
Journal of

Imaging

Article

iDocChip: A Configurable Hardware Accelerator for an
End-to-End Historical Document Image Processing

Menbere Kina Tekleyohannes 1,* , Vladimir Rybalkin 1,* , Muhammad Mohsin Ghaffar 1,
Javier Alejandro Varela 1, Norbert Wehn 1 and Andreas Dengel 2

����������
�������

Citation: Tekleyohannes, M.K.;

Rybalkin, V.; Ghaffar, M.M.; Varela,

J.A.; Wehn, N.; Dengel, A. iDocChip:

A Configurable Hardware

Accelerator for an End-to-End

Historical Document Image

Processing. J. Imaging 2021, 7, 175.

https://doi.org/10.3390/

jimaging7090175

Academic Editor: Donald Bailey

Received: 3 July 2021

Accepted: 29 August 2021

Published: 3 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Microelectronic Systems Design Research Group, University of Kaiserslautern, 67663 Kaiserslautern,
Germany; ghaffar@eit.uni-kl.de (M.M.G.); varela@eit.uni-kl.de (J.A.V.); wehn@eit.uni-kl.de (N.W.)

2 German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany;
Andreas.Dengel@dfki.de

* Correspondence: tekley@eit.uni-kl.de (M.K.T.); rybalkin@eit.uni-kl.de (V.R.); Tel.: +49-631-205-4803 (M.K.T.)

Abstract: In recent years, there has been an increasing demand to digitize and electronically access
historical records. Optical character recognition (OCR) is typically applied to scanned historical
archives to transcribe them from document images into machine-readable texts. Many libraries offer
special stationary equipment for scanning historical documents. However, to digitize these records
without removing them from where they are archived, portable devices that combine scanning and
OCR capabilities are required. An existing end-to-end OCR software called anyOCR achieves high
recognition accuracy for historical documents. However, it is unsuitable for portable devices, as it
exhibits high computational complexity resulting in long runtime and high power consumption.
Therefore, we have designed and implemented a configurable hardware-software programmable
SoC called iDocChip that makes use of anyOCR techniques to achieve high accuracy. As a low-power
and energy-efficient system with real-time capabilities, the iDocChip delivers the required portability.
In this paper, we present the hybrid CPU-FPGA architecture of iDocChip along with the optimized
software implementations of the anyOCR. We demonstrate our results on multiple platforms with
respect to runtime and power consumption. The iDocChip system outperforms the existing anyOCR
by 44× while achieving 2201× higher energy efficiency and a 3.8% increase in recognition accuracy.

Keywords: OCR; hardware-software co-design; FPGA; Zynq; hardware architecture; image process-
ing; historical documents

1. Introduction

In the modern age, information is often provided and circulated as digital data.
Optical character recognition (OCR) is the most common method of transcribing typed,
handwritten, or printed documents into digital format. It is used in many application
areas to digitize document images like passports, invoices, and others. The conventional
approach for OCR requires capturing document images using a standalone scanner and
later recognizing these images using a software running on a computer. This approach is
time consuming and not scalable. Alternatively, bulky scanning devices can be replaced by
specialized hand-held devices, like smart pens [1–6] that are equipped with a scanner to
scan texts line-by-line. Some of them are equipped with OCR functionality. However, their
application is restricted to a single text line recognition at once. Although this approach
provides portability, it is time-consuming for documents with multiple text lines and for
large numbers of documents.

The progress in algorithms and electronics has allowed robust OCR that can rely
on low-resolution images taken by embedded cameras, instead of high-quality scanned
images. This potentially enables any device equipped with a camera to perform OCR. One
approach to achieve text transcription on portable devices is using cloud OCR services, to
name a few: Cloud Vision from Google [7], Computer Vision from Microsoft [8], ABBYY

J. Imaging 2021, 7, 175. https://doi.org/10.3390/jimaging7090175 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0001-7191-0659
https://orcid.org/0000-0002-0926-6062
https://doi.org/10.3390/jimaging7090175
https://doi.org/10.3390/jimaging7090175
https://doi.org/10.3390/jimaging7090175
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7090175
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging7090175?type=check_update&version=2

J. Imaging 2021, 7, 175 2 of 42

Cloud OCR SDK [9], and CloudOCR [10]. This approach enables OCR on any device with
Internet connection. Cloud-based OCR saves energy by offloading the text recognition
task to a server. However, this approach requires Internet connection and it is based on a
service that requires costly subscription. Another approach addresses the shortcomings
of the cloud-based method by using embedded intelligence. However, embedded central
processing units (CPUs) and graphics processing units (GPUs) typical to portable devices
fail to provide a low-power, low-latency, and energy-efficient solution for OCR. Applica-
tion specific accelerators enable complex algorithms in low-power portable devices with
restricted battery budget. Field-programmable gate array (FPGA) are emerging computing
platforms that are used to accelerate applications on portable devices. Recently, FPGAs
started appearing in mainstream smartphones, like iPhone from Apple [11].

To this end, we propose an iDocChip that is a low-power and energy-efficient hardware-
software accelerator suitable for a low-latency OCR. The iDocChip allows end-to-end OCR
capable of producing a machine readable text from a camera image. In this paper, we target
OCR of historical documents as they are one of the most challenging types of documents
to transcribe, due to their complex layout and the various types of degradation they incur.

National archives, libraries, and museums worldwide hold millions of historical
documents containing rich, diverse, and valuable information. These documents are
usually very fragile due to physical deterioration. Digitizing these archives is essential
to capture and preserve the history and information they contain. There has been an
increasing demand to electronically access historical records. Converting archives into
machine-readable texts has many benefits; mainly, it enables document indexing for easy
identification, storage, and retrieval of information. Moreover, it leads to the development
of further applications such as text mining, keyword spotting, text-to-speech conversion,
and others. Over the past few decades, therefore, the research area to transcribe historical
document contents into machine-readable texts has been amplified. Similarly, a searchable
historical record is achieved by applying OCR to scanned archive pages.

Nowadays, libraries offer highly specialized equipment to scan historical documents.
These machines are able to scan a wide range of document types with varying thicknesses
and dimensions. However, they are usually large and stationary, requiring physical
manipulations of the archives. To avoid further damage to the already fragile historical
documents, using a portable device that combines scanning and OCR capabilities has
become a promising approach. Such a device enables historical records to be transcribed
without the need to remove them from where they are archived.

In support of the ongoing digitization efforts, we have focused on developing an OCR
for a handheld device that is suitable for transcribing historical as well as contemporary
modern documents. One of the applications that we envision for our system is integration
with smart goggles [12–15] that will enable instant OCR for keyword spotting and similar
tasks. Further, our system can be used as an intellectual property (IP) and integrated to
embedded devices to perform OCR at low power consumption and high energy efficiency.
The processing latency and power consumption requirements are formally set to design an
efficient system that meets the thermal design power (TDP) constraints of a portable device.
The resulting handheld OCR device is expected to transcribe a single document image
within 500 ms under a 2 W power budget. These constraints can be further translated
into 2 frames per second (FPS) throughput and 1 FPS/W energy efficiency. Addition-
ally, the device is required to transcribe different historical and modern documents with
high accuracy.

In recent years, various commercial and open-source OCR systems, such as ABBYY [16],
OmniPage [17], OCRopus [18], Tesseract [19], and others, have been developed. These sys-
tems are typically optimized for transcribing modern documents, and they struggle to
transcribe deteriorated historical archives with sufficient accuracy. Low-quality OCR text
output reduces search efficiency, information retrieval, and other applications. Hence,
to fully realize the benefits of digitization, an OCR system should offer high recognition
accuracy, despite the severe quality degradation existing in historical documents. To

J. Imaging 2021, 7, 175 3 of 42

this end, Bukhari et al. [20] introduced an open-source end-to-end OCR software called
anyOCR. This digitization solution is adopted by Nararagonien-digital [21]. The dig-
itization project [22] has been conducted by the German Research Centre for Artificial
Intelligence [23] in collaboration with the University of Würzburg [24].

Unlike many commercial and open-source OCR engines, the anyOCR system tran-
scribes modern and historical documents with high accuracy. It is designed using state-of-
the-art image processing techniques, with a particular emphasis on digitizing historical
document images that suffer from severe quality degradation caused due to bleed-through
pages, complex irregular layouts, skewed/overlapping texts, non-uniform shading, etc.
Such degradations are typical to historical documents, which makes them distinct from con-
temporary documents. In this paper, we have used a highly degraded historical Latin doc-
ument images dataset, which is part of the 15th century novel called “Narrenshchiff” [25].
This dataset is used as a template to design our system as it represents the type of historical
documents we target. For this test dataset, the commercially available OCR engine ABBYY
and the open-source Tesseract system achieve only 66.47% and 56.83% accuracy, respec-
tively. In comparison, anyOCR achieves a 76.3%. Therefore, we selected the algorithm
of the anyOCR system for our portable OCR device. However, due to a large number
of sophisticated image processing techniques, anyOCR exhibits a high computational
complexity that results in a long runtime and high power consumption. Therefore, to adapt
anyOCR for a portable device with a constrained energy budget, we target energy-efficient
and high-throughput acceleration of the anyOCR algorithm.

