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Abstract: Convolutional neural networks (CNNs) have demonstrated great achievement in increasing
the accuracy and stability of medical image segmentation. However, existing CNNs are limited by the
problem of dependency on the availability of training data owing to high manual annotation costs and
privacy issues. To counter this limitation, domain adaptation (DA) and few-shot learning have been
extensively studied. Inspired by these two categories of approaches, we propose an optimization-
based meta-learning method for segmentation tasks. Even though existing meta-learning methods
use prior knowledge to choose parameters that generalize well from few examples, these methods
limit the diversity of the task distribution that they can learn from in medical image segmentation.
In this paper, we propose a meta-learning algorithm to augment the existing algorithms with the
capability to learn from diverse segmentation tasks across the entire task distribution. Specifically,
our algorithm aims to learn from the diversity of image features which characterize a specific tissue
type while showing diverse signal intensities. To demonstrate the effectiveness of the proposed
algorithm, we conducted experiments using a diverse set of segmentation tasks from the Medical
Segmentation Decathlon and two meta-learning benchmarks: model-agnostic meta-learning (MAML)
and Reptile. U-Net and Dice similarity coefficient (DSC) were selected as the baseline model and the
main performance metric, respectively. The experimental results show that our algorithm maximally
surpasses MAML and Reptile by 2% and 2.4% respectively, in terms of the DSC. By showing a
consistent improvement in subjective measures, we can also infer that our algorithm can produce a
better generalization of a target task that has few examples.

Keywords: medical image segmentation; domain adaptation; meta-learning; U-Net

1. Introduction

Image segmentation is often the first and the most critical step in the analysis of
medical images for computer-aided diagnosis and therapy. Medical image segmentation
is a challenging and complex task due to the intrinsic nature of images. For instance, it is
difficult for experienced experts to accurately identify multiple sclerosis lesions in MRIs
due to the variability in lesion location, size, and shape, and the anatomical variability
across patients [1]. Manual segmentation has been gradually replaced by automatic seg-
mentation because of the high costs and time consumption [2]. Among existing automatic
segmentation methods, Convolutional neural networks (CNNs) have demonstrated great
achievement in increasing segmentation accuracy and stability [3–8]. However, existing
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CNNs are limited by the problem of dependency on the availability of training data owing
to high manual annotation costs and privacy issues.

To counter that limitation, domain adaptation (DA) and few-shot learning have been
extensively studied in semantic segmentation. DA focuses on using some data from the
target domain to quickly adapt a model trained in the source domain [9–14]. Few-shot
learning aims to learn the patterns of new concepts unseen in the training data, given only a
few labeled examples [15–19]. Inspired by previous works on DA and few-shot learning, we
have a question: can we adjust an optimization algorithm so that the segmentation model
can be good at learning with only a few examples? In order to solve this question, we take
an optimization-based meta-learning method to DA. The meta-learning method learns to
align source and target data in a domain-invariant discriminative feature space [20–22]. Ex-
isting optimization-based meta-learning algorithms such as model-agnostic meta-learning
(MAML) [23] and Reptile [24] aim to search for the optimal initialization state to quickly
adapt a base-learner to a new task. MAML is compatible with any model trained with
gradient descent. It is also applicable to a variety of different learning problems, including
classification, regression, and reinforcement learning. MAML provides a good initialization
of model parameters which achieve optimal fast learning toward a new task with only a
small number of gradient steps. In the meantime, MAML can avoid the overfitting that
may happen when using a small dataset. In MAML, source tasks are split into support and
query sets for support-training and query-testing purposes, respectively. In the inner loop
of MAML, a model is trained to solve each support set in turn based on a few examples
and gradient steps. Fast domain adaptation is achieved by training the source model with
the query set in the outer loop. Unlike MAML, which uses a support-query scheme to
quickly adapt a model to a new task, in the inner loop of Reptile, the model is iteratively
trained on a sampled task by multiple gradient steps. The model is then updated towards
the gradients learned from the sampled task in the outer loop. Reptile does not require
differentiating through the optimization process, making it more suitable for optimization
problems where many update steps are required.

