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Abstract: The Sentinel-2 data by European Space Agency were recently made available for free.
Their technical features suggest synergies with Landsat-8 dataset by NASA (National Aeronautics
and Space Administration), especially in the agriculture context were observations should be as
dense as possible to give a rather complete description of macro-phenology of crops. In this work
some preliminary results are presented concerning geometric and spectral consistency of the two
compared datasets. Tests were performed specifically focusing on the agriculture-devoted part of
Piemonte Region (NW Italy). Geometric consistencies of Sentinel-2 and Landsat-8 datasets were
tested “absolutely” (in respect of a selected reference frame) and “relatively” (one in respect of the
other) by selecting, respectively, 160 and 100 well distributed check points. Spectral differences
affecting at-the-ground reflectance were tested after images calibration performed by dark object
subtraction approach. A special focus was on differences affecting derivable NDVI and NDWI
spectral indices, being the most widely used in the agriculture remote sensing application context.
Results are encouraging and suggest that this approach can successfully enter the ordinary remote
sensing-supported precision farming workflow.
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1. Introduction

In the context of Copernicus Programme for Earth Observation [1], on 7 March 2017 the second of
two twin satellite systems composing the Sentinel-2 (S2) mission was launched. S2 system is intended to
acquire mid resolution multispectral imagery by Multi-Spectral Instrument (MSI), specifically designed
for vegetation/agriculture monitoring [2–5]. S2 mission was planned to ensure continuity with the
SPOT (Satellites Pour l’Observation de la Terre) mission and, possibly, to be also jointly used with
Landsat data. MSI design integrates experiences from the ESA MERIS (Medium Resolution Imaging
Spectrometer) and NASA MODIS (MODerate-resolution Imaging Spectro-radiometer) instruments,
providing more spectral bands than Landsat-8 Operational Land Imager (L8) sensor [6].

At the moment, geometric and spectral characteristics and free data access of S2 data suggest
synergies with L8 OLI ones. Some studies testing their spectral consistency have already been
done [7,8], but with no particular focus on agricultural applications based on simplified and easy-to-use
data processing workflows intended for an at-farm-level operational context. Agronomic interventions,
in fact, are expected to be better addressed in space and time when crop properties can be continuously
(i.e., with a proper frequency of observation) mapped by remote sensing [9–11]. It is worth reminding
that the majority of plants physiologic processes can be described and correctly interpreted only
dynamically [12]. Spotty observations (even if regular in time) cannot be enough for these purposes;
differently, a daily acquisition is desirable. Many experiences have demonstrated that continuity
of acquisitions improves analysis and comprehension of biophysical processes involving vegetated
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surfaces and their phenology [13–16]. Unfortunately, medium/high geometric resolution satellite
missions, if singularly considered, are not able to guarantee daily acquisitions. Moreover, along the
year, the number of “good” acquisitions can be further reduced by cloud cover occurrence [17–21].
The possibility of integrating similar data from different missions, especially if it is available for free,
is therefore desirable and remains the most economically convenient approach for crop monitoring
by remote sensing, especially in agriculture where incomes are small. A combination of remotely
sensed data along common time series from multiple source can be only achieved if their consistency is
demonstrated, or a proper data integration strategy is adopted [22,23]. Many works in literature report
experiences concerning data integration of S2 and L8 datasets for different issues like geological [24],
forest, environmental applications [25,26], and urban sprawl monitoring [27]. In general, these
works do not refer to the consistency of spectral and geometric features of datasets, giving it as
a fact. Differently, this research was specifically intended to investigate and quantify geometric and
spectral consistency between S2 and L8 datasets, with special regard to agricultural applications
where positioning and spectral accuracy are mandatory to ensure effectiveness of deductions. While
testing consistency between different datasets from remote sensing sensors, two aspects have to be
considered: the geometrical and the spectral one. The first is required since datasets are, in general,
supplied already orthoprojected with different declared accuracies and, possibly, in respect of different
coordinate systems. The second, instead, concerns the spectral features of bands acquired by sensors,
that, in general, do not perfectly fit the same spectral ranges, even if belonging to the same spectral
region. This can determine a not negligible inhomogeneity between data, making unreliable any
their integration. According to these general considerations, data consistency analysis can in general
respond to different requirements, depending on the application data integration is intended for.
Consequently, the conditions under which tests are achieved have to be precisely defined. In the
operative framework of this research, data consistency was tested under the following conditions:
(a) images cover a specific geographic area (Piemonte region, NW Italy); (b) information is required
for crop monitoring purposes; and, (c) image processing workflow is a simplified one to be easily
transferred to the operational agronomic context.

The first condition basically determines the selection of images making results not general,
but specific for the study area; the second and third ones need to be more properly discussed. Since
the analysis is intended to generate responses specifically aimed at the crop monitoring context, it can
be limited to some aspects of the problem. In the precision farming context, from the geometric
consistency point of view, not only the relative positioning between datasets is important, but also the
absolute one (in respect of the assumed coordinate systems). This fact, better discussed in the Materials
and Methods section, is related to the expected utilization of the maps from satellite on board of GNSS
(Global Navigation Satellite System) equipped agriculture machineries at a variable rate.