The first crucial step in the design of a portable OCR device is selecting a computing
platform that best fits the anyOCR system. General-purpose processing platforms that
rely on traditional arithmetic, like CPUs and GPUs, support only a limited number of data
types. For systems like anyOCR that require many arbitrary-bit operations, computing
using standard data types significantly affects their energy efficiency. As a result, anyOCR
cannot be handled efficiently on general-purpose computing platforms. On the contrary,
hardware platforms like FPGAs and application-specific integrated circuits (ASICs) sup-
port a full range of data types, including custom precision. Hence, these platforms allow
the development of efficient architectures that can benefit from arbitrary precision opera-
tions. Additionally, these specialized processors offer customized hardware acceleration,
custom memory hierarchy, and other features, which enable the design of systems that
can achieve low power and meet real-time processing requirements. However, ASICs are
inherently inflexible and are reasonable only for high volume production due to large-scale
manufacturing costs and high design efforts. Moreover, to support various document
recognition applications with different configurations, the portable OCR engine has to
adapt to changes even after the production of the device, which is not possible with ASICs.
To this end, FPGAs is the most suitable design platform as it fulfills all the requirements.
In recent years, FPGA vendors have introduced a System-on-Chip (SoC) that offers soft-
ware, hardware, and I/O programmability in a single chip. The Xilinx® Zynq®-7000 All
Programmable SoCs leverage the 28 nm FPGA fabric and the ARM® Cortex™-A9 dual-core
processors to increase design flexibility and enable the development of highly versatile
systems. Hence, we target the Zynq-7000 SoC, specifically the Zynq-7045 device, to design
the anyOCR-based portable document image processor, iDocChip. Furthermore, the Zynq
platform enables hardware upgrade in a similar manner to the software, which allows for
the updating of the complete system with newer algorithms.

As shown in Figure 1, anyOCR has four pipeline steps. The first three are preprocess-
ing/layout analysis steps, namely, Binarization, Text and Image Segmentation, and Text
Line Extraction, which involve various computer vision and image processing algorithms.
The last pipeline step, Text Line Recognition, is a character recognition step based on a
Bidirectional LSTM (Bi-LSTM) recurrent neural network. While the character recognition
step of anyOCR is universal and suitable for both contemporary and historical documents,
the binarization and layout analysis steps are designed with a special emphasis on histori-

J. Imaging 2021, 7, 175 4 of 42

cal documents, as the historical documents are typically more physically deteriorated than
contemporary documents and have complex layout structure.

Figure 1. The anyOCR system processing pipeline: (a) input image, (b) after Binarization, (c) after
Text and Image Segmentation, (d) after Text Line Extraction, and (e) after Text Line Recognition.

In previous publications [26–30], we have presented hardware architectures for each
of these four pipeline steps. However, these architectures are separately developed and
require modifications to put all pipelines together. Moreover, the assembly of several filters,
computer vision algorithms, and the recognition network have resulted in new challenges,
such as data storage management. In the previously presented implementations, each
pipeline step reads data from off-chip memory. This work focuses on coupling the different
pipelines together in a single design, which requires keeping a large amount of data on-chip
and reducing external memory transfers to achieve real-time processing and low-power
consumption. As a result, a new hardware-software partitioning scheme is required.

Our test dataset [25] is composed of two types of images: (1) high-resolution scanned
images with dimensions of 2166× 3219 and 400 ppi, (2) lower resolution images with
dimensions of 4248× 5664 with 72 ppi taken by a smartphone camera (Samsung Galaxy
A9). We took the camera images by holding the phone parallel to the printed document,
without any mechanical support. Holding the phone by hand has resulted in images with
varying skew angles and perspective distortions for different document pages. Moreover,
the smartphone camera has exhibited noises, such as variations in the brightness of the
images. Similar to the images acquired from the scanner, we do not apply any extra
preprocessing for images taken by the smartphone camera. The binarization part of the
iDocChip system is able to mitigate the camera noises and other unwanted artifacts. We
expect images taken by any regular user without any photography experience. This way,
the test document images are in accordance with a real-world scenario, where the images
taken by an embedded camera are fed to our iDocChip to produce a machine-readable text.

Input images of the iDocChip system may have a high resolution and big size. To
avoid the high bandwidth overhead and meet the throughput constraints, the data transfers
between computational units and off-chip memory must be limited to the minimum
possible value. This implies that intermediate results of operations in iDocChip must be
buffered on on-chip memory units. However, due to the limited number of available on-
chip memory units, storing all intermediate results using hardware resources is not feasible,
even for the largest available FPGA fabric. To relieve the high bandwidth overhead and
large memory requirements, we have analyzed different hardware-software partitioning
schemes. This paper presents a hybrid hardware-software architecture for the complete
iDocChip system that uses an optimized and efficient hardware-software partitioning
scheme. The capability of the programmable fabric and the embedded CPU is exploited
to design a low-power, energy-efficient, real-time, adaptable end-to-end OCR system. By
setting iDocChip with different configuration files, different types of documents can be
transcribed. Hence, this system enables the digitization of a wide range of documents. The
novel contributions of this paper are as follows:

J. Imaging 2021, 7, 175 5 of 42

• Algorithmic optimizations for the anyOCR system are presented that improve the
accuracy of the historical document digitization by 3.8%.

• A new hardware-software partitioning scheme is presented for the optimized anyOCR
algorithm.

• A heterogeneous hardware-software architecture is designed and implemented based
on the new partitioning scheme.

• A custom hardware accelerator based on the new architecture is realized using Zynq-
7045 FPGA.

• The novel accelerator is compared to optimized anyOCR implemented on multiple
computing platforms, including low-power CPUs.

• It is demonstrated that the iDocChip system outperforms the original anyOCR soft-
ware running on i7-4790T by more than 44× and 2201× in terms of runtime and
energy efficiency, respectively.

The rest of the paper is organized as follows. Section 2 reviews related works in the
literature. Then in Sections 3 and 4, the anyOCR algorithm and our previous works with
respect to iDocChip are explained, respectively. In Section 5, algorithmic optimizations and
the updated hardware-software partitioning for the end-to-end iDocChip are described
in detail. Then the hybrid architecture of iDocChip is presented in Section 6, followed
by evaluation and results in Section 7. Finally, Section 8 gives an outlook and concludes
the paper.

2. Related Works

To develop a portable OCR device, three major design decisions are considered: plat-
form, algorithm, and implementation. Hence, this section reviews existing literature with
respect to these main topics. Regarding the computing platform, the design space includes
embedded CPUs, embedded GPUs, FPGAs, and ASICs. To choose the most suitable com-
puting platform for designing the handheld OCR device, we surveyed existing works in
the literature that compare portable design platforms for image processing algorithms,
as presented in Section 2.1. Then Section 2.2 reviews algorithms of end-to-end OCR sys-
tems that are available in the literature. Finally, published works concerning hardware
implementation of OCR systems are explored in Section 2.3.

2.1. Cross-Platform Comparisons

Targeting image processing algorithms, many publications have presented compre-
hensive comparisons of different processing platforms [31–35]. Brugger et al. [31] have
presented a cross-platform analysis of morphological operations implemented on low
power platforms: a Low-Power Intel® Core™ i7-4790T CPU, an NVIDIA® Tegra® K1
GPU SoC, and a Xilinx® Zynq® 7020 FPGA SoC. The authors observed that the filtering
algorithms implemented on the GPU are 5× slower than a similar implementation on the
CPU, while the FPGA implementation is 8–10× more energy efficient compared to the
CPU and GPU implementations. In another publication [32], Qasaimeh et al. benchmarked
performance and energy efficiency for different vision algorithms implemented on three
hardware accelerators that are commonly used for embedded vision applications: ARM®

Cortex™-A57 CPU, NVIDIA® Jetson™ TX2 GPU, and Xilinx® Zynq® UltraScale+® MPSoC
ZCU102 FPGA. Their results show that while simple and easy-to-parallelize kernels per-
form well on GPUs with 1.1–3.2× energy/frame reduction compared to CPU and FPGA, for
complete vision pipelines the FPGA outperforms the others with energy/frame reduction
of 1.2–22.3×. Moreover, the authors also observed that the FPGA performs increasingly
better as the complexity of the vision pipeline grows. In [33], Page and Mohsenin have
presented a pulse wave spectral Doppler ultrasound imaging system implemented on a
Xilinx® Virtex®-5 FPGA and in a 65 nm CMOS ASIC. The authors concluded that the
FPGA design has comparable energy efficiency and performance compared to the ASIC
implementation while providing reconfigurability and lower costs.

J. Imaging 2021, 7, 175 6 of 42

According to our survey, FPGAs are the most suitable computing platforms to develop
a cost-effective image processing system. The Xilinx® Zynq®-7000 All Programmable SoC
extends the FPGA fabric with a CPU; therefore, software programmability is possible due to
the integrated dual-core ARM® Cortex™-A9 processors, while the 28 nm Artix®-7/Kintex®-
7 based programmable logic (PL) hardware provides reconfigurability. The processor cores,
referred to as the processing system (PS), increase the flexibility of a design. Hence, together
with the PL, the PS provides a highly customizable SoC. As a result, these hybrid SoCs
enable highly differentiated designs for a wide range of embedded applications, including
medical endoscopes, professional cameras, machine vision, and many others [36–39]. In
particular, the Xilinx Zynq-7045 SoC, which contains the Kintex-7 based PL alongside the
ARM cores, is used for diverse portable industrial applications [40–42]. Hence, we have
selected this Xilinx Zynq SoC as a target platform to design the portable OCR device.

2.2. End-to-End OCR Systems

Typically, OCR is carried out in four phases: image enhancement, page segmentation,
feature extraction, and character recognition (classification). A post-processing step, e.g., a
language model, may also be included to increase the character recognition accuracy of
the system. First, preprocessing is performed on the input image to make it ready and
suitable for character classification. The preprocessing phase enhances the input image,
removes any existing noises, segments the page into appropriate groups, detects, and
extracts features. Then the classifier module labels characters through supervised learning.
Finally, post-processing is performed to increase the overall system accuracy by correcting
any existing errors after the OCR process.

In the literature, there exist several works regarding modern contemporary and his-
torical document processing systems. In [43], Afroge et al. preprocessed input images
using different image processing algorithms. Then they use a feed-forward neural network
for classifying and recognizing the characters. However, their method cannot distinguish
between text and non-text in the document image. In addition, it is unable to extract
connected characters, making it unsuitable for digitizing historical documents. Wei et
al. [44] proposed an OCR model composed of four major blocks: input acquisition and
preprocessing, training, testing, and validation. For character recognition, the authors have
used a pre-trained deep neural network Inception V3 model with two fully connected
layers that give a 90% accuracy for broken and faded English characters. For classification
(character recognition), researchers have also worked on different machine learning ap-
proaches, which include support-vector machine (SVM) [45], random forests [46], k-nearest
neighbor [47], decision tree [48], neural networks [49–51] etc. These machine learning
methods are usually combined with image processing techniques to increase the accuracy
of the optical character recognition system. Nowadays, the pre- and post-processing steps
are also being processed using neural networks [52–54]. Although these methodologies
are very promising, due to the large number of parameters, they are very challenging to
translate into hardware-aware implementations without loss of accuracy, especially for
portable devices with real-time requirements.

