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Abstract: Indoor environment modeling has become a relevant topic in several application fields,
including augmented, virtual, and extended reality. With the digital transformation, many industries
have investigated two possibilities: generating detailed models of indoor environments, allowing
viewers to navigate through them; and mapping surfaces so as to insert virtual elements into real
scenes. The scope of the paper is twofold. We first review the existing state-of-the-art (SoA) of
learning-based methods for 3D scene reconstruction based on structure from motion (SFM) that
predict depth maps and camera poses from video streams. We then present an extensive evaluation
using a recent SoA network, with particular attention on the capability of generalizing on new unseen
data of indoor environments. The evaluation was conducted by using the absolute relative (AbsRel)
measure of the depth map prediction as the baseline metric.

Keywords: computer vision; 3D reconstruction; deep learning; indoor; digital twin; point cloud

1. Introduction

The ability of sensing 3D space using single cameras is a widely investigated
topic in image processing and computer vision. Several solutions have been devel-
oped over the years to ensure the reliable reconstruction of a given environment,
some adopting traditional image processing [1–5], and some more up-to-date
learning approaches [6,7]. In fact, 3D sensing and reconstruction is a necessary
building block behind a number of technologies in industry, including robotics,
landslide mapping, gaming, mixed reality, archaeology, and medicine, to name
a few [8–10]. Despite the efforts expended by the research community toward
providing progressively more accurate models capable of sensing and reconstruct-
ing 3D environments, a number of challenges remain. In fact, the acquisition of
3D information can serve multiple purposes, and can be used in real-time in a
multi-sensorial context, as seen in robots, and in general, autonomous systems.
This often implies that the visual information is only one among the multiple inputs
to a localization and navigation system. In such conditions, the potential errors
emerging from inaccuracies and/or incorrect reconstruction of portions of the envi-
ronment are often compensated and mitigated thanks to the presence of additional
sensing devices. Vice versa, in a more restrictive context, in which multi-modal
equipment is not a viable option, 3D reconstruction is performed using the visual
information on its own, thereby requiring high resolution images for better feature
detection, and accurate camera calibration with distortion correction in order to
generate a 3D model, consisting of a sparse or dense point cloud.
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In this paper, we present an in-depth evaluation of a robust state-of-the-art
method for depth estimation, which is used as the core element for 3D reconstruc-
tion applications. In particular, we focus our research on indoor scenarios, in which
we expect a user to collect data using an arbitrary camera, and following subjective
criteria. In other words, the acquisition was not conducted by following a rigorous
path to scan the environment, and thus we did not impose any constraints on
the user. Such conditions are indeed very common, and cover a wide spectrum
of applications, often involving workers who rely on such augmented/extended
reality tools for inspection and maintenance operations.

The paper is structured as follows: in Section 2 we present some recent relevant
related work. Section 3 discusses the motivation behind this work and the main
contributions. In Section 4 we focus on the validation pipeline we have envisaged,
describing the methodology and the metrics used. In Section 5 the results are
presented and discussed. Final remarks and conclusions are presented in Section 6.

2. Related Work

In the following paragraphs, we report the most relevant works presented in
the SoA, starting from the traditional structure from motion algorithm and survey-
ing the most recent developments based on deep-learning. Structure from motion
(SfM) [11] allows the estimation of the three-dimensional structures of objects and
environments based on the motion parallax that describes the appearance changes
of an object when the observer’s viewpoint changes [4]. By doing so, it is possible
to infer the 3D structure of a target, and retrieve the distance from the camera to
generate a 3D representation. Another basic principle of SfM is the stereo pho-
togrammetry triangulation used to calculate the relative positions of points from
stereo pairs. SfM is required to complete three main tasks. (i) Firstly, it must find
correspondences between the images and measure the distances between the fea-
tures extracted with respect the two image planes. Typically, SIFT [12] features are
used in this phase due to their robustness against changes in scale, large variations
of view point, and challenging conditions, such as different levels of illumination
and partial occlusions. (ii) Second, the camera position associated with each of the
images processed is computed, via bundle adjustment (BA), to calculate and opti-
mize 3D structure, camera pose, and intrinsic calibration. (iii) Lastly, it generates a
3D dense point cloud by using the camera parameters to back project the points
computed before on the 3D space, also called multiview stereo matching.