From the spectral consistency point of view things are more complicated. Firstly, comparison
concerns an indirect measure (at-the-ground reflectance), whose computation from the raw data
depends on the selected radiative transfer model (RTM). A different model brings different results.
A strictly forcing condition in the analysis is therefore the type of adopted RTM. A wide literature
refers about RTM ranging from the so called physically-based ones (ATCOR3 [28,29], FLAASH,
MODTRAN [30], etc.), up to the simplified empirical ones, like the dark object subtraction (DOS)
method. The formers are, in general, more difficult to be managed in operational contexts requiring
a lot of information defining atmosphere quality at the moment of the acquisition. Less scientifically
smart, but reliable enough for many applications, is the DOS approach, which mostly relies on the
intrinsic radiometric features of the same image that has to be calibrated (see Material and Methods
section). DOS, therefore, better responds to the operative requirements that are imagined to be
transferred into the ordinary agronomic workflow. In this work, presented results refer to images that
were calibrated using a DOS RTM; the expectation is that every user is able to manage it by ordinary
free software.
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Moreover, since crop monitoring by remote sensing is mostly performed using time series of
spectral indices, this work looked at the effects of image calibration onto Normalized Differencing
Vegetation Index (NDVI) [31] and the Normalized Differencing Water Index (NDWI) [32]. NDVI and
NDWI were selected as references, among a huge list of proposed spectral indices, since they are largely
the most used ones for agriculture applications, being assumed as proxies of, respectively, vegetation
vigour and water content. Spectral comparison is intended to point out if measure differences are
consistent or not with the intrinsic uncertainty of the single dataset. From an operational point of view,
this is mandatory to determine if inter-dataset spectral differences are significant, or not, in respect
of the expected intra-dataset uncertainty. Some works can be found in literature that tries to define
and map uncertainty of reflectances and spectral indices using a sensibility analysis concerning the
adopted RTM [33,34].

2. Materials and Methods

2.1. Test Area

Test area for S2 and L8 data consistency analysis is represented by the Piemonte region (Northern
West Italy), and, in particular, that part of the regional territory where crop fields are mostly present.
Two different subsets of the regional area were selected to test, respectively, the geometric and spectral
consistency of datasets, mostly in dependence of the compared image footprints. Geometric assessment
was performed using images covering the whole Piemonte region area, while spectral comparison
concerned a smaller area corresponding to a single tile of S2 dataset (110 km × 110 km) centered at
454864 E, 4945139 N (WGS-84 UTM 32N reference system). Footprints of test images are reported in
Figure 1 for both the situations.
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Figure 1. Test areas used for geometrical (a) and spectral (b) validation. Footprint of S2 and L8 data are
shown, respectively, in dark and light grey.

2.2. Dataset

Two different image datasets were used to test geometric and spectral consistency between the
images. As far as geometric assessment was concerned two L8 images, four S2 tiles and twelve
very high resolution aerial orthoimages were used. Differently, five quasi-coeval pairs of L8 and S2
images were used for spectral comparison. All of the satellite images were obtained for free from the
EarthExplorer distribution system [35]. L8 images were obtained as Level 1 products: orthoprojected
(WGS-84 UTM 32N) and not radiometrically processed (pixel values are 12 bits digital numbers).
S2 images were obtained as Level 1C products: orthoprojected (WGS-84 UTM 32N) and calibrated as
reflectance at the top-of-atmosphere. Acquisition dates and orbit information of images are reported
in Table 1; technical features (from official sensors handbooks [36,37]) are reported in Table 2. Aerial



J. Imaging 2017, 3, 49 4 of 16

orthoimages (hereafter called ICE), used as reference for absolute geometric assessment were obtained
from the Piemonte Region Map Office for free. Metadata declare an horizontal accuracy of 1 m,
therefore suitable for a 1:5000 map scale. Reference system is WGS-84 UTM 32N.

Table 1. List of images used for geometric and spectral assessments.

Type of
Assessment Images Date

(DD/MM/YY)

Geometric

Sentinel-2 MSI

Orbit ID tiles

65

T32TLQ,
T32TMQ,
T32TLR,
T32TMR

06/08/2015

Landsat 8OLI
Path Row

195 029 07/08/2015
195 028 30/08/2015

ICE aerial
orthoimages - - 2009–2011

Spectral

Sentinel-2 MSI

Orbit ID tiles

65 T32TMQ

06/08/2015,
03/03/2016,
10/08/2016,
29/09/2016,
29/10/2016

Landsat 8OLI

Path Row

195 029

07/08/2015,
02/03/2016,
25/08/2016,
26/09/2016,
12/10/2016

Table 2. Technical features of S2 and L8 datasets.

