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Abstract: Structural and metabolic imaging are fundamental for diagnosis, treatment and follow-
up in oncology. Beyond the well-established diagnostic imaging applications, ultrasounds are cur-
rently emerging in the clinical practice as a noninvasive technology for therapy. Indeed, the sound 
waves can be used to increase the temperature inside the target solid tumors, leading to apoptosis 
or necrosis of neoplastic tissues. The Magnetic resonance-guided focused ultrasound surgery 
(MRgFUS) technology represents a valid application of this ultrasound property, mainly used in 
oncology and neurology. In this paper; patient safety during MRgFUS treatments was investigated 
by a series of experiments in a tissue-mimicking phantom and performing ex vivo skin samples, to 
promptly identify unwanted temperature rises. The acquired MR images, used to evaluate the tem-
perature in the treated areas, were analyzed to compare classical proton resonance frequency (PRF) 
shift techniques and referenceless thermometry methods to accurately assess the temperature vari-
ations. We exploited radial basis function (RBF) neural networks for referenceless thermometry and 
compared the results against interferometric optical fiber measurements. The experimental meas-
urements were obtained using a set of interferometric optical fibers aimed at quantifying tempera-
ture variations directly in the sonication areas. The temperature increases during the treatment were 
not accurately detected by MRI-based referenceless thermometry methods, and more sensitive 
measurement systems, such as optical fibers, would be required. In-depth studies about these as-
pects are needed to monitor temperature and improve safety during MRgFUS treatments. 

Keywords: MRgFUS; proton resonance frequency shift; temperature variations; referenceless ther-
mometry; RBF neural networks; interferometric optical fibers 
 

1. Introduction 
Image-guided thermal ablations are increasingly employed in minimally invasive 

treatments in patients with cancer [1–4]. In the last decades, a large number of high-inten-
sity focused ultrasound (HIFU) [5,6] devices have been used in oncology to cover a wide 
range of cancer types, such as prostate [7], bone metastases [8], liver [9], breast [10], thy-
roid [11], uterine fibroids [12,13], liver and pancreas [14], and brain [15]; as well as psy-
chiatric disorders [16] and essential tremor [17,18]. 
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Considering the imaging modalities that currently guide HIFU treatments, two pos-
sible methodologies are available: (i) ultrasound-guided therapeutic focused ultrasound 
(USgFUS) [19,20], which uses the shift of the echo timing related to the temperature vari-
ation of the treated tissues [21]; and (ii) magnetic resonance-guided focused ultrasound 
surgery (MRgFUS) [22], which leverages the intrinsic dependence of the temperature with 
respect to some fundamental parameters, such as the apparent diffusion coefficient (ADC) 
of water molecules, the spin-lattice relaxation time (T1), and the water proton resonance 
frequency (PRF) [23]. 

In order to evaluate the incidence and severity of adverse reactions to the USgFUS 
ablation of uterine fibroids, Chen et al. [24] performed a multicenter, large-scale retrospec-
tive study involving 9988 patients with uterine fibroids or adenomyosis. Even though all 
the required procedures were applied, including skin preparation, 26 of the patients had 
blisters or tangerine pericarp-like burns in their abdominal skin, and two of them required 
surgical removal of the necrotic tissue. In [25], a preliminary report on bone metastasis 
pain-palliation therapy with MRgFUS, an unusual second-degree skin burn occurred on 
the body side opposite to the transducer position. The authors argued that this accident 
occurred due to a series of energetically intense sonications that may not have been totally 
included inside the patient’s body, causing a far-field energy accumulation at the air–skin 
interface [26,27]. In the case of MRgFUS capsulotomy, safety and clinical efficacy need to 
be carefully assessed by considering issues related to skull heating [16]. 