The anyOCR system [20] is based on the open-source OCRopus toolbox [18], which is
the first OCR engine to implement a line-based character recognition using bidirectional
long short-term memory (LSTM) networks [55]. The anyOCR chain implemented in Python
is comprised of various algorithms for document analysis and recognition, including
binarization, page segmentation, text line extraction, and character recognition modules.
The preprocessing achieves very high results due to the robust deskewing and adaptive
thresholding techniques used for binarization. The text and image-parts of the documents
are separated using page segmentation. The robust text line extraction reliably identifies
text lines within the document and outputs these lines in reading order. Moreover, the
Bi-LSTM network has a very high character recognition accuracy.

J. Imaging 2021, 7, 175 7 of 42

2.3. End-to-End OCR Hardware Architectures

Many publications present hardware acceleration for the different steps of the OCR
system. For example, Singh et al. [56] and Chen et al. [57] presented GPU-based parallel
implementations that speed up Souvola’s method of binarization. In [58], Singh et al.
presented a parallel implementation for Otsu’s method of binarization, which outperforms
the serial implementation by 1.6×. Soua et al. [59] proposed parallel implementation of
the hybrid binarization based on Kmeans method on the NVIDIA GTX 660 GPU. Westphal
et al. [60] implemented Howe’s binarization algorithm on a heterogeneous CPU-GPU
system and achieved an average of 3.5× faster performance compared to a CPU-only
execution. In [61], Sultana and Meenakshi developed an image binarization algorithm
that used a simple two-weight neural network-based clustering and implemented this
algorithm on an FPGA. Recently, Rybalkin and Wehn [62] presented a hardware architecture
for multidimensional long short-term memory (MD-LSTM) neural network and its FPGA
accelerator for image binarization.

In the literature, text line extraction is usually coupled with text and image segmenta-
tion. In [63], Kumar et al. used a method based on a discrete wavelet transform to detect
and extract texts from document images. The authors designed the architecture and imple-
mented the system on a Virtex-5 FPGA. For a dataset of 33 images, the authors achieved
96 s for the text and image segmentation process. However, they have not openly commu-
nicated the energy efficiency or power consumption of the system. Bai et al. [64] proposed
a novel architecture of a convolutional neural network called MSP-Net for text/non-text
image classification. The system takes an input image and outputs block-level classification
results in an end-to-end manner. An NVIDIA GTX TitanX GPU was used for training
purposes. In [65], Vignesh et al. applied a morphological closing operation and connected
component analysis to detect and extract texts from an image. The authors used a Virtex7
FPGA device to synthesize and evaluate their architecture.

In recent years, different hardware architectures have been presented for the character
recognition task. In [66], Sanni et al. presented a hardware implementation of a deep
belief network architecture for character recognition using stochastic computation. The
authors evaluated their architecture on a Kintex-7 FPGA device for the MNIST database
of handwritten digits [67]. In the literature, some works combine feature extraction and
character recognition. For example, Zho et al. [68] presented an OCR system that consists
of character segmentation and recognition modules. The authors used a five-layer Convo-
lutional Neural Network (CNN)-based recognizer. The system is implemented and tested
on a CME M7 FPGA device. In [69], an FPGA-based hardware accelerator is presented
for scene text recognition. The system involves feature extraction based on histogram of
oriented gradients and character recognition based on an Extreme Learning Machine (ELM)
feedforward neural network. The authors have used Altera Cyclone IV FPGA to prototype
and evaluate the system.

To the best of our knowledge, there is no previously published work presenting a
hardware architecture for an end-to-end OCR system in the domain of historical documents.
Moreover, none of the previous publications targeted embedded platforms or focused on
designing low-power real-time systems. Although in our previous publications [26–30], we
have presented hardware architectures for each of the four OCR pipelines (see Section 4),
these implementations are optimized for their corresponding step, and they require changes
to integrate them into a single system.

3. The anyOCR Algorithm

The anyOCR system takes a scanned document page as an input. This image is
prepared for the character recognition step by first passing through the preprocessing steps.
As shown in Figure 2, the three preprocessing steps of the anyOCR algorithm consist of
various image processing operations, including many filters that make use of a sliding
window. The window size, also known as the kernel size or structuring element (SE),
determines the scale of the image filtered at a time.

J. Imaging 2021, 7, 175 8 of 42

(a) (b) (c)

Figure 2. Algorithms of the three anyOCR preprocessing steps: (a) Binarization, (b) Text and Image Segmentation, and (c)
Text-line Extraction.

As shown in Figure 2a, the binarization step involves normalization, noise detection
and removal, thinning, skew detection and correction, thresholding, and other processes.
In the text-image segmentation step, Figure 2b, page segmentation is performed to identify
patterns of non-text regions from the document and segment these areas using feature ex-
traction. The third pipeline step of the anyOCR algorithm is based on Gaussian smoothing,
which provides high accuracy for text line detection. The complete processing chain of the
text line extraction algorithm is depicted in Figure 2c.

3.1. Binarization

The state-of-the-art results in historical document image binarization are achieved by
methods based on U-Net fully convolutional network. The U-Net architecture was first
proposed as a network for biomedical image segmentation [70]. Since then it became very
popular in various other semantic segmentation tasks, including document image bina-
rization [71–74]. The differences between the proposed methods come from the different
architectural enhancements, the number of networks, a patch size, and operation on a
local or/and global scale. The top result in Document Image Binarization Competition
(DIBCO) [71] is achieved by a method proposed by Huang et al. in [74]. They proposed
performing document image binarization using three U-Net networks. Combining outputs
from all three networks, they could achieve superior results. However, the use of three
original U-Net networks resulted in a very large model compared to previous approaches.
Karpinski et al. in [73] proposed a U-Net architecture that achieves comparable accu-
racy to the model proposed by Huang et al., while having 122 times fewer parameters.
They enhanced their architecture with residual connections and Squeeze-and-Excitation

J. Imaging 2021, 7, 175 9 of 42

module [75], which have been shown to improve the performance. The document image
binarization deployed in the anyOCR is based on percentile-based binarization (PBB) ap-
proach. This method is based on conventional image processing techniques as explained
below. In Table 1, we compare the character-level accuracy after binarizing the document
images using the three methods.

Table 1. Character-level accuracy for binarization using U-Net based and PBB methods.

Binarization Method Model
[Mparams]

“Narrenschiff”
Character-Level

Accuracy [%]

State-of-the-art U-Net [74] 93.1 75.05
Low-complexity U-Net [73] 0.76 74.73
Hand-tuned percentile-based - 76.30

The size of the model proposed by Huang et al. [74] is prohibitively large for em-
bedded implementation. Considering an 8-bit quantization of the model proposed by
Karpinski et al. [73], only the model would require 31% of on-chip memory resources on
Zynq-7045, which is 3.4 times higher than the corresponding utilization of the PBB method,
see [26]. Considering the size of the models and the achieved OCR accuracy, PBB approach
is the most suitable for the hardware implementation. The OCR accuracy is based on
character error rate (CER) computed as the Levenshtein distance [76] between a decoded
sequence and a ground truth after the character recognition step, see Section 3.4.

To binarize the input grayscale image Iinput, first, it is normalized, where each pixel is
processed using Equation (1). Pmax and Pmin are the maximum and minimum pixel values
of Iinput.

Pnorm = (Pinput − Pmin)/(Pmax − Pmin) (1)

The estimate background block (see Figure 2a) involves five operations. First, the
normalized image size is scaled down using cubic spline interpolation to reduce the
number of pixels within the image. Then the shadow background layer of the image is
estimated by applying consecutive percentile filters. After processing these filters, the image
Iperc is obtained. This image is then scaled back up to the original image size using third-
degree spline interpolation. To further approximate the background layer, Iperc is clipped as
shown in Equation (2). These operations result in a clipped image Iclip.

Iclip =

0, (Inorm − Iperc) < 0
1, (Inorm − Iperc) > 1
(Inorm − Iperc), otherwise

(2)

Computing the skew angle involves several operations, including maximum Pmax and
minimum Pmin pixel value calculations, subtraction, eight nearest-neighbor based image
rotation interpolations, arithmetic means, and variance computations. Finally, the angle
with the maximum variance is selected as the skew angle. Then the image is rotated with
the resulting skew angle by applying spline interpolation and normalized by subtracting
each pixel of the image from the maximum pixel value. This processing step results in a
rotated clip image Irclip. The mask image is used to eliminate pixels that are not required
for the final thresholding. As shown in Figure 2a, the mask computation block involves
two Gaussian filters, subtraction of the first Gaussian output from the rotated clip image,
thresholding, a morphological dilation with an 8-connective SE, and an intersection operation
between the rotated clip image Irclip and the output of the dilated image. To generate
the final binarized image, the resulting image of the compute mask block is flattened into
a one-dimensional array, and all of its elements (pixels) are sorted. Next, the low ls and
high hs scores are calculated at the 5th and 90th percentile positions, respectively. These
values are used to rescale the rotated clip image Irclip as shown in Equation (3). Finally,

J. Imaging 2021, 7, 175 10 of 42

the rescaled image is binarized using a thresholding operation to obtain the final binary
image Ibinary.

Irescale =

0, (Irclip − ls)/(hs− ls) < 0
1, (Irclip − ls)/(hs− ls) > 1
(Irclip − ls)/(hs− ls), otherwise

(3)

3.2. Text and Image Segmentation

The input image of the text and image segmentation step is the binarized image
Ibinary. The foreground and background pixels of this binary image are represented by ‘0’
s and ‘1’ s, respectively. In order to make any valuable computations on the foreground
image, first, the image is inverted, where its foreground image pixels are set to “1” s and
background pixels are set to “0” s.

