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Abstract: Visual features and representation learning strategies experienced huge advances in the
previous decade, mainly supported by deep learning approaches. However, retrieval tasks are
still performed mainly based on traditional pairwise dissimilarity measures, while the learned
representations lie on high dimensional manifolds. With the aim of going beyond pairwise analysis,
post-processing methods have been proposed to replace pairwise measures by globally defined
measures, capable of analyzing collections in terms of the underlying data manifold. The most
representative approaches are diffusion and ranked-based methods. While the diffusion approaches
can be computationally expensive, the rank-based methods lack theoretical background. In this paper,
we propose an efficient Rank-based Diffusion Process which combines both approaches and avoids
the drawbacks of each one. The obtained method is capable of efficiently approximating a diffusion
process by exploiting rank-based information, while assuring its convergence. The algorithm exhibits
very low asymptotic complexity and can be computed regionally, being suitable to outside of dataset
queries. An experimental evaluation conducted for image retrieval and person re-ID tasks on diverse
datasets demonstrates the effectiveness of the proposed approach with results comparable to the
state-of-the-art.

Keywords: diffusion; rank; image retrieval; convergence

1. Introduction

For decades, the evolution of image retrieval approaches was mainly supported by
the development of novel features for representing the visual content. Other relevant
stages of the retrieval pipeline were often neglected [1]. Even in the era of deep learning-
based features, retrieval systems often perform comparisons by computing measures
which consider only pairs of images and ignore the relevant information encoded in the
relationships among images. Traditionally, such measures are defined based on pairwise
dissimilarities between features represented in a high dimensional Euclidean space [2].

To go beyond pairwise analysis, post-processing methods have been proposed with
the aim of increasing the effectiveness retrieval tasks without the need for user interven-
tion [3–6]. Such unsupervised methods aim at replacing similarities between pairs of
images by globally defined measures, capable of analyzing collections in terms of the
underlying data manifold, i.e., in the context of other objects [2,4].

Diversified context-sensitive methods have been exploited by post-processing ap-
proaches for retrieval tasks. Among them, two categories can be highlighted as very repre-
sentative of existing methods: diffusion processes [3,7,8] and rank-based approaches [6,9,10].
The most common diffusion processes are inspired by random walks [5], and therefore
supported by a strong mathematical background. Very significant improvements to re-
trieval performance have been achieved by such methods [3,7,8]. However, they often
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require high computational efforts, mainly due to the asymptotic complexity associated
with matrices multiplication or inversion procedures.

More recently, rank-based methods also have attracted a lot of attention, mainly due
to relevant similarity information encoded in the ranked lists [11,12]. While the rank-based
strategies also achieve very significant effectiveness gains, such methods lack a theoretical
basis and convergence aspects are mainly based on empirical analysis [13]. On the other
hand, a positive aspect is related to the low computational costs required. Most of relevant
similarity information is located at top rank positions, reducing the amount of data which
needs to be processed and enabling the development of efficient algorithms [14]. In fact,
efficiency aspects assumed a relevant role last years for both diffusion and rank-based
methods, especially regarding its application to query images outside of the dataset [15,16].

In this paper, we propose a diffusion process completely defined in terms of ranking
information. The method is capable of approximating a diffusion process based only on
the top positions of ranked lists, while assures its convergence. Therefore, since it combines
diffusion and rank-based approaches, both efficiency and theoretical requirements are met.
The main contributions of this work are three-fold and can be summarized as follows:

• Efficiency and Complexity Aspects: traditionally, diffusion processes compute the el-
ements of affinity matrices through successive multiplications, considering all the
collection images. To reduce the computational costs, sparse affinity matrices [8] are
employed for the first iteration. However, there is no guarantees that the multiplied
matrices are also sparse and classic diffusion methods do not know in advance where
the non-zero values appear in the matrices computed over the iterations. Therefore, a
full multiplication of O(n3) time complexity is required for each iteration. In opposite,
the proposed method keeps the sparsity of matrices by computing only a small subset
of affinities, which are indexed through rank information. First, the proposed method
derives a novel similarity measure based only on top-k ranking information. Then,
only the matrix positions indexed by the top-L rank positions (L > k) are computed.
Inspired by [9,17], the overlap between ranked lists and, equivalently, between el-
ements of rows/columns being multiplied is considered. Figure 1 illustrates this
process for computing a matrix row, with sparsity depicted in white. The operation
is constrained to top-L rank positions with time complexity of O(kL), and therefore
O(1) for each row (with L constant), and hence O(n) for all rows, i.e., the whole
dataset. Therefore, the method computes only a small subset of operations required by
diffusion processes, reducing the conventional time complexity for the whole dataset
from O(n3) to O(n).

• Theoretical Aspects: while convergence is an aspect well-defined and widely studied
for diffusion processes [5,18], the same cannot be said about rank-based approaches.
In fact, the use of classic proofs for rank-based approaches is not straight-forward and
the convergence is still an open topic when considering rank information [19], only
analyzed through empirical studies [13]. Once the connection between diffusion and
rank-based methods is formally established, we discuss the extension of convergence
properties from diffusion to the proposed rank-based approach. To the best of our
knowledge, this is the first work which presents a formal proof of convergence of
rank-based methods.

• Unseen Query Images: most of both diffusion and ranked-based methods, consider
the query image to be contained in the dataset. Alternatively, a query image can be
included in the dataset at query time. However, even an efficient algorithm of O(n)
is unfeasible to be executed on-line for larger datasets. A more recent research trend
consists on post-processing approaches for efficiently dealing with unseen queries
at query time [15,16]. The proposed method also allows its use for unseen queries
through a simple regional diffusion constrained to top-L rank positions of the query,
which can be computed in O(1).
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Figure 1. Our efficient algorithm constrained to top-L rank positions exploited for efficiently computing the Rank Diffusion.