Sentinel-2 MSI Landsat 8OLI ICE Aerial Images

Temporal Resolution: 5 Days Temporal Resolution: 16 Days
Bands (µm) Geometric

Resolution (m)Bands (µm) Geometric
Resolution (m) Bands (µm) Geometric

Resolution (m)

B1: 0.433–0.453 60 B1: 0.435–0.451 30 B1: 0.65–0.68 0.4
B2: 0.458–0.523 10 B2: 0.452–0.512 30 B2: 0.54–0.57 0.4
B3: 0.543–0.578 10 B3: 0.533–0.590 30 B3: 0.46–0.52 0.4
B4: 0.650–0.680 10 B4: 0.636–0.673 30
B5: 0.698–0.713 20 B5: 0.851–0.879 30
B6: 0.733–0.748 20 B6: 1.566–1.651 30
B7: 0.773–0.793 20 B7: 2.107–2.294 30
B8: 0.785–0.900 10

B8a: 0.855–0.875 20
B9: 0.935–0.955 60

B10: 1.360–1.390 60
B11: 1.565–1.655 20
B12: 2.100–2.280 20

Radiometric resolution: 12 bit Radiometric resolution: 16 bit Radiometric resolution: 8 bit

Since height information was needed to operate topographic correction during radiometric image
pre-processing (area is not completely included within the regional boundary), the global SRTM DEM
(Shuttle Radar Topography Mission Digital Elevation Model [38]) was obtained for the area [39]. SRTM
DEM (pixel size = 90 m) was oversampled by bilinear interpolation up to 10 and 30 m, to be consistent
respectively with S2 and L8 imagery.
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All of the datasets were maintained at their nominal geometric resolution to ensure that all of the
measures concerned the original spectral and geometric properties of data. It is worth reminding that
image resampling necessarily move both geometry and radiometry of original data introducing some
further uncertainties that could make results less reliable. All compared measures from images were
therefore extracted from the not-resampled datasets according to some reference ground points.

2.3. Geometric Assessment

Geometric quality evaluation concerned two aspects: (a) absolute positioning accuracy of S2 L1C
data in respect of the UTM 32N WGS84 reference frame; and, (b) relative positioning between S2 and
L8 datasets (image shift).

2.3.1. Absolute Positioning Test

S2 images were geometrically compared with the available ICE aerial orthoimages, which were
assumed as a reference map. Check Points (CPAs) collection followed a hierarchical and driven
approach. Since the focus of the analysis was on agricultural areas, CPAs were distributed as more
homogeneously as possible over them. Farming areas identification was based on the Corine Land
Cover map [40] 2012 (CLC2012). Regularly distributed macro areas were preventively identified
according to CLC2012 and the correspondent ICE orthoimages selected for CPAs collection. CPAs
were then collected as more homogeneously distributed as possible within each selected orthoimage.
The absolute positioning of images in farming areas is a basic issue, whereas satellite-derived
crops maps are intended to be interpreted and used by farming machines equipped with GNSS
technology [41]. Statistics concerning the distribution of CPAs in respect of CLC2012 Level I classes
and of territory steepness were finally calculated to demonstrate properness and representativeness of
CPAs in respect of the territorial features of regional agricultural areas.

2.3.2. Relative Positioning Test

A second analysis was achieved comparing a single S2 tile (orbit: 65, ID: T32TMQ), acquired on
6/8/2015 with the correspondent L8 scene (Path: 195, Row: 29) acquired on 7/8/2015. A hundred
(100) of check points (CPRs), different from the previous ones, were collected regularly over images,
mainly within the regional farming areas. The spatial distribution of both CPAs and CPRs is shown
in Figure 2.

Position accuracy (absolute and relative) was tested according to the following strategy:

(a) differences (∆E, ∆N) between measured (tested) and expected (reference) East (E) and North
(N) coordinates of CPAs/CPRs were computed; (b) mean (µ∆E, µ∆N) and standard deviation values
(σ∆E, σ∆N) were computed separately for E and N differences. µ∆E, µ∆N were assumed as measure of
bias, σ∆E, σ∆N as measure of precision. It is worth to point out that in this work bias is intended as that
part of the relative distance between the two datasets that can be somehow modelled. Bias is assumed
negligible if µ<σ. Local total error of the generic ith point is:

∆i =
√

∆E2
i + ∆N2

i (1)

Statistic distributions of ∆i (cumulative frequency) for both absolute and relative positioning
assessment were computed. (c) RMSE (Root Mean Squared Error) [42], was assumed as synthetic
measure of accuracy:

RMSE =

√
∑n

i=1 ∆2
i

n− 1
(2)

where n is the number of CPAs/CPRs (respectively, 160 for the absolute and 100 for the relative
positioning assessment) and ∆i the local total error according to (1).
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spectral assessment are in yellow. Image extent correspond to a whole S2 tile (Orbit:65, Tile: T32TMQ). 