The inverted image Iinv is then processed by two reduction operations with thresholds
T = 1. These operations subsample the incoming image while preserving the density of
low- and high-frequency components within the image. After reading a 2× 2 block of four
pixels, a reduction operation replaces these pixels by a single pixel depending on the chosen
threshold T, according to the formula given in Equation (4). The value of T can be between
1 and 4.

PT
reduction =

1,
4
∑

i=1
Pi ≥ T

0, otherwise
(4)

The subsampled image is processed with a hole-fill morphology to fill hollow contours.
This operation is based on an 8-connective morphological reconstruction by erosion. Then
to compute the seed image (see Figure 2b), two more reduction operations of threshold
values T = 4 and T = 3, a 4-connective morphological opening, and two expansion operations
are applied. An expansion operation scales up an image by populating one pixel into
a 2× 2 block of four pixels. To compute the mask for the image-part of the document,
first, connected component labeling (CCL) is applied on previously obtained Imask, refer
to Figure 2b. This operation finds and labels all distinct components within Imask. Then,
the labeled mask image Imask_labeled is intersected with the seed image Iseed, and the labels
of the connected components in Imask_labeled that fully or partially overlap to the seed
image are selected and collected as uniqueLables. In the last step of this feature extraction
operation, the mask image is indexed by the uniqueLabels and unified with the seed image,
as shown below.

I f eature_ext =

{
1, Imask_labeled ∈ uniqueLables
Iseed, otherwise

(5)

In the next processing step, an 8-connective morphological dilation is applied to recover
any valuable pixels that were previously filtered out as noise. Then the original image
size is retrieved by applying two more expansion operations. The resulting image, Iip_mask,
contains the mask image for the non-text (image) part of the inverted binary image Iinv.
The mask image for the text-part Itp_mask is obtained by inverting Iip_mask. Then the final
text- and image-parts of the input binary image, Itp and Iip, respectively, are gathered by
intersecting the inverted binary image Iinv with their respective masks, Itp_mask and Iip_mask,
and inverting the results, as shown in Figure 2b.

3.3. Text Line Extraction

This step processes the text-part of the document image (Itp) that was segmented
in the previous processing pipeline. Initially, the image is inverted to give Itp_inv. Then
the estimate scale block (see Figure 2c) approximates the text size of the document by first
applying a CCL on the inverted image, extracting the bounding boxes of the connected

J. Imaging 2021, 7, 175 11 of 42

components (CCs), and computing their area. Then ScaleMap (area map) is created by
replicating the labeled Itp_inv image and updating it by replacing the label of each pixel by
the square root of its CCs’ corresponding area. The resulting area map is flattened into a
one-dimensional array, and thresholding is applied to remove Scales that are too small or
too large. Finally, the approximate text size (Scale) is selected by calculating the median
of the one-dimensional ScaleMap. This Scale is used to determine the kernel sizes of the
subsequent Gaussian, uniform, maximum filters, and different threshold values.

The second block of the text line extraction pipeline, Separate Columns, takes in the
inverted image of the text-part of the document and outputs an image with its existing
columns marked. This block is further divided into four sub-blocks, refer Figure 2c. The
first sub-block finds horizontal lines that usually interface in images due to reflections
and shadows. To prevent these lines from interfering with the text line extraction, they
are detected and removed by applying CCL on the inverted Itp_inv image and extracting,
calculating, and removing objects with a width larger than a given threshold. The resulting
Ihl image is then broadcasted into the next two sub-blocks. These smooth text region and find
column edges sub-blocks consist of Gaussian and uniform filters followed by binarization
operations. The kernel sizes of the filters are dependent on the previously obtained text
Scale. Unlike the smooth text region sub-block, to find column edges, an x-derivative of
Gaussian is used. The two sub-blocks result in Ist and Ice images after smoothing the text
region and finding the column edges of the document, respectively. The fourth sub-block,
column separation, involves seven operations: two maximum filters, comparison between
images, a CCL that extracts the height of CCs, thresholding, and indexing. The threshold
value and kernel sizes of the maximum filters are dependent on the value of Scale.

The find the text lines block involves different operations, see Figure 2c. First, a boxmap
is created by applying a CCL on the Ihl image to find the connected components. Then
the area of each object is computed, and based on a given threshold, objects that are too
small or too large are discarded, as they are not considered as characters. These threshold
values are dependent on the Scale. The boxmap image Ibm is then intersected with Ihl in
order to clean the image, where only the desired components that contain texts are kept.
Gradient filtering is used to find baselines of the text edges by applying a y-derivative of
Gaussian filter followed by a uniform filter and results in Igrad image. This image is further
processed to find the top and bottom edges of the text lines using the following equation:

Itop =

{
Igrad/max(Igrad), Igrad > 0
0, otherwise

Ibottom =

{
−Igrad/max(−Igrad), Igrad < 0
0, otherwise

(6)

Then the transitions operation finds the text lines of the document by applying several
operations on the top and bottom edge images. It involves six maximum filters, two
thresholding operations, an image inversion operation, search and fill area computations,
and inter-image operations of three intersections and two multiplications. The transitions
operation results the text-part of the document image with its text lines marked, Ilines.

The final processing block, segment image, involves four operations, refer to Figure 2c.
First, the text lines of Ilines and the boxmap image Ibm are labeled using CCL, resulting in
Ilabeled_lines and Ilabeled_bm, respectively. Then in the label propagation operation, the corre-
sponding labels of Ilabeled_bm and Ilabeled_lines are identified. Through indexing, the labels
from Ilabeled_lines are propagated to Ilabeled_bm in such a way that if a character intersects
exactly one text line, it is kept, and the label of this character is set similar to the label
of its text line. However, characters that intersect more than one text line are considered
as strokes caused by quality degradation, and therefore, they are removed. The output
image Ipropagate contains labeled text lines. The spread labels operation reassigns labels that
were wrongly removed in the label propagation step by applying an Euclidean Distance
Transform (EDT), three thresholding, two image-multiplication, an indexing, and two
flattening operations. Finally, the text lines are segmented by applying CCL and extracting

J. Imaging 2021, 7, 175 12 of 42

the connected component objects. Then the text lines are sorted in a reading order using
topological sort algorithm.

3.4. Text Line Recognition

The last step of the anyOCR chain, text line recognition, is based on Bi-LSTM neural
network with connectionist temporal classification (CTC) that allows transcribing the text
lines without partitioning them down to separate characters. As shown in Figure 3, the
topologies used for training and inference have differences. Figure 3a depicts a topology
used for training, while Figure 3b presents a modified topology used during inference.

(a)

(b)

Figure 3. (a) Network topology used during training. Only forward path is shown. (b) Network topology used during
inference.

First, we explain the topology used for training. The input text lines are scaled to
have a fixed height of N I = 48 pixels and arbitrary width of C pixels. The height and the
width correspond to the input size of the LSTM cell and the length of the input sequence,
respectively. The topology comprises two input layers that feed images column by column
taken from left-to-right and right-to-left along the width dimension C. The hidden layer is
based on a single Bi-LSTM layer, composed of forward and backward unidirectional LSTM
layers, each comprising a distinct set of NH = 100 LSTM cells with peephole connections.
The two unidirectional layers process the input image from left-to-right and right-to-left,
respectively. Each layer generates an output sequence of length C and feature size NH .
Before the dense layer, the forward output sequence and the backward sequence taken in
reverse order are concatenated along the feature dimension. To improve convergence
during training, a batch normalization step is applied on the output sequence of the
Bi-LSTM layer. The result of the concatenation is fed to a common dense layer, which maps
each column of the concatenated output sequence to a vector of NO = 105 features. Each
feature corresponds to a symbol in the alphabet, including a blank space. A Softmax layer
converts the output of the dense layer into a vector of probabilities over the alphabet. The
values can be positive, negative, zero, or greater than one, but the Softmax transforms them
into values between 0 and 1, so that they can be interpreted as probabilities. A CTC layer
is used as a loss function. The classification accuracy is based on CER computed as the
Levenshtein distance [76] between a decoded sequence and a ground truth.

At inference, the batch normalization layer is merged with the dense layer into an
Output Layer. We replace the Softmax activation and the CTC with MaxPerColumn and
Labeling functions. The MaxPerColumn finds a label with the highest value per column
and forwards its index (label) and corresponding value to the next function. The Labeling
function processes the labels from left to right. A label corresponding to a class zero is a
blank space that separates characters and should not be confused with a space between
the words. The Labeling function continues processing until the next blank and finds a
label with the maximum value in the block between the blanks. A label with the maximum

J. Imaging 2021, 7, 175 13 of 42

value is associated with a character that is considered to be represented between the blanks.
After decoding the complete input text line, the function outputs a string of labels.

4. iDocChip Background

As stated previously, the iDocChip system is an FPGA-based end-to-end OCR con-
sisting of layout analysis and character recognition steps of anyOCR (see Figure 1). For
each of the four processing steps, FPGA-based systems were introduced and implemented
on Xilinx Zynq-7045 SoC [26–30]. In these publications, the performance and energy-
efficiency of their implementations were compared to the original Python-based anyOCR
software running on Intel Core i7. In this section, the designs and architectures of the four
FPGA-based systems are explained briefly.

4.1. Binarization

The first pipeline step of anyOCR converts the input grayscale image into binary using
PBB. The hybrid hardware-software FPGA-based accelerator of this anyOCR pipeline step
is presented in [26]. To design an efficient heterogeneous architecture of this accelerator, the
PBB algorithm is partitioned into hardware and software parts, as shown in Figure 4. The
binarization architecture is then implemented in a Zynq-7045 device, where the PL contains
the hardware part of the algorithm and PS runs the software. In this implementation,
the PL and PS of Zynq can run concurrently while communicating through the advanced
extensible interface (AXI) ports. Custom direct memory access (DMA) controllers are
implemented to transfer data between PS and PL. The implemented accelerator, running at
166 MHz, outperforms the runtime of the original anyOCR software by 20×. Furthermore,
it achieves an energy efficiency at least 70× higher compared to the low-power embedded
processors (ARM Cortex-A9, ARM Cortex-A53).