With particular interest in MRgFUS, automated techniques for uterine fibroid MR 
image segmentation have been recently devised to improve treatment planning [28] and 
evaluation [29,30], thus increasing the result repeatability and reliability [31]. Importantly, 
the attention of manufacturers to MRgFUS treatment safety has increased in recent years; 
therefore, multicenter studies have been performed to propose effective solutions. For in-
stance, a modified clinical MRgFUS fibroid therapy system, called Sonalleve (Philips 
Healthcare, Vantaa, Finland), was integrated with a 1.5 T magnetic resonance imaging 
(MRI) scanner (Achieva, Philips Healthcare, Best, The Netherlands). This system directly 
relied upon a skin-cooling device for the treatment of symptomatic uterine fibroids [32]. 
In the experiments conducted, involving eight patients, no adverse effects were reported 
when this cooling device was integrated with the patient table to keep the transducer–
patient interface at a fixed temperature of 20 °C. 

The aim of this work is to explore the sensitivity of MRI guidance to monitor the 
temperature increase for patient safety [26,27]. In particular, we simulated the tempera-
ture variations in a fibroid treatment on a tissue-mimicking phantom, acquiring tempera-
ture measurements using thermal imaging provided by the operating console of the 
MRgFUS ExAblate 2100 (Insightec Ltd., Carmel, Israel), as well as interferometric optical 
probes. The temperature maps were obtained using classic PRF and referenceless ther-
mometry methods and compared against the measurements. 

2. Materials and Methods 
In our experiments, an Insightec ExAblate 2100 HIFU transducer integrated with a 

Signa HTxt MRI scanner (General Electric Medical Systems, Milwaukee, WI, USA) was 
used. The same clinical device is employed at the Foundation Institute “G. Giglio”, Cefalù 
(PA), Italy, for uterine fibroid treatment and bone metastasis pain-palliative therapy. This 
system exploits MRI to acquire temperature maps of treated tissues by quantifying the 
phase variation resulting from the temperature-dependent changes in the resonance fre-
quency. The phase differences are proportional to temperature-dependent PRF shifts, thus 
enabling the assessment of temperature rises [33]. Temperature maps derived from MRI 
can be obtained using gradient recalled echo (GRE) imaging sequences. The console op-
erator monitors the temperature rise taking into consideration: (i) the thermal map of a 
chosen slice (Figure 1a); and (ii) the temperature plots concerning the selected point (by 
means of a crosshair cursor) and a small neighboring region (Figure 1b). These methods 
were successfully used to model the thermal dose delivery [34] strictly related to tissue 
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thermo-ablation [35,36]. Any unwanted temperature increase outside the “target” is due 
to an energy accumulation, caused by acoustic impedance discontinuity in the ultrasound 
wave-propagation path [37–39]. 

 

 

 

 
(a) (b) 

Figure 1. (a) Thermal map of a sonication during a treatment. The crosshair cursor, selected by the 
operator, represents the point of interest for temperature trend control. (b) Temperature plot of a 
single pixel (red line) and a small neighboring region around the crosshair cursor (green line). 

2.1. MRgFUS Treatments 
The experimental measurements were carried out using the ExAblate uterine-fi-

broids protocol, considering a real fibroid treatment as reference. 
Prior to MRgFUS treatments for uterine fibroid ablation, the patient was sedated to 

minimize her movements, but nevertheless she could constantly provide feedback on the 
perception of pain and heat during the treatment. The MR images were acquired to local-
ize the fibroid position and to plan the treatment with the most suitable ultrasound beam 
path, and sonication size and number. The treatment was planned by software that ana-
lyzed the region of treatment (ROT)—i.e., the region that will undergo the ultrasound 
beams—and the limited energy density regions (LEDRs)—i.e., the regions containing the 
organs at risk (OARs). Treatment planning aims to deliver the sonications in the entire 
ROT, making sure that the ultrasound beam does not cross the LEDRs. 

To verify the focus-position accuracy, a preliminary sonication at sublethal energy 
was delivered. Some MR images were acquired to detect the temperature distribution in 
the neighborhood of the focus point. Using an iterative procedure, the operator can mod-
ify the wave characteristics to improve the target accuracy and the temperature increase. 
As a result, the treatment was performed by delivering sonications with lethal energy. 
Each sonication typically lasted 20–40 s, with a cooling time of 80–90 s between two suc-
cessive sonications. 