An extensive experimental evaluation was conducted considering different retrieval
scenarios. The evaluation for general image retrieval tasks was conducted on 6 public
datasets and several features, including global (shape, color, and texture), local, and
convolution-neural-network-based features. The performance on Person reidentification
(re-ID) tasks was also evaluated on two recent datasets using diverse features. The proposed
method achieves very significant gains, reaching up to +40% of relative gain on image
retrieval and +50% on person re-ID tasks. Comparisons with various recent methods on
different datasets were also conducted and the proposed algorithm yields comparable or
superior performance to state-of-the-art approaches.

The remainder of this paper is organized as follows. Section 2 discusses the rela-
tionship between diffusion, rank-based and the proposed approach. Section 3 formally
defines the proposed method, while Section 4 discusses complexity aspects and presents an
efficient algorithmic solution. Section 5 describes the conducted experimental evaluation
and, finally, Section 6 discusses the conclusions.

2. Diffusion, Rank-Based, and the Proposed Method

Diffusion is one of the most widely spread processes in science [17,20]. In the retrieval
domain, diffusion approaches rely on the definition of a global measure, which describes
the relationship between pairs of points in terms of their connectivity [2–4]. In general,
diffusion methods start from an affinity matrix, which establishes a similarity relationship
among different dataset elements [5].

Let C={y1, y2, . . . , yn} be an image collection of size n = |C|. Let xi denotes a d-
dimensional representation of an image yi given by a feature extraction function, such that
xi ∈ Rd. The dataset can be represented by a set X={x1, x2, . . . , xn} and the affinity matrix
W among the elements is often computed by a Gaussian kernel as

wij = exp
(
−

ρ(xi, xj)
2

2σ2

)
, (1)

where σ is a parameter to be defined and the function ρ is commonly defined by the
Euclidean distance ρ(xi, xj) = ||xi − xj||.

Most of the diffusion processes [5] are mainly defined in terms of successive multipli-
cations of affinity matrices, such that their high computational cost is mainly caused by the
matrix multiplication operations. This is due to the fact that similarities to all images need
to be computed, even those with very low similarity values, whose impact on retrieval
results is very small. Additionally, even when sparse affinity matrices are considered, such
sparsity is not guaranteed to be kept through the iterative matrices multiplications.

While the diffusion methods use the similarity measure computed based on visual
features, the rank-based approaches exploit the similarity encoded in ranking information.
The rank information is initially represented in terms of ranked lists, which are computed
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based on the distance function ρ. One key advantage of rank-based models is due to the
fact that top positions of ranked lists are expected to contain the most similar images to the
query. Therefore, instead of full ranked lists which can be very time-consuming to compute
according to the size of the dataset, only a subset (of a fixed size L) needs to be considered.

Formally, let τq be a ranked list computed in response to a query image yq. Let CL be a
subset of the collection C, such that CL ⊂ C and |CL| = L. The ranked list τq can be defined
as a bijection from the set CL onto the set [L] = {1, 2, . . . , L}. The notation τq(i) denotes
the position (or rank) of image yi in the ranked list τq according to the distance ρ. Hence,
if the image yi is ranked before yj in the ranked list τq, i.e., τq(i) < τq(j), then ρ(xq, xi) ≤
ρ(xq, xj).

In general, to compute a more global similarity measure between two images yi and
yj, the rank-based methods exploit the similarity between their respective ranked lists
τi and τj. Several distinct approaches have been proposed in order to model the rank
similarity information. The asymmetry of the k-neighborhood sets were exploited in
various works [10,21,22]. Rank correlation measures and similarity between neighborhood
sets have also been successfully employed [6,23]. More recently, graph [12,24,25] and
hypergraph [26] formulations have been used.

In terms of objectives and outputs, both approaches, diffusion and rank-based, are
comparable in that both aim at obtaining more global similarity measures that are expected
to produce more effective retrieval results. However, each category presents distinct
advantages. While rank-based approaches focus on the similarity encoded in the top
positions of ranked lists, reducing the computational cost, the diffusion approaches benefit
from a strong mathematical background.

In this scenario, the Rank Diffusion Process with Assured Convergence (RDPAC) is
proposed in this paper based on an efficient formulation capable of avoiding the compu-
tation of small and irrelevant similarity values. The main idea consists of exploiting the
rank information to identify and index the high similarity values in the transition and
affinity matrices. In this way, the method admits an efficient algorithmic solution capable
of computing an effective approximation of diffusion processes. Mostly related to [17],
the proposed approach presents relevant novelties: a theoretical convergence analysis, a
novel rank similarity measure, a post-diffusion reciprocal step and its capacity of dealing
with unseen queries in on-line time. The proof of convergence of the method presented in
this work is a topic which has not been addressed for other rank-based approaches. The
proposed similarity considers only ranking information. This makes it robust to feature
variations, and therefore, suitable for fusion tasks.

3. Rank Diffusion Process with Assured Convergence

The presentation of our method is organized in four main steps: (i) a similarity
measure is defined based on ranking information; (ii) a normalization is conducted for
improving the symmetry of ranking references; (iii) the rank diffusion process is performed,
requiring a small number of iterations; (iv) a post-diffusion step is conducted for exploiting
the reciprocal rank information. Each step is discussed and formally defined in the next
sections in terms of matrix operations. The efficient algorithmic solutions are discussed in
Section 4.