Even though MAML and Reptile use prior knowledge to choose parameters that gen-
eralize well from few examples, both algorithms limit the diversity of the task distribution
that they can learn from in medical image segmentation. Specifically, MAML updates the
initial parameter vector towards the direction of a query-testing phase, which limits the
capability of updating the initial parameter vector by learning from the tasks in the support-
training phase. Reptile limits the ability of updating the model parameters since it does not
learn from diverse tasks in the inner loop. In order to counter the limitations in MAML and
Reptile, we propose to augment both algorithms with the capability to learn from diverse
segmentation tasks across the entire task distribution. Specifically, our algorithm aims to
learn from the diversity of image features which characterize a specific tissue type while
showing diverse signal intensities. The reason that the proposed idea can benefit from
signal intensities is described as follows. In MRI, the terms low, intermediate, and high
signal intensities are used. Depending on the scan protocol, a tissue type is imaged as
white if it has high signal intensities, as gray if it has intermediate signal intensities, and
as dark gray/black if it has low signal intensities. We focus on a class of tissue types which
move often: the heart is moving as it beats, the colon is moving as it digests, etc. Due to
the movement, these tissue types show diverse image features regarding location, size,
shape, and impact on the surrounding area. The image features are described by diverse
signal intensities, such as high, intermediate, and low. The learning capability is therefore
enhanced if we can learn from the diversity of image features which characterize a specific
tissue type while showing diverse signal intensities. Figure 1 displays two example tissue
types; each one shows diverse image features regarding location, size, shape, and impact
on the surrounding area.
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(a) (b)

Figure 1. The diversity of image features in two example tissue types: heart (left) and spleen (right). The image features are
segmented by green and red lines in the heart and spleen, respectively. (a) Heart; (b) spleen.

Our algorithm is briefly introduced as follows: In the inner loop, we first iteratively
train the initial parameter vector on a batch of support sets via multiple gradient steps.
Based on the parameter vector learned from the support batch, we then adapt the parameter
vector to a batch of query sets via one gradient step in the outer loop. After that, we update
the model towards the parameter vector learned from the query batch. Both support and
query batches are sampled from the entire task distribution. To demonstrate the effective-
ness of our method, we conducted experiments using a diverse set of segmentation tasks
from the Medical Segmentation Decathlon and two meta-learning benchmarks: MAML
and Reptile. U-Net [25] and Dice similarity coefficient (DSC) were selected as the baseline
model and the main performance metric, respectively. The experimental result shows that
our algorithm maximally surpasses MAML and Reptile by 2% and 2.4% respectively, in
terms of the DSC. By showing a consistent improvement in subjective measures, we can
also infer that our algorithm can produce a better generalization of a target task that has
few examples. The contributions of our algorithm focus on two points:

• Unlike existing meta-learning algorithms which limit the capability of learning from
diverse task distributions, we studied the feasibility of learning from the diversity of
image features which characterizes a specific tissue type while showing diverse signal
intensities.

• We propose an algorithm which can nicely learn from diverse segmentation tasks
across the entire task distribution. The effectiveness of our algorithm is illustrated by
showing consistent improvements in DSC and subjective measures.

2. Related Work
2.1. Convolutional Neural Networks

The concept of deep learning originates from the research of hierarchical artificial
neural networks. Unlike traditional segmentation methods that only utilize low-level
information such as pixel color, brightness, and texture, deep learning methods perform
better on extracting semantic information. One of the deep learning methods is CNN. CNN
is a kind of neural network with a special connective structure in hidden layers. With its
rich feature extractors, some classic models such as AlexNet [26], VGG [27], GoogleNet [28],
and ResNet [29] have been widely used in most computer vision tasks.

In the field of medical image processing, the fully convolutional network (FCN) [30]
and U-Net [25] are commonly used. Since FCN is a pixel-wise classification model, it
does not perform as well as U-Net for exploiting the relationship between pixels and
boundary information of the up-sampling results. U-Net consists of a contraction path
(encoder) and a symmetrical extension path (decoder) connected by a bottleneck. The
encoder gradually reduces the spatial size of feature maps, which captures the context
information and transmits it to the decoder. The decoder recovers the image details and
spatial dimensions of the object through up-sampling and skip connections. Even though
there has been a collection of variations of U-Net produced to improve segmentation
accuracy, it still appears to be inadequate for a segmentation task which needs to learn from
a limited amount of training data. Considering its satisfactory performance in medical
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image segmentation, we selected U-Net as the baseline model and applied the proposed
meta-learning method to it.