Mapping of not-cloudy pixels was achieved by thresholding the above mentioned band 10 and 
QA layers. Threshold values were defined by photointerpretation and the following values used, 
equal for all of the images. For S2 images, a unique threshold for the available images was determined 
by photo interpretation of clouds on screen using band 10 (cirrus). This spectral band corresponds to 
a strong absorption band of water vapour. Its absorption is so strong that a photon emitted by the 
sun in this wavelength has nearly no chance to reach the earth surface, and even less to reach the 
satellite after that without being absorbed. The consequence is therefore that the surface is usually 
not visible on the images taken for the 1.38 μm channel. We defined the threshold of 0.0025 by a 
conservative approach, on the basis of the minimum value registered on images. For L8 images we 

Figure 2. Spatial distribution of check points (CPAs and CPRs) used for geometric assessment.
(a) spatial distribution of aerial orthoimages (rectangles) used for the absolute positioning assessment;
(b) example of spatial distribution of CPAs (yellow triangles) withinone of the selected orthoimages;
(c) spatial distribution of CPRs (yellow dots). Light green areas in (a–c) are the agriculture devoted one
according to Corine Land Cover 2012 map.

2.4. Spectral Assessment

Radiometric assessment was performed considering 5 couples of (quasi-) coeval S2 and L8 images
(see Table 1). Images were preventively masked to remove cloudy pixel. “Cloudy” from “not-cloudy”
pixels at the single date were separated using the “cirrus” band (band 10) and the quality assessment
(QA) layer, respectively,for S2 and L8 images (Figure 3).
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Figure 3. Mask image used to exclude cloudy pixels (black) from the analysis. Check points used for
spectral assessment are in yellow. Image extent correspond to a whole S2 tile (Orbit:65, Tile: T32TMQ).

Mapping of not-cloudy pixels was achieved by thresholding the above mentioned band 10 and
QA layers. Threshold values were defined by photointerpretation and the following values used, equal
for all of the images. For S2 images, a unique threshold for the available images was determined by
photo interpretation of clouds on screen using band 10 (cirrus). This spectral band corresponds to
a strong absorption band of water vapour. Its absorption is so strong that a photon emitted by the sun
in this wavelength has nearly no chance to reach the earth surface, and even less to reach the satellite
after that without being absorbed. The consequence is therefore that the surface is usually not visible
on the images taken for the 1.38 µm channel. We defined the threshold of 0.0025 by a conservative
approach, on the basis of the minimum value registered on images. For L8 images we used the QA
layers which coherently reports the reliability of the data at each pixel, identifying the areas that were
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affected by cloud coverage always of the same value (code 20480 in QA). All of the masked images
were then calibrated into at-the-ground reflectance according to the RTM suggested by Moran et al. [43]
(3) and based on a DOS approach [44].

ρλ(x, y) =
π·d2·

[
Lλ(x, y)− L̂λ

atm]
τλ·[τλ· sin[β(x, y)]·Iλ + Edown]

(3)

where ρλ is the at-the-ground reflectance, Lλ is the at-sensor-radiance (W·sr−1·m−2·µm−1) obtained
by applying gain and offset values (if needed, i.e., L8 images), L̂λ

atm is the upwelling atmospheric
scattered radiance (W·sr−1·m−2·µm−1), d the Sun-Earth distance coefficient (astronomical units), Edown
the downwelling atmospheric scattered radiance (assumed equal to π·L̂λ

atm), τλ the atmospheric
transmittance, β the local Sun incidence angle (rad), and Iλ the sun irradiance (W·m−2·µm−1).
The Sun-Earth distance coefficient (d) needed for S2 images calibration was calculated as proposed by
Wahid and Akiyama [45]:

d = 1− 0.01672· cos[0.9856·(Julian Day− 4)] (4)

Differently, d was directly obtained from the metadata file (MTL file) while calibrating L8 images.
Moran RTM was applied to L8 dataset in the standard mode, being L8 Level 1 imagery provided
in the ordinary 12 bit digital numbers. Differently, S2 Level 1C images, ordinarily supplied as TOA
reflectance, were preventively recovered back to radiance values, Lλ(x,y), by inverting (5), and then the
Moran’s RTM applied.

ρTOA
λ =

π·d2·Lλ(x, y)
[Iλ· sin ε]

(5)

where ε is the Sun elevation angle at the date of image acquisition. Other parameters are the same of (3).
The values of RTM parameters values adopted during the calibration step are reported in Tables 3 and 4.

Table 3. Sun irradiances and atmospheric transmittance values used for images calibration.
Atmospheric transmittance values are the ones proposed in literature for a reference mid-latitude
low-hazy atmosphere [46].

