistar Rats. Muscle fibers of young healthy rat did not show any
damaged histological structure. The samples were examined with a Zeiss Axioplan light microscope
(Carl Zeiss, Oberkochen, Germany) and a digital camera (AxioCam MRc5, Carl Zeiss) was used to
take the pictures. Lens magnification: 20×. Scale bars: 50 µm; (B) Morphometric analysis of the
perimeter (µm) (mean ± SD) of the muscle fibers from young healthy Wistar Rats. In the morphometric
analysis of the perimeter (µm) (mean ± SD) of the muscle fibers, the young healthy rat shows normal
muscle trophic. The perimeter of muscle fibers was considered and calculated using software for image
acquisition (AxioVision Release 4.8.2-SP2 Software, Carl Zeiss Microscopy GmbH, Jena, Germany).
Lens magnification: 20×. Scale bars: 50 µm; (C) Hematoxylin & Eosin staining in order to highlight
possible structural alterations in muscle tissue from elderly Wistar Rats. Muscle fibers of elderly
rat show damaged histological structure as focal perimisio fibrosis. The samples were examined
with a Zeiss Axioplan light microscope (Carl Zeiss, Oberkochen, Germany) and a digital camera
(AxioCam MRc5, Carl Zeiss) was used to take the pictures. Lens magnification: 20×. Scale bars:
50 µm; (D) Morphometric analysis of the perimeter (µm) (mean ± SD) of the muscle fibers from elderly
Wistar Rats. In the morphometric analysis of the perimeter (µm) (mean ± SD) of the muscle fibers,
the elderly rat shows a highly significant muscle fiber hypotrophy and exhibits remarkable fiber size
heterogeneity. The perimeter of muscle fibers was considered and calculated using software for image
acquisition (AxioVision Release 4.8.2-SP2 Software, Carl Zeiss Microscopy GmbH, Jena, Germany).
Lens magnification: 20×. Scale bars: 50 µm.

The existing evidence strongly implicates sporadic and repeating cycles of denervation-
reinnervation in the histopathology of aging muscle, including fiber size heterogeneity, fiber type
grouping, and coexpression of myosin heavy chain (MHC). Such alterations differentiate sarcopenia
from cancer cachexia and may also be distinct from other clinical conditions where aging is not the
cause of muscle atrophy but which are currently using the term sarcopenia. Sarcopenia has been
initially defined as the decrease of muscle mass and function during aging. Hepple et al. [35] indicate
that this definition has been extended to muscle atrophy conditions such as malnutrition or acute
catabolic states (ACS) like sepsis and cancer. Sarcopenia is not the result of pathology and has been
reported among well-nourished, healthy, physically active elderly subjects [37]. The slow erosion
of muscle mass during aging is partly explained by a lower sensitivity of muscle anabolism to meal
intake [38]. Therefore, the approaches used for limiting muscle loss during aging are probably not
the same used in ACS due to the slow kinetics involved and differences in related mechanisms.
Sarcopenia is a fragility syndrome constituent. It is often a constituent of cachexia as well. It can also
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exist independently of cachexia; while cachexia includes sickness and is secondary to an underlying
disease (like cancer), sarcopenia can occur in healthy people and does not necessarily include sickness.
In summary, whereas cachexia or muscle atrophy may be a component of sarcopenia, these conditions
are not the same, and for this reason the term “sarcopenia” should be used to indicate the age-related
alterations of muscle mass and function.

3. Exercise

Absence of exercise is considered a significant risk factor for sarcopenia [38]. Master class
athletes, who continue to compete for their entire adult life show a progressive loss of muscle mass
and strength and performances in speed and force events progressively decrease after age 30 [39].
Top class athletes maintain a high level of fitness throughout their lifetime. Even among the master
athletes, the performance of marathon runners and weightlifters decreases after about 40 years of age,
with peak performance rates of about 50% for 80 years of age [40]. However, a gradual loss of muscle
fibers begins at about 50 years of age [40]. Exercise is very important in the treatment of sarcopenia;
the test indicates superior skeletal muscle capacity and ability to synthesize proteins in response to
short-term resistance exercise [40]. Diminished physical activity occurring with aging may contribute
to age-related sarcopenia. The relationship between skeletal muscle mass and level of physical activity
is complex. Reduction in physical activity alters body composition in different ways; muscle mass
decreases while fat mass increases [41]. Cachexia constitutes a complex metabolic syndrome that is
interrelated to the underlying disease and features loss of muscle with or without loss of fat mass.
The most evident clinical feature is weight loss in adults or growth failure in children [42]. In order
to avoid the muscle loss associated with sarcopenia and cachexia, numerous interventions such as
pharmacological, non-pharmacological and nutritional ones have been used, but most with limited
efficacy [43]. An alternative clinical intervention that may provide the most benefits is the exercise
“Exercise is Medicine”. Indeed, a major contributor to muscle wasting in cachexia and sarcopenia
is related to the reduced physical activity, frequently associated with chronic disease and age [44].
Increasing physical activity may slow, prevent, or even reverse muscle loss. However, it should also be
noted that physical inactivity is only one component acting to reduce muscle mass in cachexia and
sarcopenia, with exercise training further able to target numerous pathologies and relative morbidities
(Table 1). Exercise training is associated with improved quality of life, reduced hospitalizations and
health problems, and prolonged lifespan, suggesting that exercise should be considered a milestone in
the treatment of skeletal muscle wasting [45].