2.2. Optimization-Based Meta-Learning Methods

The inspiration of meta-learning comes from the human learning process, which can
adapt new tasks quickly according to a few examples [31]. The proposed meta-learning
method in this paper is optimization-based. This category of methods like MAML [23] and
Reptile are closely related to our method.

MAML aims to learn from a number of tasks T sampled from a distribution p(T ).
These tasks are composed of a support set τs and a query set τq. MAML requires that
τs and τq do not have any overlapping class. The algorithm attempts to find a desirable
parameter vector θ for a given model. In each inner loop of MAML, as shown in Figure 2a,
the model is learned from a support batch τs sampled from T s with a loss function
Lτs(θ, τs). A transitional parameter vector θs is obtained by updating θ through a number
of gradient steps. In the outer loop of MAML, a query batch τq sampled from T q is then
used to update θs to θq based on a query loss Lτq(θs, τq). After that, θq is applied to the
update of θ. In Figure 2a, we use arrows to represent the direction of update. The arrow
directed from θs to θq is parallel to the arrow directed from θ to θ∗, where the entire
updating process ends with θ∗.

(a) (b) (c)

Figure 2. Optimization-based meta-learning algorithms. We use black and red arrows to represent
the gradient steps in the inner loop and the outer loop, respectively. The blue arrow represents the
direction of model update. (a) MAML; (b) Reptile; (c) our algorithm.

Instead of using a support-query scheme, as shown in Figure 2b, in each inner loop,
Reptile updates θ by learning from the same batch τ through multiple gradient descent
steps. The direction of update in the outer loop is determined by θ and θ′, where θ′ is the
transitional parameter vector obtained from the inner loop. Reptile focuses on learning
from the same batch and improving generalization with a particular number of gradient
descent steps. The entire updating process ends with θ∗.

Differently from MAML and Reptile, as shown in Figure 2c, in the inner loop of our
algorithm, we first train the model parameters on a support batch τs with multiple gradient
steps. In the outer loop, we then adapt the model parameters to a query batch τq by one
gradient step. In Figure 2c, both τs and τq are sampled from the entire task distribution.
Figure 3 displays how MAML and our algorithm select τs and τq in the meta-training
phase. Each training task (1 or 2) mimics the few-shot scenario, which includes three
classes with two support examples and one query example. Each example in either the
support set or the query set is randomly selected from a set of training examples, which
is displayed in different colors. Each example includes three classes: H, S, and P which
represent the MRI images from THE heart, spleen, and prostate, respectively. We can
observe from Figure 3a that the examples for support and query purposes are split into
two partitions. in our algorithm, as shown in Figure 3b, the examples in each training task
are selected from diverse examples across the entire example distribution. MAML updates
the initial parameter vector towards the direction of query-testing phase, which limits the
capability of updating the initial parameter vector by learning from the examples in the
support-training phase. Unlike MAML, our algorithm avoids the limitation by removing
the boundary between support and query examples. By doing so, the parameter vector is
updated by learning from the diversity of support and query examples. The capability of
learning is therefore enhanced. The diversity can be interpreted as: for any tissue type in a
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set of examples, this tissue type shows diverse image features over location, size, shape,
and impact on the surrounding area (as shown in Figure 1). The direction of update in the
outer loop is determined by θ and θ′. The entire updating process ends with θ∗.
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Figure 3. The selection of examples in the meta-training phase. Left: MAML. Right: Our algorithm.
H, S, and P represent the MRI images from the heart, spleen, and prostate, respectively. Each example
is displayed by a particular color. (a) MAML; (b) ours.

3. Methodology

In this study, we used U-Net [25] as the baseline model and learned the initialization
of U-Net from multiple source tasks. Based on the parameter vector learned from the
source tasks, we fine-tuned the model on the target task. We aimed to train a U-Net that
can produce good generalization performance on the target task. In this section, we first
present the general form of our algorithm. After that, we provide some theoretical analysis
to better explain why the proposed algorithm works.