Figure 4. The system-level architecture of the iDocChip binarization step.

4.2. Text and Image Segmentation

This pipeline step separates the text and non-text parts of a document image, using
a multiresolution morphology-based text and image segmentation method. In [30], we
have presented the first heterogeneous hardware-software architecture based on an op-
timized version of the text and image segmentation algorithm of anyOCR. Furthermore,
this algorithm is partitioned into hardware and software parts, as shown in Figure 5,
where time-critical operations with high parallelization capability are offloaded to the
FPGA fabric. Based on this architecture, a heterogeneous hardware-software system is
implemented on the Zynq-7045 device. Compared to the original anyOCR implementation,
this accelerator has achieved a 3.7× speedup in performance and a 139.8× improvement
in energy efficiency. Moreover, the hybrid accelerator has outperformed the optimized
software implementation of the text and image segmentation algorithm by 2.7× and 127×
in terms of performance and energy efficiency, respectively. However, the software part
of this hybrid accelerator is very inefficient due to the sequential and time-consuming
union-find algorithm. Hence, in [27], we have presented a new optimized heterogeneous
architecture based on an improved text and image segmentation algorithm. The resulting

J. Imaging 2021, 7, 175 14 of 42

accelerator has reduced the runtime and improved the energy efficiency of the previous
accelerator stated in [30] by 40% and 46%, respectively.

Figure 5. The system-level architecture of the iDocChip text and image segmentation step.

4.3. Text Line Extraction

The final preprocessing step extracts the text lines using a Gaussian smoothing-based
algorithm. This method has four major processing blocks to estimate text scale, separate
columns, find text lines, and extract the lines from the image. The several filters involved
in these processing blocks contribute to 85% of the runtime of the text line extraction step.
Hence, in [28], the original software algorithm of this anyOCR step is highly optimized and
partitioned into hardware and software parts in order to design an efficient heterogeneous
architecture, as shown in Figure 6. Based on this architecture, a hybrid accelerator is
implemented on a Zynq-7045 device. The resulting hybrid FPGA-based system for the text
line extraction step outperforms the original anyOCR software implementation by 135×
and 1116× in terms of runtime performance and energy efficiency, respectively.

Figure 6. The system-level architecture of the iDocChip text line extraction step.

4.4. Text Line Recognition

The anyOCR system uses a Bi-LSTM neural network with CTC for text line recog-
nition that allows transcribing the text lines without partitioning them down to separate
characters. In [29], we presented the first hardware architecture of the Bi-LSTM network
used for OCR. The hardware design is depicted in Figure 7. Most of the steps are based
on computing dot products and operations on multiple independent channels that can
be efficiently parallelized in hardware. As a result, the complete step is implemented in
hardware. The implementation is optimized for online processing, i.e., no batch processing,

J. Imaging 2021, 7, 175 15 of 42

meaning that the text lines are processed one after another as soon as they are available
from the last preprocessing step. Compared to the original anyOCR software running
on i7-4790T, the accelerator provides 71× speedup and 935× higher energy efficiency.
Meanwhile, it achieves at least 67× higher energy efficiency than embedded processors.

Figure 7. The system-level architecture of the iDocChip text line recognition step.

4.5. The anyOCR System vs. Separate iDocChip Components

Compared to anyOCR the throughput and energy efficiency are increased by a mini-
mum of 6× and 268×, while power is reduced by 8.5×, as shown in Figure 8.

(a) (b)

(c)

Figure 8. Comparison of anyOCR and iDocChip pipeline steps in terms of (a) throughput (FPS), (b) energy efficiency
(FPS/W), (c) power consumption (W). Bin, Tiseg, Tlext, LSTM stand for binarization, text and image segmentation, text line
extraction, and Bi-LSTM-based text line recognition, respectively.

5. Algorithmic Optimizations and Hardware-Software Partitioning for the
End-to-End iDocChip

The anyOCR chain comprises various algorithms with a different potential for para-
llelism. Some algorithms are sequential and prevailed with control-flow, while others
are dominated by the dataflow and highly parallelizable. As a result, efficient hardware-
software partitioning becomes crucial for designing an accelerator that meets the real-time
processing requirements at low-power consumption.

5.1. Binarization

The overall operations involved in the binarization processing pipeline are given in
Figure 9 and broadly categorized into four groups. The operations grouped in G-1 are

J. Imaging 2021, 7, 175 16 of 42

sequential computations that do not benefit from hardware parallelism. The G-2 operations
can be offloaded to hardware; however, they are highly resource-intensive. Operations
categorized in the G-3 group are window-based computations that have high parallelization
capability. The simple arithmetic in G-4 are hardware-friendly and hence, they are the most
suitable to implement on the FPGA fabric.

In the previous iDocChip publication for binarization processing pipeline [26], as
input images were obtained by scanning the document pages, they are less likely to be
skewed. Hence, as shown in Figure 4, the previous work avoids the skew angle estimation
and image rotation operations involved in the original anyOCR algorithm. However, these
algorithmic adjustments have caused a reduction of accuracy from 76.3% to 75.92% for the
test dataset [25]. Furthermore, due to other modifications of the binarization algorithm,
the previously mentioned work has a 75.4% recognition accuracy for the given dataset.
However, as the new generic iDocChip design is not limited to scanned images, it includes
the skew angle estimation and image rotation operations. Our system compensates skewed
documents by up to 5 degrees to enable OCR for images taken by a hand-held camera.

Figure 9. Operations involved in binarization processing pipeline grouped from G-1 to G-4.

5.1.1. Binarization: G-1 Operations

Normalization, skew angle estimation, and image rotation operations involve calculations
of minimum (Pmin) and maximum (Pmax) pixels. These calculations, including mean pixel,
variance, and maximum variance computations required by the image rotation block and the
sort operation of the score at percentile operation, are sequential as they require traversing
all pixels of an image. In order to accelerate these operations, it would require comparing
multiple values in parallel. However, as large sorting networks are resource-demanding, it
becomes more efficient to perform sorting in software.

Moreover, to limit data transfer between the FPGA fabric and CPU, the skew angle
estimation and image rotation operations are computed before the image is streamed from
the CPU. Hence, they are relocated to the beginning of the binarization process and work
on the original input image. As a result, the maximum and minimum pixels computed
for the normalization process are also used to calculate the skew angle. Additionally, the
cubic spline interpolation of the rotate image operation is replaced by the simple and fast
nearest-neighbor interpolation. The resulting rotated image is then transferred from the
CPU to the hardware fabric to initiate the binarization process of the iDocChip system (see
Figure 10). In our experiment, these two adjustments positively affect recognition accuracy
when tested on our dataset [25], as shown in modification type BIN-1 and BIN-2 of Table 2.

The high- hs and low-score ls pixel values are not severely manipulated by the opera-
tions prior to the score at percentile operation (see Figure 2a). Hence, the score at percentile
operation is processed in software using the original input image. The computed hs and ls
parameters are then transferred to the hardware to compute the rest of the binarization
output, as shown in Figure 10. The relocation of score calculations has a negligible accuracy
loss; see type BIN-3 of Table 2. Relocating the score at percentile operation not only optimizes
the hardware implementation but also eliminates the need for calculating a mask image;
refer to Figures 2a and 10. Removing the compute mask block saves very large resources

J. Imaging 2021, 7, 175 17 of 42

that would have otherwise been used to implement (1) two Gaussian and one dilation
morphological filters that have very large kernel sizes, (2) the inter-image subtraction and
intersection operations that require the rotated clip image, Irclip, to either be stored within
the hardware logic cells or in an external memory until the corresponding Gaussian filter
and dilation results are available, and (3) the exponent and square root operations.

Table 2. Algorithmic optimization effects on system accuracy (for test dataset [25]).

Original anyOCR Accuracy 76.3%

Modification Type Modified Operations Accuracy

BIN-1 After relocating skew angle computation 76.42%

BIN-2 After relocating image rotation operation 76.54%

BIN-3 After relocating high- and low-score calculations 76.51%

BIN-4 After replacing spline interpolations by nearest-neighbor 76.65%

BIN-5 After increasing zoom value 76.34%

BIN-6 After modifying percentile filter operations 76.22%

TISEG-1 After using alternate hole-fill operation instead of morphological reconstruction 76.24%

TLEXT-1 After changing find maximum pixel computations by constant thresholds 75.23%

TLEXT-2 After changing topological sort algorithm to a quick sort operation 79.13%

TLEXT-3 After modifying the propagate label algorithm 79.24%

TLEXT-4 After adding a 4x reduction operation with T = 1 and a 4x expansion operation 80.1%

5.1.2. Binarization: G-2 Operations

The zoom operations of the binarization processing pipeline require two cubic spline
interpolation tasks, which are resource-intensive to implement in hardware. Down-scaling
the image using zoom-out interpolation (refer Figure 2a) relieves the follow-up percentile
operations from unnecessary computations and reduces their runtime. In the new iDocChip
system, the zoom interpolation operations are implemented in hardware. However, these
operations are replaced by the hardware-friendly nearest-neighbor interpolation. When this
modification is applied to our test dataset, it has resulted in a slight shift in accuracy; see
Table 2, modification types BIN-4. Moreover, to further reduce the number of required
computations for the percentile filters, the zoom scale down (as well as the zoom scale-
up) values are increased. For example, increasing the zoom factor from 3 to 8 does not
significantly affect the system’s accuracy, see Table 2, modification types BIN-5.

The clip image operation used to estimate background calculates the difference between
the result of the second percentile filter, Iperc, from the corresponding pixels of the normalized
image Inorm, as explained in Section 3. Since the zoom and percentile operations are
relatively fast, a limited number of pixels from the Inorm are buffered using on-chip storage
units until the pixels from Iperc are ready. As described in Section 5.1.1, the rest of the
operations in G-2 are removed.