3.1. Rank Similarity Measure

In this work, a novel approach is proposed for defining the affinity matrix W by using
a rank-based strategy. Although we mentioned a common retrieval pipeline based on
the Euclidean distance, the method requires only the ranked lists, such that any distance
measure can be used. Based only on rank information, our approach defines a very sparse
matrix and, at same time, allows predicting information about its sparsity. By exploiting the
information about sparsity, it is possible to derive efficient algorithmic solutions (discussed
in Section 4).
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Taking every image in the collection as a query, a set of ranked lists T = {τ1, τ2, . . . , τn}
can be obtained. Based on similarity information encoded on the set T , a rank similarity
measure is defined. The confidence of similarity information reaches its maximum at
top positions and decreases at increasing depths of ranked lists. Hence, a rank similarity
measure is proposed by assigning weights to positions inspired by the Rank-Biased Overlap
(RBO) [27]. The RBO measure is based on a probabilistic model which considers the
probability of a hypothetical user of keeping examining subsequent levels of the ranked list.

The affinity matrix can be computed according to the different sizes of ranked lists. Let
s denotes the size of ranked lists, the subscript notation Ws is used to refer to affinity matrix
computed by considering the size s. Each position of the matrix Ws is defined as follows:

wsij =

{
pτi(j) if τi(j) ≤ s
0, otherwise,

(2)

where p denotes a probability parameter.
In our method, the ranked list size s assumes two different values according to the

step being executed. During the rank diffusion, the size is defined as s = k, where k denotes
the number of nearest neighbors (including the point itself). For the normalization, the
size is defined as s = L, defining a more comprehensive collection subset, although much
smaller than n, i.e., k < L� n.

In this way, both matrices Wk and WL are very sparse, which allows an efficient
algorithmic approximation of the diffusion process. Beyond a novel formulation for the
similarity measure, the rank information is exploited to identify high similarities positions
in sparse matrices. By computing only such positions, a low complexity can be kept for
the algorithm, which is one of key characteristics of the proposed approach, discussed
in Section 4.

3.2. Pre-Diffusion Rank Normalization

In contrast to most distance/similarity pairwise measures, the rank measures are not
symmetric. Even if an image yi is at top positions of a ranked list τj, there is no guarantee
that yj is well ranked in τi. As a result, different values are assigned to symmetric matrix
elements, such that wsij 6= wsij , which can negatively affect the retrieval results. In fact, the
benefits of improving the symmetry of the k-neighborhood relationship are remarkable in
image retrieval applications [28].

Therefore, a pre-processing step based on reciprocal ranking information is conducted
before the rank diffusion process. The reciprocal rank references have been exploited by
other works, usually considering the information of rank position. In our approach the
rank similarity measure described in the previous section is used.

The affinity matrix is computed by considering an intermediary size of ranked lists
s = L. By slightly abusing the notation, from now on WL denotes a symmetric version of
WL, i.e., we have

WL = WL + WT
L . (3)

The number of non-zero entries per row in the so normalized matrix WL is defined in
the interval [L, 2L], depending of the size of intersection among references and reciprocal
rank references. Based on the normalized matrix WL, the ranking information is updated
through a re-sorting procedure. The ranked lists are re-sorted in descending order of
affinity score, according to a stable sorting algorithm. The resultant normalized set of
ranked lists T is used for the diffusion process, i.e., Equation (2), and consequently, Wk
used in next section is computed based on T .

We further column-wise normalize matrix Wk to a matrix

w(t)
ij =

w(t)
ij

ε +
n
∑

c=1
w(t)

jc

, (4)



J. Imaging 2021, 7, 49 6 of 23

where ε is a small constant to ensure that the sum of each column <1.

3.3. Rank Diffusion with Assured Convergence

To make the graph diffusion process independent from the number of iterations,
accumulation of similarity values over iterations is widely used [29]. For each iteration, the
similarity information is diffused through a transition matrix P and added to the similarity
information diffused in previous steps. We initialize the transition matrix P as P(1) = Wk
and define the iterative diffusion as

P(t+1) = αP(t)WT
k + (1− α)I, (5)

where α is a parameter in the interval (0,1) and I is the identity matrix. The accumulation
of similarity values is achieved through the addition of the identity matrix as we will see in
the next section. The addition of the identity matrix also contributes to convergence of the
iterative process in (5).

Given the asymmetry of the affinity matrix Wk, due to column-wise normalization
in (4), its transposition is used for considering the multiplication among corresponding
rank similarity scores. A non-transposed matrix defines reciprocal rank relationships,
which is performed as a post-diffusion step, as discussed in Section 3.5.

3.4. Proof of Convergence

To prove the convergence of the iterative diffusion process in Equation (5), we first
consider its simpler variant defined as

P(t+1) = P(t) WT
k + I, (6)

where P(1) = Wk.
As we show now, so defined P(t) is guaranteed to converge. We can transform (6) to

P(t+1) = P(t)WT
k + I (7)

= (P(t−1) WT
k + I)WT

k + I (8)

= P(t−1) (WT
k )

2 + I WT
k + I (9)

= Wk (W
T
k )

t + I (WT
k )

t−1 + ... + I (10)

= Wk (W
T
k )

t +
t−1

∑
i=0

(WT
k )

i (11)

Due to the column-wise normalization of the matrix Wk, the sum of each row of
WT

k < 1. This implies limt→∞ Wk (WT
k )

t = 0, and consequently,

lim
t→∞

P(t+1) = lim
t→∞

t−1

∑
i=0

(WT
k )

i = (I−WT
k )
−1 (12)

This proves the convergence of (6) after a sufficient number of iterations. The con-
vergence proof also applies to the diffusion process in Equation (5). We do not use the
closed form solution (12) in our experiments, since the matrix inversion is computationally
expensive. Both iterative processes accumulate diffused similarity values, and can be
viewed as special instances of

A(t) =
t

∑
i=0

Ai, (13)

where A is a graph affinity matrix. Under the assumption that the sum of each row of
A < 1, which implies that the spectral radius of A is smaller than one, (13) converges to a
fixed and nontrivial solution given by limt→∞ A(t) = (I−A)−1, which makes independent
of the number of iterations.
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In contrast, the rank-based diffusion in [17] represents the simplest realization of a
diffusion process on a graph as it only computes powers of the graph matrix, i.e., the
edge weights at time (or iteration) t are given by At. Hence, this process is sensitive to the
number of iterations [29]. For example, if the sum of each row of A is smaller than one,
then it converges to the zero matrix, in which case determining a right stopping time t is
critical. To avoid the convergence to zero matrix, a small value of t is used as t = k.