Band Name Sun Irradiance
(W·m−2·µm−1)

Atmospheric
Transmittance Wavelength (µm)

L8

B1 1955 0.50 0.435–0.451
B2 1989 0.60 0.452–0.512
B3 1865 0.65 0.533–0.590
B4 1594 0.65 0.636–0.673
B5 987 0.80 0.851–0.879
B6 248 0.89 1.566–1.651
B7 77 0.92 2.107–2.294

S2

B1 1914 0.50 0.433–0.453
B2 1942 0.60 0.458–0.523
B3 1823 0.65 0.543–0.578
B4 1513 0.65 0.650–0.680
B5 1426 0.80 0.698–0.713
B6 1288 0.80 0.733–0.748
B7 1163 0.80 0.773–0.793
B8 1036 0.80 0.785–0.900
B8a 955 0.80 0.855–0.875
B9 813 0.40 0.935–0.955
B10 367 0.35 1.360–1.390
B11 246 0.89 1.565–1.655
B12 85 0.92 2.100–2.280

Moran’s RTM is retained compliant with an operational workflow (largely used for agricultural
applications), being quite robust, but simple enough to be properly managed by most of the users. It is
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well known that this model is hybrid between the physically based and empirical ones, thus involving
a high degree of approximations, mainly concerning atmosphere modelling. We expect that a further step
for minimizing residual differences between images have to be considered after image calibration, possibly
based on a statistical regression approach. In this way, the differences could be modeled globally with no
regard about which and how involved model parameters condition image calibration performance.

Table 4. Astronomic coefficients used within the Moran radiative transfer model (RTM) during
images calibration.

Date Julian Day Sun Azimuth Sun Elevation
Angle

Time at Center
of Scene

Earth—Sun
Distance d [au]

6 August 2015 218 145.822810◦ 58.264970◦ 10:20:16.027Z 1.0145120
7 August 2015 219 142.304364◦ 57.065028◦ 10:10:45.224Z 1.0141769
2 March 2016 62 153.299355◦ 34.816474◦ 10:11:00.998Z 0.9912165
3 March 2016 63 155.912972◦ 35.529299◦ 10:20:22.030Z 0.9912746

10 August 2016 223 147.289199 57.056207◦ 10:20:32.026Z 1.0136956
25 August 2016 238 148.211510◦ 52.124554◦ 10:11:16.111Z 1.0106903

26 September 2016 270 157.699566◦ 41.616622◦ 10:11:21.387Z 1.0024652
29 September 2016 273 161.295565◦ 48.036572◦ 10:20:22.026Z 1.0013659

12 October 2016 286 161.167284◦ 35.968410◦ 10:11:26.419Z 0.9978427
29 October 2016 303 166.285066◦ 30.627586◦ 10:21:32.026Z 0.9932749

After the calibration step, 250 pixels (CP) were randomly selected among the not-masked ones
(Figure 3), and the correspondent reflectance values extracted for all the available bands. NDVI and NDWI
spectral indices were also computed to test the effects of reflectance differences. As previously stated,
they were selected as benchmark since, more than the single bands, they represent probably the mostly
used spectral tools for agricultural applications of remote sensing (6) and (7).

NDVI(x, y) =
ρNIR(x, y)− ρRED(x, y)
ρNIR(x, y) + ρRED(x, y)

(6)

NDWI(x, y) =
ρNIR(x, y)− ρMIR1(x, y)
ρNIR(x, y) + ρMIR1(x, y)

(7)

where ρRED is the at-the-ground reflectance in the red spectral range (band 4 for both for S2 and L8
dataset); ρNIR is the at-the-ground reflectance in the near infrared spectral range (band 8 and band 5,
respectively, for S2 and L8); and, ρMIR1 is the at-the-ground reflectance in the medium infrared spectral
range (band 11 and 6, respectively, for S2 and L8). Pairs of S2 and L8 calibrated bands of (quasi-) coeval
images were compared by calculating the Pearson’s R correlation coefficient. Pairs of S2 and L8 NDVI and
NDWI images were compared as well. Since R only measures the degree of similarity between reflectance
pattern over images, it cannot be used to derive information concerning the strength of differences: high
R values could be associated with high differences (low consistency) if a bias is present. It is worth to
point out that in this work bias is intended as that part of the relative spectral differences between the two
datasets that can be somehow modelled. To take care of this issue the following statistics of reflectance
differences (S2 minus L8) were calculated: mean (µ∆) and standard deviation (σ∆). A deeper analysis was
also performed to describe and model NDVI and NDWI differences, being the main players of agronomic
applications of remote sensing. Scatterplots relating pairs of S2 and L8 NDVI/NDWI correspondent
values were therefore generated. A bias was found and modeled by linear regression, (8) and (9).

NDVIS2 = a0·NDVIL8 + a1 (8)

NDWIS2 = b0·NDWIL8 + b1 (9)

where a0, a1, b0, b1 are regression coefficients; NDVIS2, NDVIL8, NDWIS2, NDWIL8 the local spectral
index value respectively computed from S2 and L8 datasets. Once opportunely calibrated, (8) and
(9) can be used to remove bias from L8 NDVI/NDWI, thus making them more consistent with the
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correspondent S2 ones. RMSE of spectral differences was used as synthetic statistic measure of spectral
consistency of datasets.

RMSE =

√
∑n

i=1
(
∆SI2

i
)

n− 1
(10)

where n is the number of CPs (250) and ∆SIi the difference between S2- and L8-computed spectral
indices (NDVI e NDWI). The RMSE reduction rate (RRR) was used to quantify the degree of the
consistency improvement according to (11):

RRR =
(RMSE− RMSE′)

RMSE
·100 (11)

where RMSE and RMSE′ are referred, respectively, to spectral index differences before and after
bias removal.