Traditional 3D reconstruction algorithms require performing heavy operations,
and despite the proven effectiveness of these methods, they rely on high quality
images as input. This may introduce some limitations when it comes to processing
complex geometries, occlusions, and low-texture areas. Such issues have been
partially tackled by replacing traditional feature and geometry-based approaches
with deep learning. In particular, some stages of the traditional 3D reconstruction
pipeline have been rethought following a deep learning-based formulation. Here,
we present some of the methods explored, for the purpose of our research, which
implement the principles of SfM using convolutional neural networks (CNNs).
One of the most relevant methods exploiting neural networks for depth estimation
is DispNet [13]. DispNet is used for single-view depth prediction. It uses an initial
contracting stage, made of convolutional layers, followed by up-sampling to per-
form deconvolutions, convolutions, and computation of the loss function. Features
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from the contracting part are sent to the corresponding layer in the expanding
portion. The network operates with a traditional encoder–decoder architecture
with skip connections and multi-scale side prediction. The DispNet architecture is
reported for convenience in Figure 1.

Figure 1. Illustration of the architecture of the Disparity estimation Network (DispNet)
with the encoder–decoder layout and a pose estimation network. Additional details in
terms of the size of each layer can be found in the original manuscript.

Many solutions have been developed that employ convolutional neural net-
works (CNNs) for the task of estimating the depth information. Some of them
are used for stereo view synthesis, such as DeepStereo [14], which learns how to
generate new views from single images in order to recreate a synthetic stereoscopic
system where the underlying geometry is represented by quantized depth plane.
Similarly, Deep3D [6] implements CNNs to convert 2D video into 3D sequences
such as Anaglyph for 3D movies or side-by-side view for virtual reality (VR) appli-
cations. In this case the scene geometry is represented by probabilistic disparity
maps. In addition to Deep3D, other methods can learn three-dimensional struc-
ture from a single perspective. Some of them use supervision signals, such as the
method proposed by Garg et al. [15]. They proposed supervision consisting of a
calibrated stereo twin for single-view depth estimation. The recent trends in depth
estimation use unsupervised or self-supervised learning from video sequences.
These methods work well in the task of inferring a scene geometry and ego-motion
(similarly to SfM), but in addition, they show great potential for other tasks, such
as segmentation, object motion mask prediction, tracking, and determining the
levels of semantics (please refer to [16–21]).

Among the unsupervised/self-supervised methods, three important stud-
ies have been conducted by Vijayanarasimhan et al. [7], Zhou et al. [22], and
Bian et al. [23]. Their approaches all implement two sub-networks: the first one
focuses on single-view depth prediction, and the second one is used for camera
pose estimation in support the depth network, so as to replicate a pseudo-stereo
vision setting (Figure 2). These implementations mostly differ in the loss function,
which is applied as a supervision signal. In terms of performances, the methods
achieved state-of-the-art scores on the KITTI [24] and Cityscapes [25] datasets.
Table 1 reports the methods studied.
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Figure 2. An illustration of the architecture used for the experiments, where Ia and Ib are
the input RGB images; Da and Db are the corresponding estimated depth maps; and Pab is
the relative camera position between Ia and Ib.

Table 1. Methods from the literature for depth estimation from video sequences. In the
column Note , symbols (O) and (R) refer to original and rectified training data.

Ref. Method Indoor Dataset Note

[7] SfM Net 7 KITTI [24] & Cityscapes [25] O
[22] SfM Learner 7 KITTI [24] & Cityscapes [25] O
[23] SC-SfM Learner 7 KITTI [24] & Cityscapes [25] O
[26] Indoor SC-SfM Learner 3 NYUv2 [27,28] R

3. Motivation and Contributions

Despite their proven effectiveness in street mapping contexts, the previous
methods do not perform well when it comes to inferring the 3D structures of indoor
environments; and training a network with indoor RGB-D datasets does not allow
achieving satisfactory results, as mentioned in [26]. Indeed, DispNet aims to learn
the disparity between frames, and due to the nature of hand-recorded sequences,
which are typical of indoor data collection, the spatial relationship between adjacent
frames might be of pure rotation, leading to a disparity equal to zero. It has been
demonstrated that the estimation of the depth map is strictly related to a dominance
in translation with respect to rotations in the video sequences acquisition. In fact,
previous implementations have been tested on datasets such as KITTI [24], where
the camera configuration and the forward motion did not give evidence to this issue.
Research conducted by Bian et al. [26] has proven the existence of this limitation of
DispNet, and they proposed a weak rectification algorithm to pre-process indoor
datasets before training the network. The authors applied the rectification on the
NUYv2 [27,28] dataset to train the network and tested the generalization capability
on the 7Scene dataset [29]. Since the generalization was evaluated on one dataset
only, we provide additional benchmarks used for evaluating other RGB-D datasets
and comment on the network generalization capability.