3.5. Post-Diffusion Reciprocal Analysis

Despite of the relevant similarity information encoded in the reciprocal rank references,
such information is not considered during the rank diffusion process. More specifically,
for two images yi and yj, the diffusion step considers the information encoded in the
rank similarity of yi and yj to another images contained in a shared k-neighborhood. The
information about the rank similarity of these images to yi and yj is not exploited.

Let θ be the final number of iterations used in (5). To aggregate the reciprocal analysis
over the gains already obtained by the diffusion process, a post-diffusion step is proposed.
The result of the rank diffusion process given by matrix P(θ) is subsequently column
normalized according to Equation (4). The post-diffusion step is then computed as

R = P(θ)2
Wk (14)

The matrix P(θ) is squared for analyzing similarity between rows (ranked lists) versus
columns (reciprocal references). Due to the asymmetry of rank-based matrices, the multi-
plication by the tranposition considers similarity between ranked lists, while the reciprocal
ranking references are considered without the transposition. In contrast to Equation (5), the
multiplication for reciprocal analysis does not consider transposed matrices. The obtained
R denotes the final result matrix which is used to define the similarity scores and the
re-ranked retrieval results denoted by the set of ranked lists T̂ .

3.6. Rank Fusion

Several different visual features have been proposed over recent decades aiming to
mimic the inherent complexity associated with the visual human perception. However,
given the myriad of available features, how to combine them so that their complementarity
is well exploited becomes a key question. Our answer is to derive a rank fusion approach
embedded in the diffusion process.

Let F = { f0, f1, . . . , fm} be a set of visual features. Let Ti be the set of ranked lists
computed for a given feature fi. The rank diffusion is computed for each feature, in order
to obtain a re-ranked set T̂i. Based on such set of ranked lists, Equation (2) is used to derive
a rank similarity matrix, given by WL(i), where L denotes the size of ranked lists and i
stands for feature fi. A fused similarity matrix F is defined as:

F =
m

∑
i=1

WL(i) (15)

Finally, the fused similarity matrix F is used to derive a novel set of ranked lists, which
is submitted to the proposed rank diffusion process.

4. Efficiency and Complexity Aspects

In this section, we discuss and present algorithms for efficiently computing the main
steps of the proposed method. Inspired by [17], the algorithm identifies high similarities
values indexed through ranking information according to top-L positions, while discards
the remaining information which results in the sparsity of the transition matrix P.

Figure 2 illustrates the impact of our approach on the sparsity along iterations. First
line depicts the matrix P with a constrained top-L diffusion, while the second line considers
the whole dataset. In this way, the value of L can be seen as a trade-off parameter between
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effectiveness and efficiency. As experimentally evaluated in Section 5, the impact of lost
information after top-L is not significant, even for relatively small values of L.

(a) (b) (c)

(d) (e) (f)
Figure 2. Impact of top-L constrained diffusion on sparsity of the probability matrix (first row) P on
MPEG-7 dataset: non-zero values represented as black pixels. (a) 2nd it. L = 400, (b) 5th it. L = 400,
(c) 10th it. L = 400, (d) 2nd it. L = Full, (e) 5th it. L = Full, (f) 10th it. L = Full.

4.1. Efficient Algorithmic Solutions

For deriving the algorithms, we exploit a neighborhood set N (yq, s), which contains
the s most similar images to a given image yq. The first main step of the method consists
in the computation of the affinity matrix WL and its rank normalization. Algorithm 1
addresses the efficient computation of WL constrained to top-L rank positions according to
Equation (2).

Algorithm 1 Rank Sim. Measure

Require: Set of ranked lists T , Parameter size L
Ensure: Sparse matrix WL

1: for all yi ∈ C do
2: for all yj ∈ N (yi, L) do
3: wLij ← pτi(j)

4: end for
5: end for

The efficient rank normalization is presented in Algorithm 2, which is equivalent to
Equation (3). Line 2 process aims at considering most of non-zero entries for each row,
which can reach 2 × L. In general, presented algorithms follow the same principle of
bounding the processing to the top ranking positions, which are used to discard sparse
positions of matrix W and P.
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Algorithm 2 Rank Normalization

Require: Set of ranked lists T , matrix WL, Parameter L
Ensure: Reciprocal normalized set of ranked lists T̄

1: for all yi ∈ C do
2: for all yj ∈ N (yi, 2× L) do
3: w̄Lij ← wLij + wLji

4: end for
5: end for
6: T̄ ← stableSorting(T , W̄L)

The normalization procedures given by Equation (4) are addressed in Algorithm 3.
The same algorithm can be used for computing the normalization of matrix P before the
reciprocal analysis, by using the constant L instead of k.

Algorithm 3 Matrix Normalization
Require: Matrix Wk
Ensure: Normalized Matrix Wk

1: for all yj ∈ C do
2: aj ← 0
3: end for
4: for all yi ∈ C do
5: for all yj ∈ N (yi, k) do
6: aj = aj + wkij
7: end for
8: end for
9: for all yi ∈ C do

10: for all yj ∈ N (yi, k) do
11: wij = wij/aj
12: end for
13: end for

Algorithm 4 presents the proposed approach for computing the rank diffusion, defined
by Equation (5). It is the central element of the proposed method, and it is iterated θ times.
An analogous solution can be used to compute the post-diffusion reciprocal analysis,
defined in Equation (14).