3.1. Meta-Learning Domain Adaptation

As shown in Algorithm 1, let θ denote the initial parameter vector, and we use
a parametrized function fθ to represent the baseline model. For any batch of tasks τs

sampled from p(T ), when fθ adapts to τs, the parameter vector θ becomes θ′i . The updated
parameter vector θ′i is computed using i gradient steps on τs. Let fθ′i

denote the updated
model; the update on the gradient at the ith step is described as

θ′i = θ′i−1 − α∇θ′i−1
Lτs( fθ′i−1

), (1)

where α is a fixed hyper-parameter and represents the learning-rate in the inner loop.
Lτs( fθ′i−1

) represents the loss function of model fθ′i−1
on τs. θ′i can be obtained by optimizing

fθ′i−1
with respect to θ′i−1 on the same batch of tasks sampled from p(T ). The meta-objective

can be described as
min
θ′i−1

Lτs( fθ′i
) = Lτs( fθ′i−1−α∇θ′i−1

Lτs ( fθ′i−1
)). (2)

The optimization on the entire meta-learning process is performed over parameters θ.
We can obtain θ′ by updating θ′i based on another batch of tasks τq which is also sampled
from p(T ). The optimization process is therefore described as

θ ← θ + β[θ′i − α∇θ′i
Lτq( fθ′i

)− θ], (3)

where β is a fixed hyper-parameter on step size in the outer loop. Table 1 shows all the
symbols associated with the proposed algorithm.
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Algorithm 1 Our meta-learning algorithm.
Require: p(T ): distribution over tasks
Parameter: α, β: step size hyperparameters

1: Initialize θ randomly

2: while not done do
3: Sample a batch of tasks τs ∼ p(T )
4: θ′0 = θ

5: for i = 1, 2, .., k do
6: Compute θ′i = θ′i−1 − α∇θ′i−1

Lτs ( fθ′i−1
)

7: end for

8: Sample another batch of tasks τq ∼ p(T )
9: Compute θ′ = θ′k − α∇θ′k

Lτq ( fθ′k
)

10: Update θ ← θ + β (θ′ − θ)

11: end while

3.2. Algorithm Analysis

In this subsection, we provide some analysis to better understand why the proposed
algorithm works. We first used a Taylor series to approximate the update performed by
our algorithm. Then, the effectiveness of our algorithm is shown via the computation of
the expected gradient over task and batch sampling.

Table 1. All the symbols associated with the proposed algorithm.

Symbol Description

θ The initial parameter vector
θ′ Updated parameter vector (out loop)
α Learning rate (inner loop)
β Step size (outer loop)

p(T ) The source training set
τs Support batch
τq Query batch
L Loss function
f The parametrized function
∇ Gradient descent steps

Suppose we perform two stochastic gradient descent (SGD) steps on Lτs and one step
on Lτq . Let φ0 denote the initial parameter vector. The updated parameter after two steps
can be described as

φ0 = θ (4)

φ1 = φ0 − αL′τs(φ0) (5)

φ2 = φ0 − αL′τs(φ0)− αL′τq(φ1) (6)

The Taylor expansion of L′τq(φ1) can be described as

L′τq(φ1) = L′τq(φ0) + L′′τq(φ0)(φ1 − φ0) + O(α2) (7)

= L′τq(φ0)− αL′′τq(φ0)L′τs(φ0) + O(α2). (8)

The gradient of our algorithm after two gradient steps is defined as

gours = (φ0 − φ2)/β = L′τs(φ0) + L′τq(φ1) (9)

= α/βL′τs(φ0) + α/βL′τq(φ0)− α2/βL′′τq(φ0)L′τs(φ0) + O(α2). (10)
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For any sampled task τ, let Eτ,τs [L′τs(θ)] and Eτ,τq [L′τq(θ)] denote the expected losses
with Lτs and Lτs , respectively. The expected losses with Lτq after the generalization on τs

is denoted as Eτ,τs ,τq [L′′τs(θ)L′τq(θ)]. The expectation of gours is therefore described as

E[gours] = Eτ,τs [L′τs(θ)] +Eτ,τq [L′τq(θ)]− α ·Eτ,τs ,τq [L′′τs(θ)L′τq(θ)] + O(α2), (11)

if the ratio between α and β is a constant. From Equation (11), we could find out that the
expected loss is minimized over tasks; then the higher-order Eτ,τs ,τq [L′′τs(θ)L′τq(θ)] enables
fast learning.

4. Experiments

In this section, we evaluate the proposed meta-learning algorithm by establishing two
medical image segmentation scenarios. We first introduce the dataset for evaluation and
the architecture of the baseline model. Then, we discuss the setup for implementation. Af-
ter that, we compare the proposed algorithm with two existing meta-learning benchmarks:
MAML and Reptile. In the final subsection, we study the hyper-parameter.