At the end of the treatment, the patient, in the position she had during treatment, 
underwent a diagnostic MR examination with gadolinium-based contrast medium, aimed 
to evaluate the nonperfused volume (NPV), which was the uterine fibroid area covered 
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by sonications. Moreover, the skin was examined to evaluate any side effects due to the 
temperature increase during the treatment. 

In this work, to quantify temperature increases in the interface area suffering from 
acoustic impedance discontinuity in the ultrasound wave-propagation path, we used a 
configuration composed of: (i) a standard phantom tissue mimicking the daily quality as-
surance (DQA) routine, as previously proposed by Zucconi et al. [40]; (ii) an ex vivo por-
cine skin sample placed under the phantom to simulate the patient’s skin; and (iii) a gel 
pad (between the porcine skin and ExAblate bed). A set of interferometric probes was also 
used to monitor the skin temperature, over the probes and gel pad (Figure 2). We assumed 
that the porcine skin would respond to the temperature increases like the human skin. 

A ROT of 78.7 cm3 was defined inside the phantom and automatically covered by the 
system with 56 sonications. Neglecting absorption and attenuation in the propagation 
path [41], an average energy of 2353 ± 611 J can be attributed to the sonications emitted by 
the 208 elements of the phased-array HIFU transducer [42], for an average duration of 20.0 
± 2.9 s (with an elongated beam geometry). The time cooling was set at 85 s and the ultra-
sound frequency at 1.1 MHz. 

The software distributed the sonications over the ROT, forming s-shaped paths, in 
order to prevent local overheating. 

 
Figure 2. The realized configuration: the daily quality assurance (DQA) phantom over a skin por-
tion. Although barely noticeable, the gel pad was placed under the skin to ensure acoustic cou-
pling between the ExAblate bed and skin. In the left area of the image, the two interferometric 
probes are visible. 

2.2. Optical Thermometry 
For continuous temperature monitoring during the MRgFUS sonications, an MR-

compatible instrumentation was required. The AccuSens interferometric signal condi-
tioner (Opsens Inc., Québec, QC, Canada) equipped with an OTP-M birefringent crystal 
sensor was chosen. The main characteristics are reported in Table 1. 
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Table 1. Characteristics of the AccuSens interferometric signal conditioner. 

Characteristic Value 
Temperature operating range 0 °C to 85 °C 

Specific calibrated range 20 °C to 45 °C standard (other ranges available) 
Resolution 0.01 °C 

Accuracy (specific calibrated range) ±0.15 °C @ ±3.3 σ limit (99.9% confidence level) 
Response time <1 s 

Operating humidity range 0–100% 

The bottom surface of the phantom was divided into two portions: a circular crown, 
which was never crossed by the ultrasound, and an inner area covered by the HIFU. One 
of the OTP-M probes was inserted into the middle of the circular region, and the tip of 
another one on the boundary between these two regions (Figure 3). Using this configura-
tion, a mask for the relative positioning of sensors and phantom on the gel pad was de-
signed. Then, this mask was reproduced on a plastic drape included in the “patient acces-
sory set” necessary for the treatment, since this material did not introduce any acoustical 
impedance discontinuity. 

  

(a) (b) 

Figure 3. Probe positions relative to the ultrasound field. (a) 3D model with the two probes positioned; (b) schematics of 
the positioning/coupling apparatus. 

2.3. Signal-to-Noise-Ratio Estimation 
In order to evaluate if there was an adequate signal within the interface region nec-

essary to quantify temperatures, the signal-to-noise ratio (SNR) was calculated according 
to Gorny et al. [43]. The investigated areas were the phantom, the skin interface, and the 
gel pad. 

Some sample MR images were evaluated; in particular, the images of the phantom 
relative to sonication 4 and 5 were examined. Each acquired region was characterized by 
an overall thickness of 16 mm, and was acquired in different locations with respect to the 
phantom size (circular base with a diameter of 105 mm, as shown in Figure 3). 