3. Result and Discussion

3.1. Geometric Assessment

Concerning absolute positioning, CPAs were located around the regional farming areas for the
above mentioned reasons. In Figure 4a, the CPAs distribution in respect of land use classes is reported
showing a strong dominance of the agricultural one. Consequently, the majority of CPAs falls in
flat areas mostly representing agriculture or built-up classes, generally located close to farming sites.
Distributions of CPAs and of regional farming areas in respect of slope classes were compared to
further demonstrate that CPAs well fit the regional farming context (Figure 4b,c).
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Figure 4. Histograms showing CPAs distribution in respect of land use classes and area steepness.
(a) Occurrences (%) of land cover classes (Corine Land Cover 2012—Level 1) where CPAs fall in.
Class label are: 1 = artificial areas, 2 = agricultural areas, 3 = forest and seminatural areas, 4 = Wetlands,
5 = Water bodies; (b,c) occurrences (%) of slope classes for both CPAs and the whole regional
agricultural areas.

Concerning CPRs, no similar statistics were computed since the selection criterion was different,
simply following a regularly distribution of points over the compared scenes. Absolute and relative
consistency were tested by computing the following statistics: a) mean (µ∆E, µ∆N), standard deviation
(σ∆E, σ∆N) and RMSE values of the East and North coordinates differences (Table 5). A complete
statistical description of error distribution was obtained by computing the cumulative frequency
distribution of local total error ∆i (Figure 5).

Statistics concerning accuracy revealed that no systematic error was present, since µ∆E and µ∆N
remained lower than the correspondent standard deviations (σ∆E, σ∆N). An exception came from the
N coordinate differences in the S2 vs. L8 comparison, where an opposite situation is given. It is not
a goal of this research to investigate the possible reason of this anomaly; nevertheless, it is worth to
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point out this finding as a possible critical point. A practical suggestion from this information is that
is much more desirable, while jointly using S2 and L8 datasets, operating at the L8 spatial resolution.
Concerning the value of differences S2 RMSEs was 5.9 and 16.2 m, respectively, for the absolute and
relative positioning quality tests. When considering the geometric resolution of both S2 and L8 images
(10 and 30 m, respectively), RMSE reveal that error is about half a pixel in both of the cases, ensuring that
spectral measures from S2 and L8 datasets refer to the same ground portion and, therefore, represent the
same type of surface.

Table 5. Errors statistics: mean and standard deviation of E and N differences, Root Mean Squared
Error (RMSE). (left) Absolute positioning statistics (S2 vs. ICE). (right) Relative positioning statistics
(S2 vs. L8).

Orthoimage ICE 2009 vs. Sentinel-2 S2 vs. L8

µ∆E(m) σ∆E(m) µ∆N(m) σ∆N(m) RMSE(m) µ∆E(m) σ∆E(m) µ∆N(m) σ∆N(m) RMSE(m)

−0.2 3.7 1.1 4.4 5.9 4.7 7.5 11.3 8.2 16.2
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Figure 5. Distribution of cumulative frequency of positioning errors. (a) absolute positioning errors;
(b) relative positioning errors.

3.2. Spectral Assessment

Spectral assessment was performed with reference to all the selected pairs of (quasi-) coeval images
(see Tables 1, 6 and 7) using the randomly selected not-cloudy pixels (250). Pearson’s correlation
coefficient R was computed by comparing the corresponding (spectrally) L8 and S2 calibrated bands
(Table 6). As expected, R increases while time distance between S2 and L8 compared images decreases.
Highest correlations (R> 0.75 in Table 6) were obtained for bands belonging to the infrared spectral
region; R values, surprisingly, decrease in the shortest wavelengths of the visible region. It can be
supposed that this fact can be related to the adoption of the Moran’s RTM, which is not able to
completely model atmospheric scattering effects: it is worth to remind that it mostly acts in the visible
part of the spectrum and turns to negligible in the infrared one. Mean (µ∆) and standard deviation (σ∆)
values of differences were computed too, to give a value to spectral consistency of the compared bands.
Results of Table 6 show that reflectance differences are acceptable in the most of cases, i.e., measures
made by the two compared sensors are consistent. Again, time distance between the compared images
determines the highest differences in reflectance values. Differently, µ∆ and σ∆ do not depend on
band wavelength like R does. Since spectral indices are widely used as final measures to be compared
with ground observations in agriculture/forest applications, the effect that the previously measured
reflectance differences generate onto indices has to be explored. Scatterplots relating (quasi-) coeval
pairs of S2- and L8-derived NDVI and NDWI values were generated (Figure 6). They show that S2 and
L8 NDVI and NDWI values are generally consistent (Table 8), but a significant linear bias is present.
Bias was modeled by linear regression. Values of gain (a0, b0), offset (a1, b1) and R Pearson’s correlation
coefficient for all of the tested combinations are reported in Table 7.
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Table 6. Statistics concerning band per band reflectance differences (S2 minus L8). Selected combinations are those relating bands that reasonably can be supposed
a-priori correlated (i.e., bands belonging to the same region of the spectrum). When compared S2 and L8 scenes are the closest ones within the time series. Reported
values show that reflectance differences are acceptable. R is the Pearson’s correlation coefficient. * Correlations are significant at p = 0.01.