4.1. Dataset and the Baseline Model

We evaluated the proposed algorithm based on a public dataset from the Medical
Segmentation Decathlon. This dataset contains ten segmentation tasks, and each task
contains diverse scans on a specific tissue type. All the scans have been labeled and verified
by an expert human rater, and with his best attempt to mimic the accuracy required for
clinical use. We reshaped each scan to 256× 256 and simplified the multi-value annotation
to a binary segmentation task. Among all the tasks, we randomly selected eight tasks for
evaluation owing to computational overheads and memory issues. Six tasks are randomly
selected as source tasks, which were the heart from King’s College London, the liver from
IRCAD, the prostate from Nijmegen Medical Centre, and the pancreas, spleen, and colon
from the Memorial Sloan Kettering Cancer Center. The remaining two tasks, colon and liver,
were selected as target tasks. Two medical image segmentation scenarios were established
based on these two tasks. For comparison purposes, the scans related to the source tasks
were divided into two groups. The source training set of the first group contained 2611
scans of prostate, pancreas, and spleen. The target training set of the first group consisted
of 214 scans which were randomly sampled for the task of the colon. The target testing set
contained the remaining 1070 scans. The source training set of the second group contained
2877 scans which were of the prostate, heart, and spleen. The target training set of the
second group consisted of 191 scans which were randomly sampled for the tasks of liver.
The target testing set contained the remaining 18,791 scans.

U-Net was selected as the baseline model, which is illustrated in Figure 4. This model
is composed of three partitions, which are the encoder, skip connections, and decoder. The
encoder consists of four down-sampling blocks. Each block consists of the repeated appli-
cation of two 3× 3 convolutions, each followed by batch normalization (BN), a rectified
linear unit (ReLU), and a 2× 2 max-pooling operation with stride 2 for down-sampling.
The 2× 2 max-pooling operations are replaced with 2× 2 transposed convolutions in the
decoder. Skip connections concatenate the feature maps before the max-pooling operation
in down-sampling blocks with the output of the transposed convolution in up-sampling
blocks, which corresponds to the associated depth.

256 x 256 x 1

256 x 256 x 32 128 x 128 x 64
64 x 64 x 128

Concatencate

256 x 256 x 1

32x32x256

16x16x512

�&RQY�'�%1�5H/X�[�

0D[�SRROLQJ

7UDQVSRVHG�&RQY�'

6LJPRLG

Figure 4. U-Net architecture.
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4.2. Implementation

We used cross validation to randomly split either the target training set or the source
training set into two subsets. One was for training. The other one was for validation.
The volume of the training subset was four times that of the validation subset. Each
training set was shuffled in each epoch. We utilized data augmentation to reduce the risk of
overfitting. The data augmentation included 0∼180 degree random angle flipping, image
moving, cross cutting transformation, and image stretching. We applied the cross-entropy
function as a loss function. The batch size and the number of epochs were set to 8 and 300,
respectively. The batch size in the meta-training phase was set to 6. During meta-training
phase, we adopted SGD for each batch with category equipartitioning. The initial learning
rate α in algorithm 1 was set as 1 × 10−3. The step size β and the gradient step k were set as
0.4 and 3, respectively. We implemented the experiment with Keras. The implementation
was performed with an Ubuntu system which employed an NVIDIA GeForce 1080 Ti
graphics card which had an 11 Gigabyte memory.

The implementation of the proposed meta-learning algorithm and the two benchmarks
relates to pipeline III which is depicted in Figure 5c. In pipeline I, the baseline model is
trained directly on the target training set with random initialized parameters. The training
phase of pipeline II starts from the parameter vector obtained from the pre-training phase
on source domains. Pipeline III applies meta-learning algorithms on source training set.
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Target Domain
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Parameters
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Set
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Set
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tr
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(c)

Figure 5. The three pipelines. (a) Pipeline I; (b) pipeline II; (c) pipeline III.