As shown in Figure 4, the acquired region of sonication #4 (red area) ranged from +35 
mm to +51 mm, while the region of sonication #5 (orange area) ranged from −14.4 mm to 
+1.6 mm. 
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Figure 4. The MRI acquisition locations of sonications #4 and #5. 

The images related to each region were acquired in subsequent temporal frames of 3 
s, which allowed us to reconstruct the temporal trend of the temperature rise for each 
acquired area. The SNR value was calculated according to Equation (1): 

SNR =
0.655 ∙ 𝜇𝜇�Signalobject�
𝜎𝜎�Signalbackground�

, (1) 

where the ratio between the mean signal value (𝜇𝜇) of the object (i.e., phantom, skin, and 
gel pad) region of interest (ROI) and the standard deviation (𝜎𝜎) of an area that contains 
only background noise (e.g., air) were considered. The 0.655 factor was due to the Rician 
distribution of the background noise in a magnitude image, which tended to a Rayleigh 
distribution as the SNR tended to zero [44]. 

The three ROIs investigated for the SNR estimation are represented in Figure 5. The 
signal intensity of the phantom, the skin interface, and gel pad areas were compared to a 
region where the signal was ideally zero (i.e., the background ROI). 

 
Figure 5. The ROIs investigated for the SNR estimation. The different ROIs that were drawn were 
the tissue-mimicking phantom (yellow), skin interface (green), gel pad (cyan), and background 
area (red). 
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2.4. Referenceless Thermometry 
Classical PRF shift thermometry—in which one or more baseline images are acquired 

before the thermal therapy and then are subtracted pixel-by-pixel from the images ac-
quired during heating—is affected by artifacts, which could lead to unrealistic tempera-
ture increases [13,45,46]. These temperature-independent artifacts are mainly due to 
movements of the anatomical region undergoing MRgFUS treatments, or to magnetic field 
inhomogeneities. With the goal of reducing these issues, referenceless thermometry could 
be used, thus allowing us to estimate the heating caused by an MRgFUS treatment without 
using a baseline image as temperature reference. 

With the goal of accurately estimating the temperature variations, referenceless ther-
mometry methods were developed; in particular, we devised an interpolation method 
based on artificial neural networks (ANNs) to reconstruct the original baseline phase im-
age and reliably evaluate temperature variations in the sonication area [47,48]. In fact, as-
suming that the phase image surrounding the treated region has a smooth trend (even 
under the heated area), referenceless (or self-referenced) thermometry techniques esti-
mate the temperature variations by means of a set of smooth low-order polynomial func-
tions to the surrounding phase, or to a complex magnitude image with the same phase 
using a weighted least-squares fit [49]. The extrapolation of the polynomial inside the 
heated region is used as background phase estimation, which is subtracted from the actual 
phase to evaluate the phase difference before and after heating caused by ultrasound son-
ications and, successively, quantify the temperature increase. 

In the referenceless phase estimation, an ROI has to be delineated around the area to 
be heated. First of all, two regions (namely, outer and inner) must be selected in the phase 
image to perform the interpolation. Figure 6 shows the phase map and the outer baseline 
region around the sonicated area (after the removal of the inner ROI containing the heated 
region). It is essential to choose the outer ROI outside the heated region because the tem-
perature changes within the ROI affect the reconstruction of the background phase. 

  
(a) (b) 

Figure 6. (a) 3D plot of a phase map with sonicated area; (b) 3D plot of the outer region of the phase map in (a) after 
removing the sonicated area. 

The most straightforward computational approach to solve this problem is to fit the 
data with a polynomial function [50]. However, an invertible system that uniquely defines 
the interpolant is not guaranteed for all positions of the interpolation points, and often it 
could show spurious bumps. The background phase in the frame ROI is reconstructed by 
means of an ANN exploiting radial basis functions (RBFs) as kernel [51,52]. 

