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Abstract: Vision-based localization is the problem of inferring the pose of the camera given a
single image. One commonly used approach relies on image retrieval where the query input is
compared against a database of localized support examples and its pose is inferred with the help
of the retrieved items. This assumes that images taken from the same places consist of the same
landmarks and thus would have similar feature representations. These representations can learn
to be robust to different variations in capture conditions like time of the day or weather. In this
work, we introduce a framework which aims at enhancing the performance of such retrieval-based
localization methods. It consists in taking into account additional information available, such as
GPS coordinates or temporal proximity in the acquisition of the images. More precisely, our method
consists in constructing a graph based on this additional information that is later used to improve
reliability of the retrieval process by filtering the feature representations of support and/or query
images. We show that the proposed method is able to significantly improve the localization accuracy
on two large scale datasets, as well as the mean average precision in classical image retrieval scenarios.

Keywords: graph signal processing; deep learning; visual localization; image retrieval; transfer
learning

1. Introduction

Can we know where we are in the world based on a single image taken with a
cellphone camera? Vision-Based Localization (VBL) [1] answers this problem by retriev-
ing the pose (location and orientation) of a camera based solely on visual information.
By going from images to metric localization, VBL enables localization using images alone,
which would otherwise be carried out with expensive range based sensor or using compli-
cated image based reconstruction processes.

As with every other scientific discipline, recent advancement in VBL have been lead
by deep learning (DL) based methods. Broadly these approaches can be divided into
two categories: (a) Pose Regression methods that learn a mapping from images to their
poses in a deep network [2,3], and (b) Representation Learning techniques that learn a
latent representation of images that is resilient to common nuances such as appearance and
viewpoint change [4]. They generally translate physical proximity to closeness in the latent
space via contrastive losses. While both of these approaches have their advantages, one of
the limiting factors of the regression based techniques comes from its inability to operate
in a previously unseen location without needing a costly retraining step. Representation
methods, on the other hand, generalize well to new data since the mapping into the learned
space is independent of the physical space. Traditional retrieval techniques [5] can be used
for visual localization against a set of images with known poses.

In representation learning, Global Positioning System (GPS) has been widely used
as a measure of spatial proximity [6]. In the robotics setting, however, there are other
cues hinting towards spatial promixity. Images from robots are almost always acquired
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sequentially using on-board cameras. Similarly, detecting revisits (such as loop closure
detection from laser scanners) can establish spatial proximity across time. In this work,
we propose a visual representation learning mechanism that takes advantage of these
additional spatial proximity cues that are specific to robotic applications. The key insight of
this work is that using techniques from Graph Signal Processing (GSP) [7], this additional
information can be fused with a “pretrained” deep model without needing any re/fine-
tuning. Specifically, we exploit relationships via a graph filter on top of the pre-learned
deep representations [4,8]. This work makes the following contributions:

1. We apply the theory and methods of Graph Signal Processing to the problem of visual
localization. To the best of our knowledge, this is the first attempt to bring these two
areas of research together.

2. Through experiments on real-world datasets, we demonstrate the efficacy of the
proposed method in improving localization accuracy with almost no computation
overhead at inference.

3. We demonstrate that this method can be applied to traditional image retrieval bench-
marks and perform well on them.

The rest of the paper is organized as follows: we present a brief overview of related
techniques in Section 2. In Section 3, we formally introduce the proposed method and
discuss its properties. In Section 4, we derive and discuss experiments. In Section 5,
we conclude the work and discuss future directions.

2. Related Work

Visual localization is a well studied problem in the vision community and recent
surveys can be found in [1,9]. Traditional methods address the problem using point features
using a Bag-of-Words (Bow) approach where each image is represented as histogram
of visual word occurrences. Efficient indexing methods then allow retrieving images
with similar features and a relate pose computation via the essential matrix. However,
such methods can be adversely affected by changes in condition such as weather, time of
the day and long term changes such as structure of the scene.

Deeply learned image representation: As mentioned in the introduction, various meth-
ods in the literature focus on deep learning for generating good embeddings for visual
localization, such as NetVLAD [4], GeM [8] and many others. In this work, we build on top
of these representations, though the proposed method could be adapted to any latent rep-
resentation of the images. Its main advantage is that it does not require additional training
to perform well. Recent work in robotics [5] has shown that using sequence information
in a Bayesian filtering approach, the accuracy of these methods can be vastly improved,
even outperforming regression based methods. This technique is also directly applicable to
the task of image retrieval. In [10] for example, the authors introduce a new optimization
technique that allow them to do a better separation of the support database and to improve
the similarity-matching (ranking) phase.