For MAML, in either the colon or the liver task, we first equally split the source tasks
into two partitions where each partition contained all the three classes. The two partitions
were used for either support or query purposes. The support and query batches were
randomly selected from the support and the query sets, respectively. Each batch contained
two examples with three classes. For Reptile, in either the colon or the liver task, each batch
was randomly selected from the source tasks, which included two examples with three
classes. In our approach, we bring in the layer-freezing technique to optimize the whole
feature space. Specifically, when we transfer the initialized parameter vector generated by
source domain to target domain, we first train the baseline model on the target training
set T target

tr with the first two down-sampling blocks which has been frozen. We set the
learning rate at this phase as 1 × 10−3. Then, the second block is unfrozen and the target
training set T target

tr is utilized again. We set the learning rate and the decay rate at this
phase as 1 × 10−3 and 0.0077, respectively. For the third time, the target training set T target

tr
will be applied to the optimization process with entire trainable parameters adjustable.
The learning rate at this phase is set as 1 × 10−4.
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4.3. Experimental Results

Table 2 shows the experimental results of the established two segmentation scenarios.
The segmentation performance is described with Dice score (DSC), precision, and recall.
DSC is a method which measures the overlap between any two images. DSC has been
widely used to evaluate the performance of medical image segmentation when ground
truth is available. For binary segmentation of medical images, we set the ratio on target
area as 0.9. The ratio on background is 0.1.

Table 2. The results from two few-shot scenarios.

Source Domain Target Domain
Dice Coefficient ∆ Precision Recall

Task (s) Method Task (s) Method

Null Null

Colon

SST 0.537± 0.356 - 0.573± 0.362 0.573± 0.396
Prostate Pre-training SST 0.591± 0.332 0.054 0.595± 0.326 0.655± 0.377
Pancreas Pre-training SST 0.590± 0.347 0.053 0.634± 0.338 0.622± 0.384
Slpeen Pre-training SST 0.591± 0.318 0.054 0.594± 0.313 0.663± 0.362

Multi-source I

Pre-training SST 0.611± 0.325 0.074 0.629± 0.318 0.661± 0.362
Layer-freezing 0.652± 0.303 0.115 0.653± 0.296 0.717± 0.335

MAML SST 0.615± 0.323 0.078 0.655± 0.327 0.659± 0.342
Layer-freezing 0.655± 0.306 0.118 0.658± 0.301 0.716± 0.308

Reptile SST 0.608± 0.336 0.071 0.652± 0.332 0.637± 0.367
Layer-freezing 0.651± 0.308 0.114 0.652± 0.305 0.714± 0.341

Our Algorithm SST 0.628± 0.323 0.091 0.644± 0.319 0.673± 0.358
Layer-freezing 0.675 ± 0.292 0.138 0.669 ± 0.288 0.741 ± 0.322

Null Null

Liver

SST 0.904± 0.169 - 0.891± 0.165 0.934± 0.172
Prostate Pre-training SST 0.903± 0.176 −0.001 0.902± 0.163 0.923± 0.184

Heart Pre-training SST 0.902± 0.176 −0.002 0.894± 0.172 0.928± 0.175
Slpeen Pre-training SST 0.905± 0.163 0.001 0.892± 0.174 0.935± 0.170

Multi-source II

Pre-training SST 0.905± 0.168 0.001 0.888± 0.170 0.942± 0.157
Layer-freezing 0.916± 0.157 0.012 0.904± 0.156 0.944± 0.152

MAML SST 0.905± 0.167 0.001 0.895± 0.172 0.936± 0.168
Layer-freezing 0.916± 0.158 0.012 0.905± 0.154 0.943± 0.160

Reptile SST 0.904± 0.175 0 0.896± 0.172 0.927± 0.190
Layer-freezing 0.917± 0.158 0.013 0.907± 0.156 0.943± 0.158

Our Algorithm SST 0.912± 0.159 0.008 0.896± 0.161 0.944± 0.150
Layer-freezing 0.926 ± 0.141 0.022 0.914 ± 0.143 0.952 ± 0.133

DSC can be calculated with the bottom equation

DSC =
K

∑
k

2ωk∑N
i p(k,i)g(k,i)

∑N
i p2

(k,i) + ∑N
i g2

(k,i)

, (12)

where N represents the pixel number. p(k,i) ∈ [0, 1] and g(k,i) ∈ {0, 1} denote the predicted
probability and the ground truth label of class k, respectively. K is the number of class
and ωk denotes the weight of class k. The task of semantic segmentation is to predict the
class of each pixel in an image. Precision effectively describes the purity of our positive
predictions relative to the ground truth. Recall describes the completeness of our positive
predictions relative to the ground truth. The bold values in Table 2 indicate that the most
suitable freezing depth is 2, since the DSC achieved by this setting is the best.