In particular, a 3-layer feed-forward ANN was designed (with 1 input layer, 1 output 
layer and 1 hidden layer) in which each hidden node implemented an RBF. ANNs are 
well-suited for interpolation purposes, especially if there are large areas of missing data, 
and the RBF approximation method allows several advantages with respect to polynomial 
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interpolants: (i) the network training finds the optimal weights from the input to the hid-
den layer, and then the weights from the hidden to the output layer are calculated; and 
(ii) the geometry of the input points is not restricted to a regular grid. 

Radial Basis Function Theory 
Let 𝑓𝑓:ℝ𝑑𝑑 → ℝ be a real valued function of 𝑑𝑑 variables that has to be approximated 

by 𝑠𝑠: ℝ𝑑𝑑 → ℝ, given the values {𝑓𝑓(𝑋𝑋𝑖𝑖): 𝑖𝑖 = 1,2, … ,𝑛𝑛}, where {𝑋𝑋𝑖𝑖: 𝑖𝑖 = 1,2, … ,𝑛𝑛} is a set of 𝑛𝑛 
distinct points in ℝ𝑑𝑑 called the interpolation nodes. We will consider an approximation 
of the form: 

𝑠𝑠(𝑋𝑋) = 𝑝𝑝𝑚𝑚(𝑋𝑋) + ∑ 𝜆𝜆𝑖𝑖𝜑𝜑𝑛𝑛
𝑖𝑖=1 (‖𝑋𝑋 − 𝑋𝑋𝑖𝑖‖2),𝑋𝑋 ∈ ℝ𝑑𝑑 , 𝜆𝜆𝑖𝑖 ∈ ℝ, (2) 

where: 𝑝𝑝𝑚𝑚 is a low-degree polynomial that can be also omitted, ‖∙‖2 denotes the Euclid-
ean norm, and 𝜑𝜑 is a fixed function from ℝ to ℝ. Thus, the radial basis function 𝑠𝑠(∙) is 
a linear combination of translations of the single radially symmetric function 𝜑𝜑(‖∙‖2), 
plus a low-degree polynomial. We will denote with 𝜋𝜋𝑚𝑚𝑑𝑑  the space of all polynomials of 
degree 𝑚𝑚 at most in 𝑑𝑑 variables. The coefficients 𝜆𝜆𝑖𝑖, which represent the weights of the 
approximation 𝑠𝑠, are determined by requiring that 𝑠𝑠 satisfies the interpolation condi-
tions expressed in the following Equation (3): 

𝑠𝑠�𝑋𝑋𝑗𝑗� ≡ 𝑓𝑓�𝑋𝑋𝑗𝑗�, 𝑗𝑗 = 1,2, … ,𝑛𝑛, (3) 

together with the side conditions: 

�𝜆𝜆𝑖𝑖𝑞𝑞�𝑋𝑋𝑗𝑗� = 0,∀𝑞𝑞 ∈ 𝜋𝜋𝑚𝑚𝑑𝑑
𝑛𝑛

𝑖𝑖=1

. (4) 

Some typical conditions on the nodes under which the interpolation conditions (3) 
and (4) uniquely specify the radial basis function (2) are given in Table 2. In this context 
“not coplanar” means that the nodes do not all lie in a single hyperplane, or equivalently 
that no linear polynomial in 𝑑𝑑-variables vanishes at all the nodes. The surveys presented 
in [53] and [54] are excellent references to these and other properties of radial basis func-
tions. 

Table 2. Conditions imposed on nodes for various radial basis interpolants. 

Function Type Spatial Dimension 
𝒅𝒅 

Polynomial Degree 
𝒎𝒎 Restriction on Nodes 

linear RBF any 1 not coplanar 
thin-plate spline 2 1 not coplanar 

Gaussian any absent none 
multiquadratic RBF any absent none 

3. Results 
The selected ROIs were propagated for all the temporal sequences and in all the 

depths, so the SNR value was calculated on every acquired 3D volume. As depicted in 
Figure 7, the MR images of the sonications #4 and #5 showed the impulsive noise in the 
area surrounding the phantom, especially in the skin interface and in the gel pad. 

https://paperpile.com/c/dprtVF/JOvHA
https://paperpile.com/c/dprtVF/vtldc
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 7. Sonications #4 (first row) and #5 (second row) morphological and thermal map examples: (a) and (d) temperature 
reconstruction; (b) and (e) morphological image; (c) and (f) temperature image overlapped on the morphological image. 
It is possible to estimate the noise in the gel pad and in the skin interface by observing the low SNR in those areas. 