Graphs in visual localization: Previous methods [2,11,12] have made use of graphs
to aid visual localization in various ways. One example is the re-ranking of candidates,
where a graph performs ranking that takes into account more than one image at a time.
This is achieved in [11] by using the closest pair of images and then performing a linear
combination of them. In [13] a graph diffusion technique is introduced to improve the
ranking phase of image retrieval. Other works such as [2] use techniques like Pose-Graph
Optimization (PGO) [14] to take advantage of extra information available (in this case
the relative poses of the “test”). Note that these approaches differ from ours as they are
used only on the query data. As such, they could be combined with the proposed method,
that also considers the support set.
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3. Proposed Method

In this section, we first provide a very brief overview of graph signal processing then
describe the setting in which the current method is applied and then present a formal
overview of the GSP techniques used in this work.

3.1. Graph Signal Processing

GSP [7] is a mathematical framework that aims at extending harmonic analysis to
irregular domains described using similarity graphs. As such, it is possible to define tools
such as translations [15], convolutions [16], filtering [17] and wavelets [18] taking into
account the complex structure of the inputs. GSP has successfully been applied to domains
ranging from neuroimaging [19] to deep learning [16,20,21]. To the best of our knowledge,
the present work is the first use of GSP in the context of visual localization.

3.2. Problem Setting

We consider the case of autonomous driving where a fleet of vehicles moves around
established roads in urban environments. This is a less general case of localizing a freely
moving tourist in a city using a mobile phone as the geometry of the road prevents
significant view point variations across different traversals. In our case, the change in
viewpoints comes from traffic moving in different lanes along the same road. However,
there might be significant appearance changes as vehicles can move during any season and
any time of the day.

The camera mounted on the vehicle provides a stream of images and we assume
that a GPS based location for each image is available for training. The set of images form
the database: the collection of images against which matches will be sought based on the
learned representation. For image representation, we assume a mapping function that
maps each image to a fixed dimensional latent space, with some resilience to viewpoint and
appearance changes. For the rest of the section, we use images and latent representation
interchangeably to mean a lower dimensional embedding of the original image into a re-
silient (learned) subspace. A key asset of the latent space is that it linearizes representations.
Said otherwise, the linear combinations of latent representations of actual images lead to
latent representations of a natural looking (artificial) image.

Once we have the learned representations for each image in the database, new image
queries can be processed for localization.

3.3. Graph Signals Low-Pass Filtering

We define a graph as G = 〈V, A〉, where V is the finite set of vertices and A is the
weighted adjacency matrix: A[µν] is the weight of the edge between vertices µ and ν, or 0
if no such edge exists. Each vertex represents an image and an edge defines the similarity
between two vertices.

In order to avoid irregular artifacts, we consider a normalized adjacency matrix
A = D−1/2WD−1/2 where W is the direct measure of similarity between two vertices and
D is the degree matrix associated with W:

D[µν] =

 ∑
k∈V

W[µk] if µ = ν

0 otherwise
.

Note that this normalization is only well-defined if the graph has no isolated vertex,
what we consider to be true in the following. Given a graph G = 〈V, A〉, consider a matrix
s ∈ RV×d, where d ∈ N. We refer to s as a signal in the remaining of this work, and typically
we consider s to be composed of the concatenation of latent representations of images
corresponding to vertices in V such that a row of s corresponds to an image in the database.
We define the graph low-pass filter [22] hG(s) of s as:

hG(s) = (I− aL)ms, (1)
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where m is the number of times the filtering is applied, I is the identity matrix and L = I−A
is the Laplacian of the normalized matrix A. This creates a low-pass filter that allows us to
smooth the support database and obtain better results when querying it. The parameter a
controls the intensity of each filtering operation, and we use a = 0.1 in this work.

Let us explain briefly why this can be called a low-pass filter in s. First note that
because L is symmetric and real-valued, it admits |V| eigenvalues (where | · | denotes
the cardinal). The way L has been normalized, all these eigenvalues are between 0 and 2.
Other interesting properties include that the eigenspace associated with the eigenvalue 0 is
composed of constant vectors and 2 is not an eigenvalue if the graph is not bipartite.