Compared S2 and L8 Image Pairs (Date S2–Date L8)

Bands 06/08/2015–07/08/2015 02/03/2016–03/03/2016 10/08/2016–25/08/2016 26/09/2016–29/09/2016 12/10/2016–29/10/2016

L8 S2 R µ∆ σ∆ R µ∆ σ∆ R µ∆ σ∆ R µ∆ σ∆ R µ∆ σ∆

B1 B1 0.28 0.01 0.02 0.47 * 0.04 0.01 0.06 0.03 0.06 0.17 0.00 0.04 0.11 −0.02 0.02
B2 B2 0.62 0.01 0.02 0.41 * 0.02 0.02 0.04 0.03 0.06 0.31 0.00 0.04 0.43 * −0.01 0.02
B3 B3 0.84 * −0.03 0.02 0.63 * −0.03 0.02 0.27 −0.01 0.07 0.49 * −0.03 0.04 0.71 * −0.05 0.02
B4 B4 0.88 * −0.03 0.03 0.78 * −0.03 0.03 0.36 −0.02 0.08 0.66 * −0.03 0.05 0.77 * −0.05 0.04

B5
B8 0.93 * 0.02 0.05 0.92 * 0.02 0.05 0.84 * 0.06 0.09 0.84 * 0.02 0.07 0.86 * −0.02 0.06
B8a 0.94 * 0.07 0.06 0.92 * 0.04 0.05 0.85 * 0.11 0.11 0.87 * 0.06 0.07 0.86 * 0.00 0.06

B6 B12 0.94 * 0.06 0.05 0.91 * 0.04 0.04 0.76 * 0.06 0.09 0.85 * 0.06 0.07 0.85 * 0.02 0.05
B7 B13 0.93 * 0.02 0.03 0.91 * 0.02 0.03 0.65 * 0.10 0.05 0.84 * 0.03 0.05 0.83 * 0.01 0.04
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They show that also NDVI and NDWI differences depend on time lag between the compared
measures. Higher is the time distance between compared images, weaker is the correlation between S2
and L8 spectral indices. It can also be noted that (a) S2 tends to over-estimate NDVI values in respect of
the correspondent L8 one; (b) S2 tends to under-estimate NDWI values in respect of the correspondent
L8 one; and, (c) S2 NDVI values tend to saturate for high values more rapidly than L8 derived ones.
Once bias affecting NDVI/NDWI was modeled, L8-derived NDVI/NDWI were corrected and the new
differences tested (Table 8). Results are encouraging and demonstrate that, in spite of still resisting
residual biases, probably related to the adopted RTM, spectral index measures from S2 and L8 dataset
can be finally assumed, after correction, as belonging to the same standard statistic population. Results
clearly pointed out that, while approaching data integration, looking for a joint use of different datasets
(S2 and L8) along the same statistical (multi-temporal) distribution, a normalization process (possibly
“relative”) has to be applied.

Table 7. Correlation coefficient (R Pearson) and parameters of linear regression (see (8) and (9)) relating
S2 and L8 NDVI/NDWI. Linear regressions were used to remove bias error between S2 and L8 derived
spectral indices. All of the correlations are significant at p = 0.01.

Compared S2 and L8 Image
Pairs (Date S2–Date L8)

NDVI NDWI

a0 a1 R b0 b1 R

06/08/2015–07/08/2015 0.9305 0.1811 0.89 0.8900 −0.0805 0.94
02/03/2016–03/03/2016 0.7491 0.3214 0.79 0.8206 −0.0748 0.87
10/08/2016–25/08/2016 0.3756 0.5032 0.61 0.5235 0.0153 0.53
26/09/2016–29/09/2016 0.9279 0.2492 0.88 0.8317 −0.0745 0.88
12/10/2016–29/10/2016 0.6193 0.4195 0.79 0.4492 −0.0514 0.79

Table 8. RMSEs of NDVI/NDWI differences from S2 and L8 imagery before (RMSE) and after
(RMSE′) bias removal. RMSE reduction rate (RRR) is the amount (%) of improvement determined by
bias modeling.