Studies indicate that older adults who are less physically active are more likely to have lower
skeletal muscle mass and strength and have an increased risk of developing sarcopenia [46]. Resistance
exercise (RE) promotes positive functional and structural adaptive responses and is a promising
tool in the treatment of sarcopenia. There is evidence showing that RE improves muscle strength
among older adults, predominantly with higher intensity training. Great results have also been
obtained by using different types of RE, such as flywheel, vascular occlusion, dynamic, isometric,
and eccentric [47]. The morphological and functional adaptations to RE include skeletal muscles and
nerves, muscle architecture and composition, and myofibrillar proteins accumulation [48]. RE induces
a muscle activation and relative signaling events starting from immune/inflammatory responses,
hormones and growth factors release, satellite cells proliferation and muscle fiber hypertrophy.
Therefore, manipulations of RE training conditions, such as exercise choice, load, volume, rest period,
lengths and exercise order, can modify the downstream cellular and molecular responses [49].

Other physical activities such as aerobic exercise (biking, running, walking, swimming),
can enhance the effects of RE on skeletal muscle tissue [50]. Although aerobic exercise can more likely
increase the cross-sectional area of muscle fibers, it is less likely to contribute to muscle hypertrophy.
Aerobic exercise training (AET) affects skeletal muscle by improving mitochondrial bioenergetics,
protein synthesis, insulin sensitivity and also decreasing oxidative stress and inflammation [51].
In addition, more evidence indicates that high-intensity interval training (HIT) may also have
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substantial effects on muscle metabolism. HIT involves repeated short bursts of vigorous exercise
intermixed with periods of rest or recovery. The influence of HIT on sarcopenia in older adults is not
well known, but it is worth considering thanks to the potent effects on peroxisome proliferator-activated
receptor-gamma coactivator 1 alpha (PGC-1α), mitochondrial biogenesis, insulin sensitivity and
systemic inflammation. HIT does not have a major effect on muscle size, especially when compared
to RE, although there may be a modest but significant hypertrophy of both type I and type II fibers
after some months [52]. Unfortunately, many forms of physical activity are either too intense or
too monotonous for older adults to be maintained over a long period. Then, new exercise tools,
such as whole-body vibration (WBV) and whole-body electromyostimulation (WB-EMS), are offered
as alternative methods to increase or maintain muscle mass and function [53,54]. WB-EMS is known
as an established skill primarily practiced as a local, passive application [55]. Quickly, during EMS,
impulses are transmitted through electrodes on the skin close to the muscles in order to stimulate
and improve their physical performance and strength. These impulses cause involuntary muscle
contractions and recruit fast-twitch fibers that are mainly affected by age-induced muscle atrophy [56].
In the past few years, WBV was proposed as a mild approach to counteract sarcopenia and osteoporosis
in the elderly [54]. Standing on an oscillating platform determines an improved response of the leg
and postural muscles through the so-called tonic vibration reflex [57]. This response might be the key
to long-term functional and structural neuromuscular adaptations, demonstrated in several studies.
However, the potential of WBV to induce muscular strength is still unclear [58]. Many studies from
Bosco et al. suggest that specially untrained or older individuals with low fitness levels benefit
from WBV [59]. Both skills may be attractive especially for patients otherwise unable to exercise
conventionally and will be therefore a promising option to increase patient physical activity up to a
level that matches sarcopenia [60].