In summary, the main contributions of the paper are:

• We provide additional benchmarks for the network proposed by Bian et al. in or-
der to allow a better understanding of the network generalization performances.

• We analyzed the network generalization capability in connection with the
statistics of the scene, from which the depth was estimated. We computed the
standard deviation of depth from depth ground truth to describe the amount
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of depth information that the network has to estimate, and then discuss how
the generalization is related to this parameter.

4. Materials and Methods

As anticipated in the previous section, the results and evaluation that are
presented in the following paragraphs are based on the work by Bian et al. [23,26].
Here, the network model was pre-trained on ImageNet [30] using ResNet-18 [31] in
substitution of the depth and pose sub networks. Next, fine-tuning of the rectified
NYUv2 (Figure 3) [27,28] dataset was applied. Differently from the other archi-
tectures, the framework was developed to overcome the scale ambiguity in [22],
but it preserves the ability to test the depth and pose networks independently. We
ran our first tests of depth map prediction on various RGB-D datasets of indoor
environments (see Table 2), achieving results comparable to the ground truth (GT)
except for a scale factor that can be calculated by normalizing the depth map with
its median pixel value. The tests were conducted using the pre-trained model
that is publicly available on the authors’ GitHub repository [32]. We fed the un-
seen datasets to the model and retrieved the predicted disparity maps. For the
evaluation, we adopted the absolute relative difference, which is computed as
follows:

1
|V| ∑

p∈V

|d(p)− d∗(p)|
d∗(p)

(1)

where V denotes the set of valid depth pixels; d(p) and d∗(p) are the depth pixel
values of the predicted depth map D and the depth ground truth D∗, respectively.
As mentioned before, the predictions are different in scale with respect to the
ground truth. Scaling was then applied via the scaling factor s, computed as
follows, where med{} refers to the median value:

s =
medp∈V{D∗}

med{D} (2)

Note that, unlike the prediction, the ground truth exhibited some pixels equal
to zero or due to reflective surfaces or distances out of the sensor range. Such
non-valid pixels were discarded in the computation above.

Table 2. Details of the three datasets used in the testing phase, the italic format indicates a
specific sequence from the dataset specified between brackets.

Name #Images Img. Size Ref.

7Scene 29,000 640 × 480 [29]
freiburg_360(TUM RGB-D) 756 640 × 480 [33]

freiburg_pioneer (TUM RGB-D) 1225 640 × 480 [33]
Washington 11,440 640 × 480 [34]

SUN 10,335 640 × 480 [35]
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Figure 3. The NYU dataset [27].

Datasets

The need for virtually reconstructing environments for autonomous navi-
gation and/or extended reality applications has increased the availability of in-
door RGB-D data to train more and more data-hungry networks; however, the
amount of data is still limited to few common environments. In this section we
present a brief overview of the datasets used in our experiments. We tested the
network performance on four different datasets containing sequences from several
indoor environments. In particular, for testing purposes we selected the sequences
freiburg_360 and freiburg_pioneer from RGB-D TUM Dataset [33], all the sequences
from RGB-D 7 Scene [29], the RGB-D Scene dataset from Washington RGB-D Object
Dataset [34] and the SUN RGB-D Dataset [35]. Details about the number of samples
and resolution are reported in Table 2.

• RGB-D TUM Dataset: The sequence freiburg1_360 contains a 360 degree acquisi-
tion in a typical office environment; the freiburg_pioneer sequence shows a quite
open indoor environment captured by a robot with depth sensor attached on
top of it (Figure 4). The dataset is provided with depth ground truth acquired
by the Kinect sensor, and camera pose ground truth as rotation and translation
were acquired with an external motion capture system, which is typically used
for SLAM systems. For additional details we refer the reader to the dataset
website [36] and to the original paper [33]. Among the available sequences
we decided to choose two of them (freiburg1_360 and freiburg_pioneer), since
they represent distinct environments with interesting characteristics useful for
testing the generalization of the network. In particular, in freiburg_360 there
are many complex geometries due to the office furniture; freiburg_pioneer is
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instead characterized by wide spaces, usually implying more homogeneous
depth maps but larger depth range.