5.1.3. Binarization: G-3 Operations

The percentile filters process on a highly scaled-down image; as a result, their kernel
sizes are appropriately adjusted. For example, for our test dataset, the kernel sizes of
the percentile filters are changed from 20× 3 and 3× 20 to 7× 1 and 1× 7, respectively.
Moreover, to process these operations in a hardware-friendly manner, the order of their
operation is interchanged, where the horizontal percentile filter with KS = 1× 7 is processed
ahead of the vertical percentile filter with KS = 7× 1, see details in Section 6. This change in
the order of operations has only a minimal accuracy loss; see modification type BIN-6 of

J. Imaging 2021, 7, 175 18 of 42

Table 2. The other window-based operations, Gaussian and dilation filters, are removed as
explained in Section 5.1.1.

5.1.4. Binarization: G-4 Operations

As described in Section 5.1.1, the compute mask block is removed. Hence, the exponent
and square root operations are not implemented. The rest of the operations in the G-
4 category are basic arithmetic operations with low resource utilization that are easily
parallelizable.

After the algorithmic modifications and mapping of operations into the suitable
computing platforms, the resulting hardware-software partitioning of the binarization
algorithm for the iDocChip system is summarized in Figure 10.

Figure 10. Hardware-software partitioning of the binarization process for the iDocChip system.

5.2. Text and Image Segmentation

Similar to the binarization processing pipeline, the operations in the text and image
segmentation step are categorized into four groups, as shown in Figure 11. The accuracy
shift caused by the algorithmic adjustments is also tested using the sample test dataset [25].

5.2.1. Text and Image Segmentation: G-1 Operations

Connected component labeling (CCL) is a window-based operation used to label
connected components of an image. The classical CCL operation involves three tasks: initial
labeling, label unification, and final labeling. The first and last tasks operate by sliding the
computational window on the input image in a raster scan manner. These window-based
tasks of CCL are suitable to directly implement on hardware. However, label unification is a
sequential task that does not benefit from hardware parallelism. A CCL operation followed
by feature extraction, collectively known as connected component analysis (CCA), measures
and analyzes features of component regions and executes certain decisions. As shown in
Figure 2b, the feature extraction operation of text and image segmentation algorithm uses
two images to find unique labels and generate output through union and indexing.

J. Imaging 2021, 7, 175 19 of 42

Figure 11. Operations of the text and image segmentation processing pipeline grouped from G-1 to G-4.

In the literature [77–82], there exist several CCAs algorithms, such as the single-pass
CCA, that are specifically optimized for hardware implementations. In a single-pass CCA,
the required features of connected components are extracted together with the first raster
scan used to label the image (initial labeling). This algorithm bypasses label unification and
final labeling tasks of CCL; hence it does not output a labeled image. However, the feature
extraction operation of the text and image segmentation step requires the complete labeled
image to extract unique labels. As a result, we apply two single-pass CCA operations to
avoid the separate label unification process. Here, the second raster scan can be processed
only after the complete processing of the first raster scan. Moreover, the mask and seed
images are required for both computations. Since the seed and mask images are already
scaled down into smaller sizes, these images are stored within on-chip buffers to avoid
several data transfers to/from the CPU. To further speed up the performance of the system,
expansion and the operations involved for feature extraction (intersection, find unique labels,
indexing, and union) are overlapped with the single-pass CCAs (see Figure 12). These
hardware-specific optimizations do not affect the overall accuracy of the system.

5.2.2. Text and Image Segmentation: G-2 Operations

The image-part result of the text and image segmentation step is not processed further;
refer to Figure 2b. Hence, for the end-to-end iDocChip system, it is not computed. As
a result, one intersection and inversion operation are eliminated from the text and image
segmentation pipeline. However, the inverted binary image Iinv is still required to compute
the text-part output (Itp_mask). In order to avoid buffering the complete image within the
limited block random-access memory (BRAM) resources of the FPGA, Iinv is stored in
the external memory. This image is streamed back to the hardware when the intersection
operations are ready to be computed; see Figure 12.

As described in Section 5.2.1, the CCL and feature extraction operations require the
mask Imask and seed Iseed images for the intersection and union operations. As these images
are scaled down by a factor of four, they have a lower resource overhead. Hence, they are
buffered using on-chip storage units.

The reduction and expansion operations are implemented in hardware. However, these
operations generate result pixels irregularly that challenge the streaming architecture of
the hardware. For a reduction operation, a 2× 2 block of four pixels is required to produce
a result. Hence, it outputs pixels for every second row of the incoming pixels. On the
other hand, the expansion operation populates a pixel into a 2× 2 block of four pixels.
The streaming irregularity of these operations is hidden by manipulating the expansion
operation and using on-chip buffers; refer to Section 6.1.3.

J. Imaging 2021, 7, 175 20 of 42

Figure 12. Hardware-software partitioning of text and image segmentation for the iDocChip system.

5.2.3. Text and Image Segmentation: G-3 Operations

The morphological reconstruction-based hole-filling algorithm uses a reconstructive
erosion operation to fill the holes within an image. However, as this computation is an
iterative process, it requires a large number of raster scans. For instance, for the test
dataset images given in [25], the number of scans needed only for a 4-connective window-
based hole-fill operation range from 198 to 827. Hence, morphological reconstruction is not
suitable for a streaming-based dataflow hardware architecture. To overcome this issue, an
alternative custom hole-fill algorithm is used, as explained in detail in [27]. This operation
achieves the same results as the morphological reconstruction by erosion in fewer iterations.
Moreover, with a slight accuracy loss, the alternate hole-fill algorithm is able to accomplish
the task with only two iterations; see modification type TISEG-1 of Table 2.

Hence, the iDocChip system uses the alternate hole-fill algorithm with a 4-connective
SE, with only two iterations. After processing the initial hole-fill operation in a raster
scan manner, the result is processed in an anti-raster scan direction (from bottom-right to
top-left). To run the second sequence in an anti-raster scan manner, the first iteration must
finish processing the complete image. As a result, after the initial raster scan operation, the
resulting image is stored within the hardware to avoid data transfer to external memory.
These on-chip buffer units are also re-used to store the resulting mask image of the alternate
hole-fill operation Imask since it is required for the intersection operation in feature extraction,
as explained in Section 5.2.2. For implementation details; refer to Section 6.1.2.

The window-based raster scan labeling operations of the single-pass CCA are imple-
mented in hardware as per the description given in Section 5.2.1. The opening and dilation
morphological operations are also implemented in hardware as they are highly parallelizable.

5.2.4. Text and Image Segmentation: G-4 Operations

As explained in Section 5.2.2, the inversion operation used to extract the image-part of
the document is not required; hence it is omitted. Moreover, the last inversion operation
is not needed, as the next processing pipeline (text line extraction) works on the inverted
image of the document’s text-part. The remaining two inversion operations are implemented
in hardware.

J. Imaging 2021, 7, 175 21 of 42

5.3. Text Line Extraction

As shown in Figure 13, the overall operations involved in the text line extraction
processing pipeline are broadly categorized into four groups. Similar to Figures 9 and 11,
these four categories are also grouped from left to right with respect to suitability for
hardware implementation. The most left G-1 groups of operations are sequential, while the
most right G-4 operations are highly parallelizable.

Figure 13. Operations involved in text line extraction processing pipeline grouped from G-1 to G-4.

5.3.1. Text Line Extraction: G-1 Operations

As mentioned in Section 5.1.1, the calculation of maximum pixels is not suitable for
hardware implementation. Hence, to avoid the four maximum pixel computations required
in the text line extraction step, these values are replaced by fixed thresholds. As a result,
the thresholding computations in smooth text region, find column edges, top and bottom edge
computations use constant threshold values instead of computing maximum pixel values.
These values are transferred directly from the CPU. When applied to our test dataset,
these adjustments have only reduced the overall accuracy by 1%; see Table 2, modification
type TLEXT-1.

As explained in Section 3.3, a topological sort algorithm is used to arrange the extracted
text lines in reading order. For this task, however, a simple, quick sort operation works
more efficiently than the topological sorting algorithm due to the regularity of the order
of text lines. The increase in accuracy due to this algorithmic optimization is shown in
modification type TLEXT-2 of Table 2.

As described in Section 5.2.1, a classical CCL requires two raster scan computations
and a label unification process. AS anyOCR uses classical CCL, it requires a total of 14
raster scan labeling and 7 label unification tasks for the text line extraction step. Similar
to the CCL in the text and image segmentation step, these operations are replaced by the
hardware-friendly single-pass CCA to design the iDocChip system. Moreover, different
CCA operations that work on the same image are combined to speed up the system. Hence,
the CCL operations required for estimate scale, find and remove horizontal lines, and create
boxmap are combined, as shown in Figure 14.

The next CCL operation is used in the column separation sub-block to select the relevant
column lines. Similar to the other CCA operations, the feature extraction operation of column
separation correctly identifies the long connected components only at the end of the first
single-pass CCA; therefore, in iDocChip, the single-pass CCA is applied twice for the
column separation sub-block; refer to Section 6.1.2 for details. The intermediate images of
this block are stored using on-chip memory units, as the image has been downscaled by
two reduction operations; see Figure 14.

The label propagation operation also involves two CCL tasks. The first one labels the
connected components of the boxmap image Ibm, while the second CCL labels the image
Ilines that contains the detected lines of the document image. Then the corresponding labels
of these two images are identified and they are used to index the labeled lines, as described
in Section 3.3. In iDocChip system, however, the label propagation operation is optimized
in such a way that the labeled Ilines image is directly multiplied by the binary boxmap

J. Imaging 2021, 7, 175 22 of 42

image Ibm. This optimization eliminates one CCL task and replaces the feature extraction
operations (find corresponding labels and indexing) with a single multiplication operation
without highly affecting the system accuracy, see modification type TLEXT-3 of Table 2. To
avoid memory bandwidth congestion with multiple data transfers between the CPU and
the FPGA fabric, the label propagation operation is mapped to software and uses classical
CCL; see Figure 14.