Programmed cell death (Apoptosis) is an organized disassembling of the cell, with defining
morphological features that include plasma membrane blebbing, nuclear breakdown, and DNA
fragmentation. Apoptosis is a tightly regulated by biological processes playing a crucial role in
coordinating cellular proliferation and differentiation [61]. Apoptosis is a programmed mechanism
of cell death, characterized by molecular, biochemical and morphological events. It is considered
a possible mechanism in the skeletal muscle aging process [62]. Skeletal muscle tissue is unique:
characterized by multinucleated fibers and, rather than cellular degradation, there is a reduction
in the number of myonuclei per fiber, called nuclear apoptosis [63]. A reduction in number of
myonuclei results in a decrease in the synthesis of nuclear gene products per unit of muscle fiber
area, contributing to the muscle atrophy. Different apoptotic stimuli, such as oxidative stress,
calcium and TNF-α expression, may be considered as initiators of the apoptotic signaling in aged
skeletal muscle [64]. Data in literature report that during aging, the mitochondrial caspase-independent
apoptotic pathway, via apoptosis inducing factor (AIF) and endonuclease G (Endo G), may play a
more important role in skeletal muscle loss than caspase-mediated apoptosis, through cytochrome c,
Bax/Bcl2 [65]. Degradation and resynthesize of skeletal muscle proteins are normally continuous and
balanced. However, during aging this balance is disrupted by the increased oxidative stress [66].
The effects of age-related oxidative stress in skeletal muscle may also determine mitochondrial
dysfunction and apoptosis by activating some major signaling pathways, leading to reduction in
muscle mass and strength [67]. As reported above, age-related apoptotic pathways in skeletal muscle
are many and not always clear. However, a lot of studies have been performed in the last decades,
in order to establish if an appropriate lifestyle can improve the status of the musculoskeletal system
during aging [68]. In this regard, physical activity and nutrition are two focuses highly considered.
Physical exercise causes an increase in oxidative stress, but at the same time it stimulates the adaptive
response of the body against it [69]. There are several kinds of physical exercise, and each of them
differently affects the various skeletal muscle molecular mechanisms. Endurance exercise enhances
protein synthesis, mitochondrial biogenesis and IL-6 release resulting in TNF-α production inhibition,
it also mediates anti-inflammatory and anti-atrophy effects, including the PGC-1α upregulation of
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in muscle and Toll-like receptors downregulation [70]. Treadmill exercise and resistance trainings
can attenuate both fiber atrophy and pro-apoptotic signaling in aging skeletal muscle [71]. Moreover,
resistance training can increase mitochondrial enzymes activity, and it decreases skeletal muscle TNF-α
expression in elderly humans [72].

Chronic muscle inactivity due to hind limb suspension, microgravity, immobilization,
and denervation are shown to induce muscle atrophy. Denervation represents a muscle disuse
paradigm causing a dramatic reduction in mass of the muscle tissue [73]. Muscle disuse, in the presence
or absence of the nerve, has been shown to increase the rate of protein degradation by activating
numerous well-known proteolytic pathways (i.e., ubiquitin-proteasome, lysosomal, and calpain).
Denervation leads to a reduction in mitochondrial biogenesis that is related to the decrease in the
mitochondrial regulators. Despite this lower total mitochondrial content, the mitochondrial driven
apoptosis signaling is increased. This is due to an increased Bax-to-Bcl-2 ratio, an elevated susceptibility
to pore opening, a greater reactive oxygen species (ROS) production, and a reduced antioxidant enzyme
capacity [74]. Apoptosis was shown to contribute to muscle degeneration in the physiological aging
process, with chronic muscle disuse and with a variety of specific muscular pathologies. Continuing
to elucidate the principal apoptotic mechanisms mediating the atrophic response is important in
establishing potential therapeutic approaches that could prevent and/or reduce skeletal muscle
wasting and preserve physiological function [75].

4. Conclusions

Sarcopenia is an important health problem involving a progressive decline of muscle mass,
quality and strength. It has been shown that it is limited to the age-related alteration of muscle mass
and function. Evidence in literature suggests that low-grade chronic inflammation predisposes to the
progress of sarcopenia in the elderly. The measurement of inflammatory markers may be indicative
of functional limitations in older people across several diseases/health conditions. Inflammation is
a potential target for interventions to avoid muscular weakness associated with ageing. However,
exercise continue to be the key strategy to prevent sarcopenia. It was shown that AET or high-intensity
interval training may enhance the effects of RE on skeletal muscle. Since older adults are unable
or unwilling to perform exercise training programs in some cases, alternative potential treatment
approaches are being developed to counter the sarcopenia. Recent clinical evidence has shown that
whole-body vibration (WBV) and whole-body electromyostimulation (WB-EMS) can improve muscle
exercise capacity in functionally impaired older people. The latter kind of therapeutic treatment could
also be carried out at home for those patients who have monotonous chronic problems. The present
scientific contribution would like to emphasize to the scientific community the positive effects of the
adapted physical activity in the elderly as a possible non-pharmacologic treatment to prevent or treat
muscle atrophy. Even if this scientific contribution has suggested the beneficial effects of exercise for
the prevention and treatment of sarcopenia in elderly people, further studies are required to improve
muscle performance in later life.
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