So, considering the graph is not bipartite, multiplying the signal by I − aL or one
of its positive powers has the effect of diminishing the influence of all components of
the signal that are not aligned with a constant vector, while maintaining the latter. As a
result, the difference between representations of neighboring vertices in the graph is
reduced. This operation has the effect of smoothing the signal, in the sense that the i-th
column of the smoothed signal is such that the difference in values between two (strongly)
connected vertices is going to be smaller than that before smoothing. In the extreme case of
smoothing multiple times (i.e., large m), this would eventually have the effect of averaging
all representations in connected components of the graph. Let us emphasize that the output
vectors of the proposed graph filtering method are linear combinations of the input feature
vectors. The main interest of using the framework of GSP is that it allows to offer a nice
interpretation of the chosen linear combination. Also, we consider our work to be a first
step towards many possible uses of the rich literature on GSP to improve performance
of VBL.

In brief, the low-pass graph filter we implement has the effect of smoothing the signal
values, taking into account strongly connected vertices in the graph. As a result, outliers
are smoothed using similar images in the graph. In this work, we consider the vertices
to be either the database items or the query set items. In both cases, the goal is to use
graph filtering to reduce the noise in the latent representations by incorporating additional
information. This is illustrated in Figure 1, where we consider a unidimensional signal
represented using blue (for positive values) and red (for negative values) bars. Before
filtering (on the left), neighboring vertices can have large variations in their signal values.
After filtering (on the right), these variations are lowered. Note that the parameter m
in Equation (1) controls the intensiveness of smoothing: when m is small (i.e., almost
0), (I− aL)m becomes close to the identity matrix and the filtering has almost no effect.
When m is large (i.e., m � 1), (I − aL)m becomes an averaging matrix on each of its
connected components.

hG(s)
⇒

Figure 1. Illustrative example of the graph filter. The signal is represented by the blue(positive) and
red(negative) bars.
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3.4. Graph Definition

In order to improve the accuracy of VBL, we need to make sure that the edges of the
graph are well chosen to reflect the similarity between two images represented as vertices.
As our main goal is to exploit extra information available at the database, in this work we
consider three different sources:

• Metric distance (dist): the distance measured by the GPS coordinates between vertices
µ and ν;

• Sequence (seq): the distance in time acquisition between two images (acquired as
frames in videos);

• Latent similarity (latent_sim): the cosine similarity between latent representations.

The matrix W can therefore be derived from the three sources as:

W = Wdist + Wseq + Wlatent_sim.

3.4.1. Metric Distance

In order to transform the metric distance into a similarity, we use an exponential
kernel. This is parametrized by a scalar α that controls the sharpness of the exponential
and a threshold parameter maxdistance that cuts edges between distant vertices:

Wdist[µν] =

{
eαdistµ,ν if distµ,ν < maxdistance
0 otherwise

.

Note that the choice of an exponential kernel may seem arbitrary, but is often used in
the area of Graph Signal Processing [7].

3.4.2. Sequence

To exploit the information of time acquisition of frames, we use the function seq(k, µ, ν)
which returns 1 if the frame distance between µ and ν is exactly k and 0 otherwise. We then
build a matrix Wseq parametrized by scalars βk and kmax:

Wseq[µν] =
kmax

∑
k=1

βkseq(k, µ, ν).

3.4.3. Latent Similarity

Finally, we define a matrix Wlatent_sim for the latent representations cosine similarity.
This is parametrized by a scalar γ that controls the importance of the latent similarity.
We only compute this similarity if either the distance similarity or the sequence similarity
is nonzero:

Wlatent_sim[µν] =


γsim(µ, ν) if Wdist[µν] > 0

or Wseq[µν] > 0
0 otherwise

,

where sim is the latent similarity function. In this work we use the cosine similarity (simcos),
but any similarity function could be used.

4. Results
4.1. Visual Localization

We first present some results for the visual localization task using publicly available
data. First we describe how the dataset was collected in the following section, then we
describe how we choose our hyperparameters and finally we display our results.
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4.1.1. Dataset Generation

To verify the effectiveness of our method in an autonomous driving context, the first
step is to use an appropriate dataset that is collected from roads and is large enough
to demonstrate appearance changes and (limited) viewpoint changes due to road struc-
ture. We collect images from the Mapillary API (https://www.mapillary.com/developer/
api-documentation/), which contains crowd sourced data over years for major roads.
To show the generalization ability of the proposed work, we collect road imagery from
two Australian cities. The first covers the Central Business District (CBD) area of Adelaide,
Australia and spans an area of roughly 10 km2. Since the data is publicly sourced, there is
a lot of viewpoint, illumination and dynamic changes (cars, pedestrian, etc). The second
set is collected around the Greater Sydney region and covers an area of around 200 km2.
We note that the data collected for the Greater Sydney region contains some sequences that
were generated using different equipment (panoramic cameras) or different positioning
(camera pointed to a vehicle window instead of the windshield) from the ones used during
the training of the NetVLAD network, which combined with the total area covered by the
database creates a much more challenging problem. In addition to imagery, the collected
data provides sequence information and GPS. The GPS tracks for the collected data are
shown in Figures 2 and 3.
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Figure 2. GPS Tracks of the image sequences collected around Adelaide CBD from Mapillary.
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Figure 3. GPS Tracks of the image sequences collected around Sydney from Mapillary.