The signal acquired using the thermometric MRI protocol can be acceptable for aque-
ous tissues (such as the regions treated with MRgFUS), but unsatisfactory for fatty tissues. 
In fact, as widely stated in [55], the tissue-type temperature independence of the PRF shift 
is almost true for aqueous tissues, while the dependence in adipose tissues is affected by 
susceptibility effects. Consequently, the temperature sensitivity of fat is extremely low 
[56], indicating that MRI-based thermometry inside fatty tissues (such as the skin interface 
taken into account here) is difficult. 

These insights also were confirmed by our experimental findings, which showed that 
SNRs inside the area near the gel pad and the porcine skin were relatively low when com-
pared to the SNR inside the phantom. Figure 8 shows that the signal was globally low in 
all three acquired MRI volumes. The phantom area showed a higher signal compared to 
the skin layer and the gel pad, where the signal appeared very poor. 

The treatment was performed in about 2 h. The interferometric probes under the por-
cine skin, positioned according to the scheme on Figure 3, measured a large amount of 
temperature data. Figure 9 shows the maximum temperature rise recorded by the probes 
in all the sonications. This is a clear confirmation that the probes were actually placed as 
planned: the first probe was in the middle of the phantom and received more heat than 
the second one, which was in a more decentralized position than the ROT. 

In some sonications, temperature-rising measurements were weakly perceived (ΔT < 
1 °C) for the relative position along the hypersonic field; this was the case in the fourth 
sonication (Figure 10a). In other cases, like the fifth sonication, the temperature rose about 
16 °C (Figure 10b). 
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Figure 8. SNR values calculated for the phantom, skin, and gel ROIs. The phantom signal had the 
highest SNR values, while the gel area and the skin-interface area had the lowest SNR values. 

 
Figure 9. Maximum rise of temperature in each sonication for probe 1 (blue) and probe 2 (red). 

  
(a) (b) 

Figure 10. Temperature measured by the optical probe 1 (blue) and probe 2 (red) during sonications #4 (a) and #5 (b). 

Our analysis, coupled with the PRF-based temperature quantification provided by 
the ExAblate control console, was employed by considering referenceless thermometry 
on 2D phase map data, by means of ANNs using different interpolants RBF kernels (i.e., 
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linear, thin-plate spline, and multiquadratic) [47]. In these cases, it also was not possible 
to detect meaningful temperature increases. 

RBF and polynomial interpolations were applied on the data set; the former showed 
a “bump-like” tendency and the latter overestimated the temperature, because the ana-
lyzed area was characterized by a low signal intensity where the noise was a significant 
component (Figure 11). 

To show the differences measured by the two probes, a two-sided Wilcoxon signed 
rank test on paired data [57] was performed with the null hypothesis that the samples 
came from continuous distributions with equal medians. In all the tests, a significance 
level of 0.05 was considered. More details are provided in what follows: (i) the distribu-
tions of the temperature increases measured by the probes (Figure 9) were statistically 
significant considering all the sonications (p = 1.719 × 10−10); (ii) the distributions of the 
temperature measured over time by the probes (Figure 10) were statistically significant 
for sonications for both sonications #4 (p = 2.095 × 10−24) and #5 (p = 6.601 × 10−44); and (iii) 
the polynomial interpolation (Figure 11) significantly overestimated the data (p = 0.031), 
while the linear RBF and multiquadratic RBF interpolations were not statistically different 
from the PRF shift data (p = 0.687 in both cases). 

 
Figure 11. The interpolated temperature errors compared to PRF-based temperature measure-
ments (which does not show any significant temperature rise). The polynomial (green) line overes-
timated the data, while the linear RBF (blue) and multiquadratic RBF (cyan) lines had a “bump-
like” trend caused by the presence of noisy data. 