Algorithm 4 Rank Diffusion

Require: Matrices Wk and Pt

Ensure: Matrix Pt+1

1: for all yi ∈ C do
2: p(t+1)

ii ← (1− α)
3: for all yj ∈ N (yi, L) do
4: if yi 6= yj then
5: p(t+1)

ij ← 0
6: end if
7: for all yl ∈ N (yj, k) do

8: p(t+1)
ij ← p(t+1)

ij + (p(t)il × wk jl)

9: end for
10: p(t+1)

ij ← α(p(t+1)
ij)

11: end for
12: end for

4.2. Complexity Analysis

As discussed before, the diffusion processes typically exhibits an asymptotic com-
plexity of O(n3), mainly due to successive matrices multiplications required. It occurs
because both relevant and non-relevant similarity information are processed. In contrast,
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our approach exploits rank information, which allows the algorithms presented in the
previous section to compute only relevant similarity scores.

The inputs are ranked lists, which can be computed by employing an efficient k-
NN graph construction method with the NN-Descent algorithm [30] or other recent ap-
proaches [31,32]. Based on the ranked lists, the sparse affinity matrix can be computed in
O(n) according to Algorithm 1. Since L is a constant, only the loop in lines 1–5 depend on
the number of elements in the dataset.

Algorithms 2 and 3 are also O(n) for analogous reasons. All the internal loops are
constrained to constants L or k. The sorting step in Algorithm 2 is also performed until a
constant L, being O(1) for each ranked list and O(n) for the whole dataset.

The most computationally expensive step is given by Algorithm 4. However, notice
that loops in lines 3–11 and 7–9 are constrained to constants L and k, respectively, keeping
the asymptotic complexity of O(n). This algorithm is iterated θ times, where θ is also
constant. Therefore, we can conclude that all the algorithms can be computed in O(n).

4.3. Regional Diffusion for Unseen Queries

Let yu be an unseen query image, defined outside of the collection, such that yu /∈ C. In
fact, such situation represents a classical and common real-world image retrieval scenario.
The objective is to efficiently obtain retrieval results re-ranked by the proposed diffusion
process. The main idea of our solution is computing a regional diffusion, constrained only
to the top-L images of the unseen query ranking.

Firstly, an initial neighborhood set N (yu, L) and a corresponding ranked list τu can
be obtained through an efficient k-NN search approach [30–32]. The neighborhood set
N (yu, L) is used to define a sub-collection Cu ⊂ C, such that |Cu| = L. Next, the set of
pre-computed ranked lists for images in Cu are updated in order to contain only images of
the sub-collection, removing the other images. Formally, let yi, yj ∈ Cu be two images of
the sub-collection. The updated ranked list τ′i is defined as a bijection from the set Cu onto
the set [L] = {1, 2, . . . , L}. The position of image yj in the ranked list τ′i is defined as:

τi(j)′ = |{yr|yr ∈ Cu ∧ τi(r) < τi(j)}|+ 1 (16)

Once the ranked lists are updated, the Rank Diffusion Process is executed for the
sub-collection Cu in order to obtain the re-ranked retrieval results for the unseen query.
As all the procedures are constrained to L, the time complexity is O(1). As discussed
in experimental section, the results can be obtained in on-line time without significant
effectiveness losses in comparison to the global diffusion, defined for the whole collection.

5. Experimental Evaluation

This section discusses the comprehensive experimental evaluation conducted in order
to assess the effectiveness of the proposed method.

5.1. Experimental Protocol and Implementation Aspects

For image retrieval, the proposed method was evaluated on 6 diversified public
datasets, ranging from 280 to 72,000 images. Different features were considered, including
global (shape, color, and texture), local, mid-level representations and convolutional neural
network-based features. Table 1 presents the datasets and the features used for each dataset.
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Table 1. Image datasets and features used in the experimental evaluation.

Dataset Size Type General Descriptors Effectiv.
Features Measure

Soccer [33] 280 Scenes/ Color
Composed of images from 7
soccer teams, containing 40
images per class.

Border/Interior Auto Color Correlograms
(ACC) [34], Pixel Classification (BIC) [35], and
Global Color Histogram (GCH) [36]

MAP

MPEG-7 [37] 1400 Images: Shape

Composed of 1400 shapes
divided in 70 classes.
Commonly used for evaluation
of post-processing methods.

Articulation-Invariant Representation (AIR) [38],
Aspect Shape Context (ASC) [39], Beam Angle
Statistics (BAS) [40], Contour Features Descriptor
(CFD) [41], Shape Context (IDSC) [42], and Segment
Saliences (SS) [43]

MAP,
Recall@40

Holidays [44] 1491 Scenes

Commonly used as image
retrieval benchmark, the dataset
is composed of 1491 personal
holiday pictures with 500
queries.

Color and Edge Directivity Descriptor Spatial
Pyramid (CEED-Spy) [45,46], ACC [34],
CNN-OLDFP [47], and
Convolutional Neural Network by OverFeat [48]
(CNN-OverFeat)

MAP

Brodatz [49] 1776 Images: Texture
A popular dataset composed of
111 different textures divided
into 16 blocks.

Color Co-Occurrence Matrix (CCOM) [50], Local
Activity Spectrum (LAS) [51], and Local Binary
Patterns (LBP) [52]

MAP

Corel5K [53] 5000 Objects/
Scenes

Composed of 50 categories with
100 images each class, including
diverse scene content.

ACC [34], ACC Spatial Pyramid (ACC-Spy) [34,46],
Color and Edge Directivity Descriptor Spatial
Pyramid (CEED-Spy) [45,46], CNN by framework
Caffe (CNN-Caffe) [54], FCTH Spatial Pyramid
(FCTH-Spy) [46,55]

MAP

ALOI [56] 72,000 Images: Objects
Images from 1000 classes of
objects, with different
viewpoint and illumination.