https://www.mapillary.com/developer/api-documentation/
https://www.mapillary.com/developer/api-documentation/
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In the rest of the experiment section, we use the terminology of visual localization,
that is, support database refers to the reference database, validation and test queries refer
to query inputs.

To split the Adelaide dataset in support/validation/test we randomly choose
4 sequences for validation and 5 sequences for testing. For the Sydney database, we choose
5 sequences that could be retrieved with reasonable performance using our pre-trained
NetVLAD (named easy query) and 5 sequences at random (hard query). Using GPS as
ground truth, we remove all examples from the query sets that are further than 25 m from
the support dataset (i.e., there are no examples in the support set in a 25 m radius from
them). The statistics for each dataset are summarized in Table 1.

Table 1. Summary of the vision-based localization datasets used in this work.

City Adelaide

# Sequences # Images

Support Database 44 24,263
Validation Query 4 2141

Test Query 5 1481

Sydney

# Sequences # Images

Support Database 284 117,860
Easy Query 5 1915
Hard Query 5 2285

4.1.2. Parameter Definition

For all the results in the subsequent sections we use the same parameters, which were
obtained using a grid search and keeping the best score on the Adelaide validation query.
We use the Adelaide test query to ensure that the parameters are not overfitted to the
validation query. Also note that we use the same parameters for both cities to further
validate the fact that we do not need additional training/parameter search for each new city.
The parameters are α = 0.1, β1 = 0.75, β2 = 0.0625, β3 = 0.015, kmax = 3, γ = 0.66, m = 19.

4.1.3. Application to VBL

The method is applied to VBL using the following steps

1. Features are extracted using [4];
2. Graphs are generated for support, query or both using the previously described graph

inference method;
3. If graphs exist for a set, the features of the set are then filtered using the previously

described methodology;
4. Localization of a query image is then defined by the nearest example in the support

database (either using features from step 1 or 3, depending on where graph filtering
is applied).

4.1.4. Results

We test the graph filter in three different cases. First the extra data is available only for
the support, second it is available only for the query and finally it is available in both cases.
In each case we report two metrics, the median localization error over all the queries and
the percentage of localizations that have less than 25 m error.

First we perform the tests on the Adelaide dataset and present the results in Table 2.
The graph filter was able to increase performance, even when applied only on the query
database, and as expected, adding the graph filter during both query and support gave
the best results. Recall that the parameters were defined based on the validation query,
under the case where the extra data is available only for the support database.
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Table 2. Results under different graph filter conditions for the Mapiliary Adelaide dataset. GF means
Graph Filtering. The best performance for each row is bolded.

Measure None GF Database GF Query GF D + Q

Validation

acc < 25 m 66.84% 76.09% 69.92% 79.22%
median distance 8.76 m 6.90 m 13.04 m 8.86 m

Test

acc < 25 m 44.63% 50.44% 46.32% 52.06%
median distance 110.66 m 24.30 m 41.84 m 22.66 m

Second we validate that the operation can be used on another city and that we do not
need to perform an additional grid search for the new data. The results are presented in
Table 3. As expected the graph filter allowed us to get better performance in both median
distance and accuracy, while using the parameters optimized for the Adelaide dataset.
This is inline with our goal to obtain a processing methodology that does not require to be
retrained or re-validated for a new city. We note that the performance of the hard query set
is not inline with a good retrieval system (several kilometers from the correct point), but it
is included to show that our method allows us to increase the performance both when the
NetVLAD features are already very good for the task and when they are very bad.

Table 3. Results under different graph filter conditions for the Mapiliary Sydney dataset. GF means
Graph Filtering. The best performance for each row is bolded.