• RGB-D Microsoft Dataset: This dataset [29,37] consists of sequences of tracked
RGB-D frames of various indoor environments, and it is provided with the
corresponding depth ground truth (Figure 5). This dataset is the one used
by the authors in [26] to test the generalization capability of the network.
Accordingly, we decided to re-run the tests as well, to ensure the replicability
of the paper’s results.

• Washington RGB-D Object Dataset: The dataset [34] was created with the
purpose of providing structure data of real objects. Aside from the isolated
objects, the dataset provides 22 annotated sequences of various indoor en-
vironment with depth ground truth. Additionally, in this case, RGB-D data
were collected using Micorsoft Kinect using aligned 640 × 480 RGB and depth
images (Figure 6).

• SUN RGB-D Dataset: The dataset [35] is a collection of several common in-
door environments from different datasets; it contains RGB-D images from
NYUv2 [28], Berkeley B3DO [38] and SUN3D [39]. The dataset has in total
10,335 RGB-D images. In order to make the experiments comparable, we have
selected only the samples acquired using Kinect (Figure 7).

Figure 4. RGB-D TUM Dataset—frames taken from the two sequences.

Figure 5. 7 Scene dataset [29].

Figure 6. Washington RGB-D Object Dataset [34].
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Figure 7. SUN RGB-D Dataset [35].

As reported above, in all selected datasets, the RGB-D data were acquired
with Microsoft Kinect version 1. The device is equipped with an RGB camera
and a structured light sensor working on the near infrared light spectrum. A
known infrared pattern is projected onto the scene and the depth is computed after
distortion correction. For additional information about the sensor and the related
performances, please refer to the study by Wasenmüller et al. [40]. In terms of
accuracy, the sensor exhibits an exponentially increasing offset going from 10 mm
at 0.5 m, to 40 mm at distance of 1.8 m. Although the sensor is not as accurate as
newer devices on the market, most benchmark datasets in the literature still have
the Kinect depth map as ground truth.

5. Results

In this section we present the results we obtained in our simulations. Since
the author of [26] already compared the network performances with previous
state-of-the-art unsupervised methods, and in particular with [23,41], showing an
improvement in terms of absolute relative error after training data rectification, we
focused on enriching the benchmark by testing the network on different unseen
data. We evaluated the datasets described in the previous section by feeding frame
sequences into the network and computing the absolute relative difference (AbsRel)
for each prediction-ground truth pair every 5 frames. The results are reported in
Table 3. We notice that the network generalization performance highly depends on
the images’ depth range, which has to be estimated. As an example, environments
containing various structural features are more likely to result in a higher error,
and frames depicting a homogeneous scenario with lower depth variations result
in a lower error.



J. Imaging 2021, 7, 167 9 of 14

Table 3. Single-view depth estimation results on selected datasets.

Scenes AbsRel StdDev (σ2)

Chess (7Scene) [29] 0.19 5800.00
Fire (7Scene) [29] 0.15 4418.00

Office (7Scene) [29] 0.16 4438.00
Pumpkin (7Scene) [29] 0.13 3435.00

RedKitchen (7Scene) [29] 0.20 5700.00
Stairs (7Scene) [29] 0.17 5341.00

freiburg_360 (TUM RGB-D) [33] 0.16 5056.86
freiburg_pioneer (TUM RGB-D) [33] 0.28 11,370.31