Image Pair (S2–L8) Time
Delay (d)

NDVI NDWI

RMSE RMSE′ RRR RMSE RMSE′ RRR

06/08/2015–07/08/2015 1 0.18 0.10 44.4% 0.13 0.07 46.2%

02/03/2016–03/03/2016 1 0.27 0.10 63.0% 0.13 0.08 38.5%

10/08/2016–25/08/2016 15 0.43 0.21 51.2% 0.22 0.17 22.7%

26/09/2016–29/09/2016 3 0.25 0.12 52.0% 0.14 0.09 35.7%

12/10/2016–29/10/2016 17 0.30 0.12 60.0% 0.25 0.09 64.0%

Values of Table 8 demonstrate that bias removal determine an appreciable improvement in spectral
consistence of S2 and L8 NDVI/NDWI values. Nevertheless, RMSE′ values are not still completely
satisfying, being about three times higher than the expected theoretical NDVI/NDWI uncertainty values
(σNDVI/NDWI) that are related to sensor performance. Some works in literature [31] suggest reference
values of σNDVI/NDWI around 0.025. If an index difference is considered in place of the index value,
its uncertainty can be estimated by the variance propagation law as σ∆ =

√
2σNDVI/NDWI = 0.035. It is

worth reminding that, σ and RMSE can be considered comparable (coincident) if the mean value of the
differences is zero. Since RMSE′ is computed after an Ordinary Least Squares estimation of parameters
of the linear regression, this condition is certainly verified (mean of differences is about 0). RMSE′ and
σ∆ can be therefore compared; assuming σ∆ = 0.035 as the expected intrinsic (theoretical) NDVI/NDWI
measure uncertainty and RMSE′ like the actual one. This demonstrates that the differences affecting
spectral indices from S2 and L8 after bias removal are still about three times higher than the expected
value. These results are very useful to inform operators that, if “mixed” time series of NDVI/NDWI
are generated from DOS-calibrated data, significant index variations (in space and time) are those
whose absolute value is higher than 0.08 for NDWI and 0.1 for NDVI. It is worth pointing out that,
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in an operative scenario, where the expected product is a sequence of observations along a common
time series, users will not be interested in comparing (quasi-) coeval S2 and L8 images to model spectral
bias: L8 and S2 images of different days are preferable. In these conditions, bias modeling cannot be
achieved looking at whatever pixels, since one has to admit that probably their spectral properties
have changed (especially for vegetation). Consequently, a standardized procedure for data integration,
once more, will have to be based on the identification of spectrally invariant pixels (structures, rocks,
roads, etc.) to be used for calibrating bias removal model.
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Figure 6. Scatterplots relating pairs (S2 vs. L8) of Normalized Differencing Vegetation Index (NDVI)
(left) and Normalized Differencing Water Index (NDWI) (right). Black lines represent the y = x expected
trend; on x axis are reported the L8 values, on y axis the S2 values. They clearly show that a good
correlation exists between the two datasets, but different from the expected trend. A linear bias can be
modeled to improve measures consistency. It is evident that correlation decreases while time distance
between compared image pairs increases (images are not perfectly coeval).
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4. Conclusions

The consistency of S2 and L8 dataset was tested to get a preliminary evaluation in view of a joint
use of spectral indices along common time series that are able to respond effectively to crop monitoring
purposes. Tests concerned both geometric and spectral features of datasets. Results showed that
geometric quality of S2 data is high both for absolute and relative (in respect of L8 images) positioning.
Computed position errors are consistent with the geometric resolution of data (about half a pixel).
No systematic error was found affecting planimetric coordinates. An anomaly was found affecting the
north coordinate differences were a moderate bias was observed. This is however negligible at the
geometric resolution of L8.

Concerning spectral assessment, the focus was on both at-the-ground reflectance and spectral
indices (NDVI and NDWI) as obtainable applying a simplified RTM (Moran’s DOS). We found that
reflectance differences between correspondent (or almost correspondent) spectral bands, in the most
of the cases, is lower than 0.1. We also found that differences suffer from some systematic error
especially affecting bands belonging to the visible spectral region. Concerning the effects of computed
reflectance differences onto spectral indices, we found that S2 and L8 derived NDVI and NDWI
values are generally consistent, but not negligible biases can be observed. They were modeled by
linear regression. Depending on time distance between compared images, NDVI differences range
between 0.18 and 0.30 if no bias modeling is performed. They can be reduced around 0.1 by linear
bias correction. Depending on time distance between compared images NDWI differences range
between 0.13 and 0.25 if no bias modeling is performed. They can be reduced around 0.08 by linear
bias correction too. These values are however high in respect of the expected ones (about three times
higher). It can be finally pointed out that: (a) spatial information from the S2 and the L8 dataset is
consistent and released dataset well georeferenced; (b) spectral information, specifically related to
NDVI and NDWI, if managed through a simplified DOS-based RTM is not satisfyingly consistent,
making unreliable those time series obtained fusing the two datasets; (c) a bias affecting NDVI/NDWI
differences was found and modeled. L8 unbiased NDVI/NDWI are much more consistent with the
S2 ones, but significant differences persist; and, (d) NDVI from S2, probably depending on the bands
used in the formula (B8 and B4) that do not perfectly fit the correspondent L8 ones (B5and B4), tends
to be less effective in mapping NDVI differences when NDVI values are high, showing an unwanted
saturation effect.

Finally, if S2 and L8 NDVI/NDWI are computed from DOS-based RTM calibrated images,
their integration is reliable enough for quantitative purposes only if a further inter-calibration
(bias removal) step is performed. Further investigations have therefore still to be done exploring
eventual improvements to data integration given by calibrating images by more rigorous RTMs, which
are possibly driven by spectrally invariant pixels.
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