Measure None GF Database GF Query GF D + Q

Easy

acc < 25 m 49.45% 55.28% 55.46% 63.75%
median distance 28.25 m 14.12 m 18.77 m 11.93 m

Hard

acc < 25 m 13.87% 17.33% 16.54% 24.86%
median distance 4000 m 3253 m 3180 m 1700 m

4.1.5. Ablation Studies

To verify that each part of the graph is important, we perform ablation studies using
the Adelaide test query. The results are presented in Table 4. The table shows that different
sources of information are important, with each one adding to increase in performance.
Metric distance and sequence are the most important features and latent similarity is more
of a complementary feature (this is expected, as it is being thresholded by the other two
features). This is encouraging since in the absence of any other external information (GPS,
etc), one can rely on the sequential nature of data collection to get a boost in localization
performance. This information is readily available in a robotics setting.

In the next experiment, we demonstrate the effect of successive filtering. This is
achieved by varying the value of m, the number of times the graph filtering is applied.
Theoretically, this should help increase the performance until it hits a ceiling and then it
should start to slowly decrease (as it enforces connected examples of the database to be
too similar to each other). The results are presented in Figure 4. As can be seen, there is a
clear pattern of increased performance until m = 20 after which the performance starts to
degrade. It should be noted that even for m = 40 the graph filter still performs better than
the baseline (m = 0).
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Table 4. Ablation study on the Mapiliary Adelaide test query. The best result per column is bolded.

Wdist Wseq Wlatent_sim Median Distance acc < 25 m

110.66 m 44.63%

X 29.26 m 49.42%

X 39.11 m 47.47%

X X 28.41 m 49.56%

X X 24.35 m 50.17%

X X 37.34 m 47.74%

X X X 24.30 m 50.44%

0 10 20 30 40

46

48

50

m

ac
c
<

25

Figure 4. Effect of the parameter m on the retrieval accuracy under 25 m for the Adelaide test query.

4.2. Image Retrieval

As a visual localization problem can be seen as an application of Image Retrieval,
we test our method in classical Image Retrieval scenarios to verify its genericity. We use
the revisited Oxford and revisited Paris datasets [23] with the features from [8]. In this case
we do not have the physical distance between the images to properly create Wdist or the
image sequence to generate Wseq. We therefore use the objects names as classes and our
Wdist is composed of only 1 if µ, ν are from the same object and 0 otherwise. Note that in
this way, we differ from traditional methods as they tend to not consider this additional
information during training or testing and therefore comparison with other methods is not
entirely fair. All the other parameters are the same as in the localization scenario.

In the scenario of Image Retrieval our approach can be categorized as diffusion-based.
In the literature there are diffusion methods that are used during the ranking phase with
k-nn graphs [13] or that add an additional GCN [24] component that has to be trained in
an unsupervised way [10]. The former only affects the ranking of supported images for a
query (i.e., the way we evaluate the similarity between query and support set, by applying
graph diffusion) while the latter acts in both ranking (which becomes GCN-diffusion based)
and feature definition (i.e., it learns a GCN-diffusion in order to modify the original features
from [8]). In summary, our main contribution is the graph construction (taking advantage
of the class data that is available on the support set) and our smoothing/diffusion technique
that is based on a low-pass filter.
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The results are presented in Table 5. The baseline for our comparison are the results
obtained using cosine similarity to rank the features obtained from [8]. We then compare
using our filter to generate new features, with the ranking diffusion method from [13]
(lines 2 and 3). Finally we also compare the combination of the features generated from
our filter with the ranking diffusion from [13] to the method described in [10] which uses
the same base features and learns a new feature set and ranking function. In summary,
our method was able to increase the mean average precision, with similar results to the
approach from [13]. When using in combination with [13] we achieve a similar performance
on the Paris dataset to a state of the art approach [10] that requires training an additional
GCN network.

Table 5. mAP retrieval results comparison, results that do not include our filter are extracted as is
from [10]. Best results per column are bolded.

rOxford rParis

Features Ranking Medium Hard Medium Hard

[8] simcos 64.7 38.5 77.2 56.3

[8] [13] 69.8 40.5 88.9 78.5

[8] + Our filter simcos 70.58 47.67 87.77 76.04

[8] + Our filter [13] 71.41 51.27 91.54 81.85

[8] + [10] [10] 77.8 57.5 92.4 83.5

5. Conclusions

This work showed that using techniques from Graph Signal Processing, the perfor-
mance of visual based localization and image retrieval can be improved by incorporating
additional available information. This additional information acts on the latent repre-
sentation by making it smoother on a graph designed using all available information,
leading to a boost in localization. One of the encouraging observations of the work is
that this additional information can take the form of a simple temporal relationship be-
tween surrounding images acquired in a sequence, and still lead to a significant increase
in performance.

In future work, we would like to use the graph during the localization inference,
to add temporal consistency to the position inference and also to train the filter operation
in an end-to-end fashion.
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