ACC [34], BIC [35], GCH [36], Color Coherence
Vectors (CCV) [57], Local Color Histograms
(LCH) [58], CNN-Resnet [59], and CNN-VGG [60]

MAP

All images are considered as query images, except for the Holidays [44] dataset, where
we use 500 queries for comparison purposes. The effectiveness measure considered for
most of experiments is the Mean Average Precision (MAP), but other measures are also
considered according to the specific protocol of some datasets: the Recall at 40 (bull’s eye
score) for MPEG-7 [37] dataset. For the most of experiments we also report the relative gains
obtained, which is defined as follows: let Mb, Ma be the effectiveness measures respectively
before and after the use of the method, the relative gain is defined as G = (Ma −Mb)/Mb.

Regarding implementation aspects, the proposed method was developed in C++ lan-
guage under the UDLF framework [61]. The framework provides a software environment
to easily implement, use, and evaluate unsupervised post-processing methods. The source-
code is publicly available on GitHub https://github.com/UDLF/UDLF/ (accessed on 5
March 2021), under the terms of the GPLv2 license, allowing free access and possibility of
sharing the code.

5.2. Parametric Space Analysis

This section discusses the impact of parameters on the retrieval results. The parameters
considered are: θ, k, α, p, pL, and L. The number of iterations is given by θ. However, in all
experiments we define θ = k. Therefore, k is the most relevant parameter since it defines
both the size of neighborhood and number of iterations. The weight of identity matrix
is defined by α. The probability parameter for the rank similarity measure is given by p,
which can assume a different value pL during the rank normalization step. The size of
ranked lists is defined by L.

Experiments were conducted to analyze the impact of parameters on effectiveness.
We consider the MPEG-7 with CFD as shape descriptor. Firstly, we analyzed the impact of
k and p on MAP scores. Figure 3a illustrates the results. We can observe a smooth surface,
which indicates the robustness of the method to different parameter settings.

https://github.com/UDLF/UDLF/
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Figure 3. Parametric space analysis: impact of parameters p, k, and L on effectiveness. (a) Impact of parameters p and k.
(b) Impact of ranked lists size L.

The parameter L, which defines a trade-off between effectiveness and efficiency was
also evaluated. Figure 3b presents the results for three shape descriptors: CFD, ASC, and
AIR. We can observe that most of the effectiveness gains are obtained for small values of
L. Based on the analysis, we defined the parameters (k = 15, α = 0.95, p = 0.60, pL = 0.99,
L = 400), which are used for most of experiments. For the Holidays dataset, which presents
a very small number of images per class, we used k = 4, p = 0.25, pL=0.75, and L = 200. For
the ALOI and the Person Re-ID datasets, which are larger collections, we used L = 1000.

5.3. General Image Retrieval Results

The effectiveness results obtained by our method are discussed in this section. Table 2
presents the results for shape, color, and texture features on datasets MPEG-7, Soccer, and
Brodatz. The most effective results for each dataset are highlighted in bold. We can observe
very significant gains, ranging from +7.17% to +35.17%.

Table 2. Retrieval results on general image retrieval tasks.

Dataset Feature Original Our Relative
MAP Method Gain

Soccer

GCH 32.24% 34.55% +7.17%
ACC 37.23% 45.41% +21.97%
BIC 39.26% 46.53% +18.52%

BIC+ACC - 49.36% +25.73%

MPEG-7

SS 37.67% 50.92% +35.17%
BAS 71.52% 82.87% +15.87%
CFD 80.71% 94.11% +16.60%
IDSC 81.70% 91.09% +11.49%
ASC 85.28% 92.96% +9.01%
AIR 89.39% 97.88% +9.50%

CFD+ASC - 98.84% +10.57%
CFD+AIR - 100% +11.87%

Brodatz

LBP 48.40% 52.19% +7.83%
CCOM 57.57% 66.79% +16.02%

LAS 75.15% 81.49% +8.44%

CCOM+LAS - 83.80% +11.51%

Natural image retrieval tasks were evaluated on datasets Corel5K and Holidays. The
results are presented in Tables 3 and 4. Very impressive gains can be observed, especially
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on Corel5K. The best features reached a MAP score of 28.07%, while our method reached
39.45% for a single feature and 56% in a rank fusion task.

Table 3. Results on the Corel5K [53] dataset.

Feature Original Our Relative
MAP Method Gain

FCTH-Spy 27.89% 32.31% +15.85%
JCD-Spy 29.18% 34.35% +17.73%

ACC 27.75% 35.38% +27.48%
ACC-Spy 29.76% 35.93% +20.71%

CEDD-Spy 30.01% 36.07% +20.19%
CNN-Caffe 28.07% 39.45% +40.53%

CNN-Caffe+ACC-Spy - 56.00% +99.50%+CEED-Spy

Table 4. Results on the Holidays [44].

Feature Original Our Relative
MAP Method Gain

FCTH-SPy 55.42% 57.47% +3.70%
CNN-Caffe 64.09% 71.53% +11.61%

ACC 64.29% 69.47% +8.04%
CNN-OverFeat 82.59% 85.74% +3.81%
CNN-OLDFP 88.46% 89.54% +1.22%

ACC+CNN-OLDFP+ - 90.85% +2.70%CNN-OverFeat
CNN-OLDFP+
CNN-OverFeat - 91.25% +3.15%

Table 5 presents the results on the ALOI dataset. Our method also achieved high-
effectiveness gains, even using a small value of L in comparison with the size of the dataset.
The retrieval results based on CNN-RESNET features were improved from 79.49% to
91.31%. We also evaluated our results for the unseen query scenarios for ALOI, which is
the largest dataset considered in the experimental evaluation. Table 6 presents the MAP
results for 500 randomly selected queries, one from each class. Notice that the unseen
queries execution achieved results close to the full execution for all the cases.

Table 5. Results on the ALOI [56] dataset.