4. Discussion 
Starting from the current issues concerning patient safety related to undesired tem-

perature variations that can cause skin burns, an MRgFUS fibroid treatment was simu-
lated using an ex vivo porcine skin and a DQA tissue-mimicking phantom. The treatment 
consisted of 56 ultrasound sonications and a maximum temperature increment (ΔT = 17.78 
°C, given in the 43th sonication), as shown in Figure 9. Even if the temperature increase 
was obtained intentionally through bad acoustic coupling and by considering the inter-
ference of the probes, the obtained results showed how it is quite difficult for a clinical 
operator to detect a possible (and naturally unwanted) temperature increase by relying 
only on the operating console that displays MR thermographic images. According to the 
study of Moritz and Henriques [58], the relationship between time and temperature for 
this sonication is not intense enough to cause a skin burn, but the authors showed how a 
repetition of five times could lead to complete and irreversible epidermal necrosis. The 
same results can be obtained using more recent model-based classification approaches 
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[59]. PRF-based temperature monitoring is not useful with this kind of tissue, which was 
also confirmed by using referenceless thermometry with polynomial and RBF interpola-
tion models. This can be attributed to the small thickness of the skin in the axial and sag-
ittal planes compared to: (i) the spatial resolution of the acquired MR images, (ii) the dif-
ficulty of catching the skin on a coronal slice in the low-quality (to guarantee the appro-
priate acquisition speed for real-time temperature monitoring) MR images acquired dur-
ing the treatment, and (iii) the thermometry system developed for clinical applications 
that is not optimized for such a purpose. Moreover, the bump-like tendency of the RBF 
interpolation errors (see Figure 11) could be due to a low SNR in the analyzed area, where 
the noise represented a significant component while the signal was practically negligible, 
as shown in Figure 8. 

While attempts have been made to reduce temperature increases on patients’ skin 
through the quantification of the near-field (between the ultrasound transducer and tar-
get) heating [60], a real-time temperature monitoring could give a better control during 
the treatment. It might be necessary to develop novel image-processing algorithms and 
methods to enhance phase-map acquisition in PRF-based thermometry techniques, as 
well as MRI sequences with a higher pixel resolution, to improve the temperature moni-
toring and limit any unwanted hot spots. 

5. Conclusions and Future Work 
In this work, the potential side effects regarding patient safety due to temperature 

increases that rarely affect MRgFUS treatments were assessed. Along with the classical 
PRF shift thermometry, a novel approach that exploited a referenceless technique based 
on the RBF interpolation was used to evaluate the skin temperature during sonications. 
Moreover, in this study, we also used two interferometric probes to measure the reached 
temperatures. In a simulation of a real uterine fibroid treatment, only the probes were able 
to detect temperature increases, while no important temperature changes were revealed 
by the used interpolation methods. The achieved results showed that these methods, 
based on the PRF shift thermometry, could be unsuitable to detect temperature increases 
on the skin. 

One of the issues to consider in our analysis is the low SNR value in the investigated 
region. New hardware and software solutions need to be studied to increase the temper-
ature-detector sensitivity by rising the SNR in order to also enhance MRgFUS treatment 
safety and effectiveness. 

In the future, more temporal instants should be considered for temperature measure-
ments and increases. Multiple repetitions of the experiments will increase the statistical 
robustness of the experimental findings. 

Moreover, the planned experiments could be designed to reliably simulate a config-
uration for clinical environments. To address the issues related to the acoustic interference 
generated by the optical fibers across the ultrasound propagation, other techniques that 
are able to accurately measure the skin temperature in real time and with a good time 
resolution could be employed. For instance, thermoscanners have a high temperature ac-
curacy (±0.3 °C), a very high recognition speed (<300 ms), and a temperature range (25–45 
°C) that are sufficient to evaluate skin temperature increases in real time. Some systems 
could be also optically coupled to monitor the skin’s irradiated area for all tests. After 
extensive ex vivo tests, the developed systems could be employed during clinical treat-
ments. 
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