The last CCL task is used in the extract & order lines operation to label the text lines
and find their bounding boxes. This task is followed by segmentation and sorting. Due to
the sequential nature of the sorting algorithm, it is best suited for software-based imple-
mentation. As a result, the three operations of extract & order lines, including the classical
CCL, are mapped to software in order to limit the number of data transfers between the
software and hardware-based platforms.

Figure 14. Hardware-software partitioning of text line extraction for the iDocChip system.

As detailed in Section 3.1, to compute the final value of the estimate scale, a ScaleMap
array is constructed, where each pixel of a connected component is replaced by the square
root of the area of its component. The resulting two-dimensional array contains very
large data that is not desirable to store using on-chip memory. Moreover, the ScaleMap is
flattened into a one-dimensional array in the next steps to apply thresholding and find
the median value. These tasks are also sequential, as they require sorting of a 2D array of
image height ∗ image width. As a result, after the single-pass CCA, consequent steps of the
estimate scale are processed in the CPU.

J. Imaging 2021, 7, 175 23 of 42

The find and remove horizontal lines and create boxmap operations require the labeled
image and the computed Scale value; refer to Figure 2c. Hardware implementation of
these steps is possible (1) by transferring the labeled data from the external memory to
hardware, which requires high memory bandwidth or (2) by transferring the binary image
from the external memory to hardware and recomputing the single-pass CCA, which
is also unnecessary, as the labeled image is already stored in the off-chip memory. For
these reasons and to allow a different memory access pattern for the upcoming reduction
operation, the find and remove horizontal lines and create boxmap are computed on CPU.
The resulting Ihl and Ibm images are then transferred to hardware (see Figure 14). These
hardware-specific optimizations of CCL and feature extraction operations do not affect the
system accuracy.

Furthermore, the Euclidean distance transform and flattening of two-dimensional images
of the spread labels block are sequential operations that do not benefit from hardware
parallelization. As a result, similar to estimate scale, the complete spread labels operations are
mapped to software; see Figure 14.

5.3.2. Text Line Extraction: G-2 Operations

As described above, due to the combination of multiple CCA tasks, the number of
bounding box operations is reduced from four to two, one at the beginning of the text line
extraction step and the other to extract & order lines. Similarly, the number of indexing
operations is also reduced from three to two due to the modification of label propagation
operation. The indexing required for column separation is implemented in hardware while
the other is mapped to software. Except for the ScaleMap computation and the text line
segmentation, the rest of G-2 operations are realized in hardware.

5.3.3. Text Line Extraction: G-3 Operations

The operations categorized in G-3 are window-based computations that have high
parallelization capability. However, the large window sizes of Gaussian, uniform, and
maximum filters require a massive number of line buffers when implemented in hardware.
A Gaussian filter is achieved by convolving the 2D Gaussian distribution function with
the image, while uniform and maximum filters compute the average and largest values,
respectively, from a given window. In the text line extraction processing pipeline of
anyOCR, the kernel sizes of the Gaussian, uniform and maximum filters are dependent on
the previously estimated Scale value of the text size. For example, for our test dataset
given in [25], the smallest estimated Scale value is 33. Hence, for the Gaussian, uniform, and
maximum filters, the system requires minimum kernel sizes of values (265× 132), (330× 1),
and (33× 165), respectively. Hardware implementation of these filters with such large
parameters is not feasible. Therefore, for the iDocChip system, we have introduced two
reduction operations of T = 1 before applying the window-based computations, as shown
in Figure 14. The Scale value is also adjusted appropriately, which reduces the kernel sizes
of the filters. After computing the text lines, the image is scaled back up to its original using
expansion operations. These optimizations have a positive effect on the system’s overall
accuracy as shown in modification type TLEXT-4 of Table 2 for our test dataset [25].

As described in Section 5.3.1, in the iDocChip system, five classical CCL operations
that require ten raster scan labeling and five unification tasks are replaced by three single-pass
CCAs, and they are implemented in hardware. The other two classical CCL operations run
on the CPU.

5.3.4. Text Line Extraction: G-4 Operations

As the operations categorized in G-4 are hardware-friendly, they are realized in
hardware (except for those involved in estimate scale, remove Hlines, create boxmap, propagate
labels, and spread labels).

J. Imaging 2021, 7, 175 24 of 42

5.4. Text Line Recognition

As shown in Figure 15, the overall operations involved in the text line recognition
processing pipeline are broadly categorized into two groups. The G-1 operations are
sequential, while the G-2 operations are parallelizable and benefit from the hardware
implementation.

Figure 15. Operations of the text line recognition processing pipeline grouped from G-1 to G-2.

5.4.1. Text Line Recognition: G-2 Operations

The topology used for text line recognition comprises functions with various potential
for parallelism. The Bi-LSTM has restrained parallelism due to recurrent connections. The
next step, the image column in the case of OCR, can be processed if the previous step
has been finished due to a precedence constraint that restrains the parallelism compared
to feed-forward neural networks. However, Bi-LSTM maintains multiple other levels of
parallelism. A coarse-grained output parallelization can be applied on LSTM cells and
fine-grained input parallelization on LSTM’s gates and dot products. The LSTM’s available
parallelism is sufficient for a real-time inference of OCR and similar tasks on embedded
platforms. The dense layer that is a feed-forward neural network maintains coarse-grained
output parallelism applied on a level of neurons and fine-grained input parallelism on
dot products. However, as it follows the Bi-LSTM layer, the parallelism cannot span over
several columns. The following operations, Concatenation and MaxPerColumn, maintain
output parallelism of the presiding layers. All functions mentioned above benefit from
hardware implementation, as FPGAs enables multiple levels of parallelism with small or
no synchronization overhead.

5.4.2. Text Line Recognition: G-1 Operations

In contrast, the Labeling function is inherently sequential. As explained in Section 3.4,
the function does not maintain any parallelism, as the columns (labels with corresponding
probability) can be processed only one after another. However, there is a strong reasoning
for implementing it in the hardware. The hardware-software partitioning should consider
not only the potential for parallelism but also the cost of memory transfers from hardware
to software and vice versa. The Labeling function operates on a small buffer with a size
proportional to the number of characters in a text line that is typically order of magnitude
smaller than the number of columns in an image. The hardware implementation cost of
such buffer is overrun by the overhead due to data transfers to the external memory of
outputs from the MaxPerColumn with the size proportional to the number of columns.

6. iDocChip Hardware Architecture

To design the iDocChip system, the preprocessing steps of anyOCR are optimized,
and a hardware-software partitioning is applied as described in the previous section. Most
of these operations are offloaded to the FPGA and implemented as hardware blocks (IP
cores). On the FPGA, the incoming pixels are streamed row by row in a raster scan order
(top-to-bottom, left-to-right). The iDocChip adopts pipelined dataflow architectures.

J. Imaging 2021, 7, 175 25 of 42

6.1. Hardware Architectures of Preprocessing Operations

As shown in Figure 16, the preprocessing operations that are mapped into the hard-
ware can be broadly classified into three groups: pixel-based computations, window-based
computations, and computations with irregular memory access.

Figure 16. The system-level architecture of the iDocChip binarization step.

6.1.1. Pixel-Based Computations

Operations categorized in this group involve simple mathematical calculations. The
top half operations of the pixel-based computations shown in Figure 16 require only a single
image to generate a result (i.e., single-image pixel-based operations). In contrast, the
bottom half work on multiple images to produce an output (i.e., multiple-image pixel-
based operations). Given all the required inputs, pixel-based computations require only a
single clock cycle to process a pixel. Moreover, they are highly parallelizable, as image
pixels are computed independently from their neighborhood. Such operations can even
process several pixels per clock cycle by adjusting the number of input pixels.

Normalization is the first step in the binarization processing pipeline. As shown in
Equation (1), to calculate a normalized pixel Pnorm, the minimum Pmin and maximum Pmax
pixel values of the image are required. As described in Section 5.1.1, these values are
computed on the CPU. The resulting Pmin and Pmax are sent to the hardware fabric along
with the pixels of the original grayscale input image. The Pmin and Pmax values and also the
input pixels are represented in hardware using 8-bit unsigned integers. The normalization
process results in 5-bit fixed point normalized Pnorm pixel values.

In the binarization and text line extraction steps, several thresholding operations are
used in order to select target pixels or components. As described in Section 5, about half
of the thresholding computations are realized in hardware and implemented as a simple
comparison logic. To allow a wide range of applications, the threshold values required
to compute the results are passed directly from the CPU. In the hardware, these values
are represented as fixed-point numbers. Depending on the underlying task, thresholding
outputs binary pixels or fixed point results.

The rescaling operation of the binarization step applies thresholding on the incoming
image using the equation given in Equation (3). As described in Section 5.1.1, the low ls
and high hs score values used in the rescaling operation are calculated from the original
grayscale image in the CPU. These parameters are then transferred to the hardware, where
they are stored as 8-bit unsigned integers. After applying the rescaling operation, the
resulting 8-bit pixels are streamed to the following processing block.

To find the top and bottom edges, the optimized algorithm for iDocChip uses a modified
equation Equation (7) as opposed to the original Equation (6) from the anyOCR system. As

J. Imaging 2021, 7, 175 26 of 42

a result, the hardware block of this optimized operation only requires two’s complement,
division, and thresholding.

Itop =

{
Igrad/T1, Igrad > 0
0, otherwise

Ibottom =

{
−Igrad/T2, Igrad < 0
0, otherwise

(7)

In the original anyOCR software, the text and image segmentation step outputs an
inverted image that is inverted back in the text line extraction step. However, in the end-to-
end OCR system, intermediate results of the pipeline steps are not required. Therefore, the
iDocChip system has only one inversion operation at the beginning of the text and image
segmentation processing pipeline. This inversion operation is implemented in hardware by
complementing the binary incoming pixels.

The feature vectors (area, bounding box, width, and height) mapped to hardware are
calculated during the single-pass CCA operations of the text line extraction step. Although
connected components may have an irregular structure, they are assumed to be enclosed in
a rectangular shape for the bounding box computations. Hence, for operations that require
bounding box, i.e., estimate scale and extract & order lines, four coordinates of connected com-
ponents (X1, X2, Y1, and Y2) are tracked and updated. The area of connected components is
calculated from the bounding box. However, only the X or Y coordinates suffice to compute
the width or height of connected components, respectively.