Feature Original Our Relative
MAP Method Gain

ACC 43.77% 55.32% +26.39%
BIC 71.75% 83.87% +16.89%
CCV 47.49% 55.50% +16.87%
GCH 50.56% 61.25% +21.15%
LCH 58.55% 74.92% +27.95%

CNN-RESNET 79.49% 91.31% +14.87%
CNN-VGG 74.88% 88.53% +18.22%
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Table 6. Results on ALOI [56] for unseen queries.

Feature Original Full UQuery

ACC 43.19% 54.81% 54.32%
BIC 73.32% 85.74% 83.30%
CCV 47.09% 55.12% 53.50%
GCH 51.16% 62.79% 61.78%
LCH 59.43% 76.35% 73.50%

CNN-RESNET 79.06% 91.73% 88.62%
CNN-VGG 73.74% 87.78% 85.17%

5.4. Person Re-ID Results

The proposed method is also evaluated on Person Re-ID tasks. Table 7 presents
information about the considered datasets, with up to 36,411 different person bounding
boxes. Both are publicly available and commonly used in the literature. The MAP is
reported following the protocol proposed by the dataset authors [62,63]. All the results
consider the single-shot (single-query) analyzes, where only one probe image is provided
per query. In the evaluation, gallery images are ranked in comparison to the probe images.
Gallery images that are of the same view/cam of the probe are excluded. The training
images are considered for diffusion, but their labels are not used in any of the steps.

Table 7. Person Re-ID datasets considered in the experimental evaluation.

Dataset IDs BBox Probe Gallery Train Cam Detector

Market1501 [62] 1501 32,668 3368 19,732 12,936 6 DPM

DukeMTMC [63] 1812 36,411 2228 17,661 16,522 8 Manual

Tables 8 and 9 present the results for the datasets Market1501 and DukeMTMC,
respectively. The CNNs (Convolutional Neural Networks) were trained on MSMT17 [64]
and employed considering the pre-trained weights provided by Torchreid [65] https://
kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO.html (accessed on 5 March 2021).
Notice that we achieved significant MAP values in all the cases, with gains up to +55.89%.

Table 8. Results on the Market1501 [62] dataset.

Feature Original Our Relative
MAP Method Gain

MLFN [66] 21.98% 31.85% +44.90%
HACNN [67] 23.30% 33.55% +43.99%
RESNET [59] 22.82% 35.52% +54.57%
OSNET [68] 37.36% 54.85% +46.81%

OSNET-IBN [69] 37.13% 54.54% +46.89%
OSNET-AIN [69] 43.30% 59.82% +38.15%

Table 9. Results on the DukeMTMC [63] dataset.

Feature Original Our Relative
MAP Method Gain

MLFN [66] 28.98% 44.79% +54.55%
HACNN [67] 25.57% 39.86% +55.89%
RESNET [59] 32.00% 49.44% +54.50%
OSNET [68] 45.20% 63.19% +39.80%

OSNET-IBN [69] 45.52% 63.88% +40.33%
OSNET-AIN [69] 52.69% 67.29% +27.71%

https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO.html
https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO.html
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5.5. Visual Analysis

This section presents a visual analysis of results achieved by the proposed method.
The positive impact on effectiveness is illustrated through retrieval results before and after
the use of the method. Figure 4 shows the results on the MPEG-7 dataset and CFD feature
considering three different queries. The effectiveness gains obtained are remarkable: the
precision at top-20 positions increases from between 20% and 30% to 100% in all 3 cases.
Figure 5 illustrates retrieval results for ALOI dataset. Even for a much larger dataset, very
significant effectiveness gains can be observed at top ranking positions.

The positive impact can also be observed on person re-ID tasks. Figure 6 shows
the ranked lists for two queries on DukeMTMC dataset. The results correspond to the
OSNET-AIN feature, before and after our approach was applied. The query images are
presented with green borders and the incorrect results with red borders. The obtained
improvements are very significant and easily noticeable.

Figure 4. Visual retrieval results obtained on the MPEG-7 dataset.

Figure 5. Visual retrieval results obtained on the ALOI dataset.
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Figure 6. Two visual examples on DukeMTMC showing the impact of our approach.

5.6. Efficiency Evaluation

Section 4 presents a theoretical analysis of efficiency aspects, in which we discuss
that the proposed method requires time complexity of O(n) while diffusion approaches
typically have an asymptotic complexity of O(n3). This section presents an efficiency
evaluation considering the execution time of the proposed approach in comparison with
other recent rank-based methods.

The comparison was performed under a common computational environment and
implementation aspects. All the methods are implemented under the UDLF framework [61],
using default parameter settings defined in the framework (Once default parameters
were considered, it was not possible to execute RL-Sim algorithm on ALOI dataset. It
is defined to use full ranked lists, such that L = n, which requires unfeasible memory
amounts.). The hardware environment is composed of an Intel(R) Xeon(R) Silver 4108 CPU
@ 1.80 GHz, 128 GB of memory and the software environment is given by the operating
system Linux 5.8.0-44-generic-Ubuntu 20.04.1. Table 10 presents the execution time per
query obtained on different datasets, considering an average of 5 executions. The efficiency
results demonstrate that the proposed method is faster or comparable to the related rank-
based approaches.

Table 10. Execution time per query (in milliseconds) for different methods and datasets.

Our Method BFSTree [70] RL-Sim [6] LHRR [26]

MPEG-7 0.5910 ± 0.0018 0.7149 ± 0.0328 0.6888 ± 0.0817 0.6228 ± 0.0013
Corel5k 1.30356 ± 0.0009 1.3406 ± 0.0433 2.0718 ± 0.0756 2.7216 ± 0.0005
Market 7.5463 ± 0.2219 10.2885 ± 0.0536 27.6236 ± 0.4692 3.6000 ± 0.0038
ALOI 6.9376 ± 0.0272 10.8621 ± 0.6817 – 1.8177 ± 0.00049



J. Imaging 2021, 7, 49 17 of 23

5.7. Comparison with Other Approaches

The proposed method is compared with diverse state-of-the-art related methods
on two datasets commonly used as benchmark for image retrieval: MPEG-7 [37] and
Holidays [44]. Table 11 reports the results on the MPEG-7 [37] in comparison with other
various other post-processing methods. The bull’s eye score, which counts similar images
within the top-40 rank positions, is used as effectiveness measure. Table 12 presents the
MAP scores obtained on the Holidays [44] dataset, in comparison with state-of-the-art
retrieval methods. On both datasets, the proposed method achieves high-effective results
compared with related methods.