As shown in Table 2, in the segmentation scenario of colon, we first implemented
pipeline I, where the baseline model is trained on the target training set with standard
supervised training (SST) without the use of any source training sets. The DSC achieved by
this method was 0.537. Then, we implemented pipeline II by respectively pre-training the
baseline model on three different source training sets which were the tasks on the prostate,
pancreas, and spleen. After the pre-training phase on each task, we trained on the target
training set with the SST method. The DSCs of the three tasks were 0.591, 0.590, and 0.591,
respectively. We use ∆ to represent the DSC improved upon the baseline method. We also
implemented pipeline II by pre-training on a batch that contained all the three tissue types;
we name this case multi-source I. The DSC achieved by this case was 0.611. The DSCs
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achieved by MAML, Reptile, and our proposed algorithm were 0.615, 0.608, and 0.628,
respectively. We also evaluated the performance of each method when the layer-freezing
technique was combined. On average, the layer-freezing technique improved DSC by
approximately 4.5% for pipeline II in the cases of multi-source I, MAML, Reptile, and our
proposed algorithm. Our proposed algorithm performed the best in terms of DSC, which
respectively surpassed pipeline II, MAML, and Reptile by 2.3%, 2%, and 2.4%. The bold
values in Table 2 represent the results achieved by our algorithm combined with the layer-
freezing technique. The DSC achieved is 0.675, which is an improvement of 0.138 upon the
baseline method, and it performed the best among all the methods.

In the segmentation scenario of liver, the DSC achieved by pipeline I was 0.904.
The DSCs achieved by pipeline II with single-source pre-training were 0.903, 0.902, and 0.905,
respectively. The DSC achieved by pipeline II with the case of multi-source II was 0.905.
The DSCs achieved by MAML, Reptile, and our proposed algorithm were 0.904 and 0.912,
respectively. On average, the layer-freezing technique improved DSC by approximately
1.2% for pipeline II in the case of multi-source II, MAML, Reptile, and our proposed algo-
rithm. Our proposed algorithm performed the best in terms of DSC, which respectively
surpassed pipeline II, MAML, and Reptile by 1%, 1%, and 0.9%. The DSC achieved by our
algorithm that used the layer-freezing technique was 0.926, which is 0.022 better than the
baseline method.

Figure 6 displays the convergence of loss function on the three approaches under the
segmentation scenario of colon. We use red, blue, purple, and green lines to represent our
algorithm, pipeline II with the case of multi-source I, MAML + layer-freezing, and Reptile
+ layer-freezing, respectively. The three approaches all trained on the target training set
of colon in the last phase of layer-freezing transfer. We found that all the methods were
almost converged in approximately 300 epochs. The computational cost of the proposed
framework is introduced by the number of Giga-bytes Floating-point Operations per
second (GFLOPs). We estimated the number of GFLOPs and parameters by calling the
THOP library function. The number of GFLOPs of the CNN model was 10.112532480.
The number of parameters was 4,320,609.
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Figure 6. The convergence of three different approaches under the few-shot scenario of colon.

We also calculated the GFLOPs of the CNN model (U-Net) to introduce the compu-
tational costs behind the proposed framework. We called the THOP library function to
estimate the number of FLOPs and parameters. The GFLOPs of the model was 10.112532480.
The number of parameters was 4,320,609.

Figure 7 shows the subjective measures of different approaches in the two established
segmentation scenarios. We use green and red contours to represent the image features of
ground truth and generated images. For each tissue type, we selected the sample where its
segmented image feature was the most visually similar to the ground truth label. From a
subjective view, the image produced by our algorithm is visually more similar to the ground
truth label and more accurate than the images produced by the other three approaches.
For example, in the segmentation task of colon, pipeline II significantly under-estimated the
sizes of both the lumen and walls of colon compared to the ground truth labels, while our
algorithm reproduced ground truth labels reliably. Even though contour drawing using
MAML produced grossly similar results as ground truth, there is an apparent fusion of two
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adjacent bowel loops. In the segmentation task of the liver, the portal vein (the area circled
by an orange circle in raw scans) was mistakenly included as part of the liver parenchyma
in (c), (d), and (e), while the ground truth labels in (b) and our algorithm correctly excluded
it from liver parenchyma. MAML also generated sharp edges around the gallbladder.