Washington [34] 0.3 9656.00
B3DO (SUN RGB-D) [35] 0.18 6886.21

In addition to the absolute relative error, we then analysed the standard devia-
tion (σ2) of ground truth depth images, which gives an insight into how challenging
an environment is from the learning perspective. The standard deviation of depth
shows great potential for understanding the overall structure of the environment;
thus, it can be employed in further improvements of the network’s depth prediction.
As for the AbsRel, the tests were performed by computing σ2 along with the error
for each frame pair for every five frames. Figure 8 shows an example of borderline
situations taken from SUN RGB-D [35], where in the case of the whiteboard, the
measured AbsRel is particularly low, equal to 0.05 and σ2 = 1416.48, on the other
hand, in the kitchen image the depth range is larger with σ2 = 20,639.78, and the
resulting absolute error is equal to 0.48. By comparing the two examples, we can
see that frames with a smaller σ2 consist of relatively simple tasks that the network
can easily manage; at the same time they often were false positives. This situation
was frequent because of the required normalization procedure, which was applied
to the predicted depth in order to compare it with the GT. Indeed, for homogeneous
surfaces that appear to be orthogonal to the optical axis, the predicted depth map
resulted in an almost flat, grey, level image, leading, after the normalization, to
an apparently optimal prediction, no matter whether the scale was consistent or
not along the entire sequence. On the other hand, the higher the variation in the
depth range, the harder is for the network to predict consistent disparity maps.
This behaviour is shown in the plot reported in Figure 9, for which the tests were
conducted on the B3DO sequence from SUN RGB-D. Unlike the other sequences,
B3DO is composed by random frames from different environment; thus, it was
a good challenge for the generalization capabilities of the network. As next step
we performed the same test on the remaining data (Table 2) to find the contexts in
which the network works well and in which ones it is harder for the network to pre-
dict the disparity. Figure 10 presents the absolute relative error for each considered
sequence in relation to the standard deviation of depth both computed as the mean
over the entire sequence. It is arguable from the plot that the absolute relative error
is directly proportional to the amount of depth information (given by the standard
deviation) that the network has to estimate. More precisely, it is noticeable that
for datasets such as 7Scene, SUN RGB-D, and the sequence freiburg_360, where
the space is limited and so the overall standard deviation of depth is limited, the
network tended to remain consistent and more accurate in its predictions, resulting
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in lower absolute error. On the other hand, the prediction accuracy decreased when
it came to processing wider and more complex environments: the ones belonging
to the Washington dataset and the sequence freiburg_pioneer, and this was due to
the higher variations in the environmental depth, as can be seen in Figure 10.

RGB GT Prediction

Whiteboard

Kitchen

Figure 8. Example of depth map prediction with different standard deviation of depth.

Figure 9. The plot shows in red the absolute relative error (AbsRel) and in blue the standard
deviation of depth (Std) for the B3DO sequence from SUN RGB-D Dataset.
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Figure 10. Averag standard deviation σ2 vs. mean absolute relative error for every dataset.

6. Conclusions

The goal of our paper was to test the generalization performance of the ar-
chitecture proposed in [23], providing additional benchmark evaluations. The
evaluations have been conducted using the absolute relative error as the standard
metric. In addition, we aimed at providing the reader with some hints for inter-
preting the reasons behind some of the results we achieved, so as to draw more
detailed conclusions. We noticed that the network’s ability to estimate the structure
of an indoor environment is related to the amount of information that has to be
learnt, as can be seen in the plots reported above. In particular, the Washington
dataset provided the worst results, and this was mostly due to the larger standard
deviation of the depth range. We understand that this parameter can be considered
as a valuable parameter to describe the network’s generalization capability for
various environments. According to our experience, we believe that employing
the standard deviation of depth as a weighting parameter in the learning stage is
useful, to better stimulate the network’s prediction of consistent disparity maps
from large and more complex indoor environments.

7. Future Works

We tried to extend the evaluation of DispNet in a diversified set of scenarios,
with the purpose of testing the depth extraction accuracy in monocular videos,
using (SoA) CNN. It is needless to say how such an approach would be revolu-
tionary when deployed in real and unconstrained scenarios, and could prove to
be valuable for the companies engaged in the collection of digital twins, and for
the ones involved in mixed and augmented reality developments. Our aims and
recommendations for future studies include:

• The adoption of other SoA architectures for richer comparisons;
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• The adoption of a novel metric that considers the standard deviation of depth
for performance evaluations and the training stage;

• The extension of the study to additional datasets, for which the ground truth
has been collected with more up-to-date and accurate depth sensors.
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Abbreviations
The following abbreviations are used in this manuscript:

SoA State-of-the-art
SfM Structure from motion
SIFT Scale invariant feature transform
BA Bundle adjustment
CNN Convolutional neural network
DispNet Disparity network
RGB Red, green, blue
RGB-D Red, green, blue and depth
GT Ground truth
AbsRel Absolute relative error
StdDev Standard deviation
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