Table 11. Comparison with other post-processing methods on the MPEG-7 [37] dataset.

Shape Descriptors

CFD [41] - 84.43%
IDSC [42] - 85.40%
AIR [38] - 93.67%

Post-Processing Methods

Algorithm Descriptor(s) Bull’s eye
score

Graph Transduction [71] IDSC [42] 91.00%
Self-Smoothing Operator [7] IDSC [42] 92.77%

Local Constr. Diff. Process [8] IDSC [42] 93.32%
Shortest Path Propagation [72] IDSC [42] 93.35%

Our Method IDSC [42] 93.40%
SCA [11] IDSC [42] 93.44%

Correlation Graph [73] CFD [41] 94.27%
RL-Sim [6] CFD [41] 94.27%

Rank Diffusion [17] CFD [41] 96.19%
Reciprocal kNN Graph + CCs [12] CFD [41] 96.61%

Our Method CFD [41] 96.74%

RL-Sim [6] AIR [38] 99.94%
Tensor Product Graph [4] AIR [38] 99.99%

Generic Diffusion Process [5] AIR [38] 100%
Neighbor Set Similarity [23] AIR [38] 100%

Our Method AIR [38] 100%

Table 12. Comparison with retrieval approaches on the Holidays [44] dataset.

MAP Scores for State-of-the-Art Methods

Tolias Paulin Qin Zheng Sun
et al. [74] et al. [75] et al. [76] et al. [77] et al. [78]

82.20% 82.90% 84.40% 85.20% 85.50%

Zheng Pedronette Iscen Li Liu
et al. [79] et al. [12] et al. [80] et al. [81] et al. [82]

85.80% 86.19% 87.5% 89.20% 90.89 %
Our Method: 91.25%.

Our results were compared with the most recent state-of-the-art person re-ID methods.
The comparison is presented in Table 13. We report the best results obtained by our method
(re-ranking of OSNET-AIN). The abbreviations in parentheses indicate the datasets used
for training (C02 = CUHK02, C03 = CUHK03, M = Market1501, D = DukeMTMC, MT =
MSMT17). For example, the use of (D,M) indicates that it was trained on DukeMTMC
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(source) and tested on Market1501 (target) or the opposite. Methods that consider the
target dataset labels for training are not included, since we intend to keep the comparison
fair with our protocol, which is unsupervised. Notice that we achieved the highest mean
among all methods, best MAP on DukeMTMC, and the second best on Market1501 (only
behind ISSDA [83]).

Table 13. Comparison with state-of-the-art Person Re-ID methods-MAP (%).

Person re-ID Datasets

Market1501 DukeMTMC Mean

Unsupervised Methods

ARN [84] 39.4 33.4 36.4

EANet [85] 40.6 26.4 33.5

ECN [86] 43.0 40.4 41.7

MAR [87] 40.0 48.0 44.0

TAUDL [88] 41.2 43.5 42.4

UTAL [89] 46.2 44.6 45.4

Domain Adaptive Methods

HHL (D,M) [90] 31.4 27.2 26.6

HHL (C03) [90] 29.8 23.4 25.0

ATNet (D,M) [91] 25.6 24.9 25.3

CSGLP (D,M) [92] 33.9 36.0 35.0

ISSDA (D,M) [83] 63.1 54.1 58.6

Cross-Domain Methods

EANet (C03) [85] 33.3 22.0 27.7

EANet (D,M) [85] 32.9 31.7 32.3

SPGAN (D,M) [93] 17.0 16.7 16.9

DAAM (D,M) [94] 17.5 14.5 16.0

AF3 (D,M) [95] 36.3 37.4 36.9

AF3 (MT) [95] 37.7 46.2 42.0

PAUL (MT) [96] 40.1 53.2 46.7

EMTL (C02+D+M) [97] 25.1 22.3 23.7

CAMEL [98] 26.3 — 26.3

Baseline by [99] 56.8 46.9 51.9

Proposed Approach

Our Method 59.82 67.29 63.56

6. Conclusions

In this work, we introduce a rank diffusion process for post-processing tasks in image
retrieval scenarios. The proposed method embraces key advantages from both diffusion
and ranked-based approaches, while avoiding most of their disadvantages. Formally
defined as a diffusion process, the method is proved to converge, different from most
of rank-based approaches. In addition, the method can be computed by low-complexity
algorithms, in contrast to most diffusion methods. An extensive experimental evaluation
demonstrates that significant effectiveness gains can be achieved on different retrieval
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tasks, considering various datasets and several visual features, evidencing the capacity of
improving the retrieval results.

Concerning limitations, a relevant requirement of the proposed method consists of the
need for computing the set of ranked lists for the images. Brute force strategies for comput-
ing the ranked lists can be unfeasible, especially for large-scale datasets. In this scenario,
the use of the proposed method is limited to efficient approaches for obtaining the initial
ranking results. Indexing and hashing approaches have been exploited for this objective.
In our experimental evaluation, indexing approaches were used for larger datasets.

As future work, we intend to investigate if other diffusion methods for image retrieval
can be efficiently computed by exploiting the proposed approach. In addition, we also
intend to investigate the application of the proposed approach in other scenarios, which
require efficient computation of successive multiplication matrix procedures, similar to
diffusion processes.
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