Figure 7. Subjective measures of different approaches in the established segmentation scenarios
(top: colon, bottom: liver). Each row presents one typical task, from left to right: (a) raw scans;
(b) ground truth labels; (c) pipeline II (multi-source Training); (d) MAML + layer-freezing; (e) Reptile
+ layer-freezing; (f) ours + layer-freezing. White areas represent the image features of colon and liver.

4.4. An Ablation Study on the Hyper-Parameter

The initial freezing depth is an important hyper-parameter in layer-freezing, which
determines how many layers to be frozen during the training on the target domain. A shal-
low model will lead to a catastrophic forgetting problem which may destroy the experience
learned by meta-learning algorithms. More and more experiences could be obtained and
fine-tuned by using a deeper model, but this still cannot guarantee one to achieve a better
performance on segmentation, not to mention a higher computational cost. To address this
problem, we studied the initial freezing depth under the two few-shot segmentation tasks
with an ablation study.

In this study, we investigate the DSCs achieved under three different initial freezing
depths. The results are displayed in Table 3. In the case that the depth is one, the learning
rates of the first stage and the second stage are 1 × 10−3 and 1 × 10−4, respectively. In the
case that the depth is two, the learning rates of the first two stages and the third stage are
1 × 10−3 and 1 × 10−4, respectively. We set the decay rate of the second stage as 0.0077.
In the case that the depth is three, the learning rates of the first three stages and the fourth
stage are 1 × 10−3 and 1 × 10−4, respectively. We set the decay rate of the third stage
as 0.0077. By observing the results shown in Table 3, in the two established segmentation
scenarios, we found that the segmentation performance was the best when the depth was
set as 2. Although the DSC in the case that the depth was three was better than the case
when the depth was one, a deeper depth leads to a higher computational cost.

Table 3. The results on the two established segmentation scenarios under different initial freezing
depths. The bold values represent the most suitable depths that achieve the best DSCs.

Depths

DSC Target Domain
Colon Liver

1 0.660± 0.306 0.920± 0.160
2 0.675 ± 0.292 0.926 ± 0.141
3 0.671± 0.298 0.924± 0.148

In [24], the authors point out that using only one gradient descent is not effective
during the learning process. The reason is that it optimizes the expected loss over all
tasks. It turns out that the performance achieved by the two-step Reptile is worse than



J. Imaging 2021, 7, 31 12 of 14

the performance achieved by two-step standard supervised learning. However, with more
inner loop steps, the performance of Reptile can be further improved and surpass the
standard supervised learning. The authors also show that the learning performance is the
best when the number of inner loops is four. We therefore set the number of inner loops
as four when we implemented Reptile. We set the number of inner loops as three for our
algorithm such that the number of gradient descent calculations was the same for each
time the parameter was updated.

5. Discussion

By observing the results shown in Table 2, we could find out that DSC can be improved
when pre-knowledge is used. In the meantime, a better DSC can be achieved when the
source training set is sampled from a diverse task distribution. The DSCs achieved by
MAML and Reptile are almost same as the result achieved by pipeline II with multi-source
training. What is more, the combination of our proposed algorithm and the layer-freezing
technique achieved the best performance in the two established scenarios among pipeline
I, pipeline II with single-source training, pipeline II with multi-source training, MAML,
and Reptile. Specifically, our algorithm achieved 13.8% and 2.4% better DSCs than pipeline
I and Reptile, respectively. All our results are reported as averages over five independent
runs and with 95% confidence intervals.

In Figure 6, we can see that the losses in the three approaches can be converged to
a smaller value in contrast to our algorithm. However, our algorithm achieved a higher
DSC than the other three approaches. This observation implies that our algorithm can do a
better job of alleviating the overfitting problem for few-shot segmentation tasks.

6. Conclusions

This paper proposes a novel meta-learning algorithm to adjust the optimization algo-
rithm so that the segmentation model is nicely learned from a target task which has few
examples. Specifically, this algorithm can learn from diverse segmentation tasks across
the entire task distribution. In contrast to existing meta-learning algorithms, the proposed
algorithm augments the capability to learn from the diversity of image features which
characterize a specific tissue type while showing diverse signal intensities. To demonstrate
the effectiveness of the proposed algorithm, extensive experiments were conducted by
using a diverse set of segmentation tasks on two optimization-based meta-learning bench-
marks. The experimental results show that our algorithm surpasses the two benchmarks
and brings consistent improvements to both DSC and subjective measures, which implies
that the proposed algorithm can produce a better generalization of the target task which
has few examples.
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