Multiple-image pixel-based operations take one pixel from each input image to generate
a result pixel. Therefore, they require corresponding pixels of all input images to be
readily available. The hardware accelerator of iDocChip has a stream-based dataflow
architecture. Therefore, to avoid data loss during the processing of the multiple-image pixel-
based operations, sufficient on-chip buffers are utilized to store pixels of the faster processing
line, enabling these operations to achieve a throughput of one pixel per clock cycle. As
shown in Figures 10, 12 and 14, multiple image buffers are used to synchronize the pixel
streams for clip image, intersection, multiplication, union, comparison, and indexing operations.

6.1.2. Window-Based Computations

Image filtering, feature detection, and tracking operations often use a sliding window,
also known as a kernel or a structuring element (SE), to process pixels and output results. For
each pixel Pi centered at a neighborhood N, the window-based operations calculate the neigh-
boring pixel values by employing a given operator. Depending on the task/filter, different
neighborhood operators compute different functions, such as convolution, sorting, averag-
ing, comparison, and others. There are two basic types of windows: square-connective and
cross-connective, as shown in Figure 17.

(a) (b)

Figure 17. A 3 × 3 sliding window (a) an 8-connective (square) kernel (b) a 4-connective
(cross) kernel.

Many window-based computations, such as morphological operations, Gaussian, uni-
form, and maximum filters, share a feature called separability, which allows kernel decom-
position. As a result, the kernels of these operations that utilize a rectangular window
can be separated into two one-dimensional windows. For example, a 3× 3 Gaussian filter
can be computed by applying the convolution operator using a 1× 3 horizontal window
and a 3× 1 vertical window. The separability feature allows for fast computation, such that
when a filter of kernel size (kv × kh) is applied on an image of size H ×W, it reduces the
computational costs of the filter from O(H ·W · kv · kh) to O(H ·W · (kv + kh)).

J. Imaging 2021, 7, 175 27 of 42

Serial In-Parallel Out (SIPO) shift registers are used to store neighboring pixels for a
horizontal filter and are updated every clock cycle. Before processing a pixel, the horizontal
computational window is first prepared by shifting the register values to remove the oldest
and insert the current pixel. Contrary to the horizontal filter, the neighboring pixels of a
vertical filter are accessed column-wise. To avoid the memory bandwidth congestion that
results from reading all input pixels of the window in parallel, the required neighboring
pixels of the vertical filter are stored in dedicated line/row buffers within the FPGA. For
a vertical filter of a kernel size (kv × 1), a total of kv − 1 line buffers are required. These
buffers are implemented using BRAMs. Similar to the horizontal filter, after the result of
the current pixel is computed, the oldest pixel is removed, and the current pixel is stored
into the buffer.

Window-based computations require a specific border handling strategy when computing
results for pixels at/around the image’s border, where the pixels do not have enough
neighbors to fill the sliding window. This task extends the image size with respect to
the window size such that when a filter with a kernel size of (kv × kh) is applied on an
image with a height H and width W, the border handling task extends the image height
and width to H + kv − 1 and W + kh − 1, respectively. The pixel values of the extended
image are extrapolated from the border pixels of the input image. There are different
border handling schemes, such as reflection, mirroring, nearest, wrap, constant, and others.
Border handling techniques require extra logic in hardware implementations of filters. For
our implementations of the window-based operations, we reflect border pixels to extend the
incoming image; see Figure 18a. The neighboring pixels of the computational window
at/around border pixels are reflected from the corresponding shift registers or line buffers
using multiplexers, as shown in Figure 18b,c.

(a)

(b)

(c)

Figure 18. Border handling for a 5× 5 separable filter (a) reflection of border pixels (b) SIPO shift
registers for horizontal computation with border reflection logic (c) line buffers and window for
vertical computation with border reflection logic.

Rank-order filters, like percentile and maximum filters, are non-linear filters that sort
grayscale pixels of a sliding window and select the pixel located at the given percentile
value of the sorted window to generate a result. For the classical median and maximum
filters, the filtered values are taken at the 50th and 100th percentile of the ordered sliding
window. In the binarization processing pipeline, there exist two consecutive percentile
operations. Due to the algorithmic optimization detailed in Section 5.1.3, the two percentile

J. Imaging 2021, 7, 175 28 of 42

filters characterize the separability feature as they involve a horizontal followed by a vertical
computation. Hence, to implement these operations, shift registers and line buffers are
used to store neighboring pixels for the horizontal and vertical filters, respectively. The
border handling strategy is also implemented in a similar manner as shown in Figure 18.
Furthermore, the text line extraction step contains eight maximum filters. However, due
to the reduction operation, the kernel sizes of these filters are smaller and manageable. A
two-dimensional maximum filter, unlike other rank-order filters, is separable into one-
dimensional horizontal and vertical filters. Hence, shift registers and line buffers are used
to buffer neighborhood pixels.

Morphological operations are also non-linear image processing and analysis techniques
that are used to analyze and process an image based on the characteristics of its shape.
Two fundamental processes, i.e., erosion and dilation, are the basis for all morphological
operations. These operations compare the neighborhood pixels within the sliding window
and set the minimum pixel (for erosion) or the maximum pixel (dilation). A morphological
opening operation involves an erosion process followed by a dilation. The text and image
segmentation pipeline of iDocChip contains a dilation and an opening operations with
a square- and cross-connective SEs, respectively. The fundamental processing blocks of
morphological operation are implemented based on [83]. These highly parallelizable hardware
blocks are parameterizable to any kernel size. Moreover, due to the additive characteristic
of morphological operations, multiple smaller size processing blocks are concatenated to
build larger kernel size filters to provide further flexibility. Due to the separability of
morphological operations, their processing blocks compute results using two consecutive
one-dimensional windows and utilize shift registers and line buffers to store neighborhood
pixels for horizontal and vertical windows, respectively.

Gaussian filter is a separable linear filter that performs a convolution operation using
a Gaussian kernel with a standard deviation σ. The text line extraction step of iDocChip
involves three Gaussian operations. In general, the convolution kernel of Gaussian is
dependent on the purpose of the given task, such as smoothing (e.g., smooth text region),
edge detection (e.g., find column edges), edge enhancement (e.g., gradient filtering), etc. For
iDocChip, the kernel sizes of these Gaussian filters are dependent on the estimated text Scale.
Hence, the kernel values of these Gaussian filters are calculated after computing the estimate
scale block. Then they are transferred to the hardware and stored as 7-bit fixed-point values.
Due to the separability characteristic of Gaussian, its hardware block computes convolution
as a horizontal filter followed by a vertical filter. It uses shift registers and line buffers to
store neighborhood pixels for column and row processing, respectively. As these Gaussian
filters are computed in parallel, they share the line buffers to reduce BRAM overhead.

A uniform filter (also called mean or average filter) is a linear filter that calculates the
mean value of the neighborhood pixels within the sliding window. The text line extraction
pipeline of iDocChip uses three uniform filters with different kernel sizes that are dependent
on the estimate scale value. Similar to the previously mentioned filters, shift registers and
line buffers are used to store neighborhood pixels. To reduce the number of computations
required to process a result, a moving average is used, where a new pixel result is calculated
by computing an average for the new pixel, adding it to the previous pixel result, and
removing the average of the oldest pixel. To realize the moving average-based uniform filters
in hardware, in addition to the shift registers and line buffers used to store neighborhood
pixels, an extra register and line buffer are required to store results for the next computation.

The hole-fill operation is a binary pixel computation that adds pixels to the boundaries
of objects to fill holes within the image. The largely iterative morphological reconstruction
by erosion operation used in the original anyOCR is not feasible to implement in hardware.
Hence, as described in Section 5.2.3, the connectivity-based alternate hole-fill operation is
used for the iDocChip system that achieves sufficient hole-filling quality with only two
image scans. As explained in [27], the alternate hole-fill algorithm first creates a binary mask
image M using the input image dimensions and setting all but the border the pixel values
to ′1′. In hardware, this mask image is created on the fly. Then the pixels of the input image

J. Imaging 2021, 7, 175 29 of 42

I and the neighborhood pixel values of the mask image for the sliding window (kv × kh)
are analyzed as shown in Equation (8). In the iDocChip system, a cross-connective window
Figure 17b, is used. After completely updating the mask image for the first run in the
raster scan direction, the algorithm processes the anti-raster scan sequence similarly. The
hardware architecture of this algorithm for the 2-direction sequence is shown in Figure 19a.

M(i, j) =

0, I(i, j) == 0 or ∑
(kv ,kh)∈K

M(kv, kh) == 0

M(i, j), otherwise
(8)

(a)

(b)

Figure 19. (a) hardware architecture of the alternate hole-fill algorithm. MU1 and MU2 are the
memory units and PE1 and PE2 are the processing engines. (b) Datapath optimization. Here,
(P1, P2) are input pixels read together, (n1, n2) are the corresponding neighbors. (P

′
1, P

′
2) are the

corresponding output pixels. Select is used to input ‘1’ for every set of pixels that start exactly at the
boundary of the image.

The iDocChip system processes multiple pixels in each clock cycle. However, the
alternate hole-fill algorithm is sequential in nature, where the result from the previous pixel
affects the result of the following pixels. To overcome this issue and maximize throughput,
multiple datapaths are used to process several pixels in parallel. A pipelined design based
on a carry-select adder is shown in Figure 19b. The two parallel data paths compute a result
under different assumption of the previous pixel result (i.e., 0 or 1). This architecture breaks
the dependency structure of the alternate hole-fill design and supports high-throughput

J. Imaging 2021, 7, 175 30 of 42

computations for streams with more than one incoming pixel. Moreover, the datapath has
a parameterizable width; hence it can be scaled to process any number of pixels.

Single-pass CCA extracts features of interest for each distinct objects of an image while
performing the connected component labeling task. In the iDocChip system, five single-pass
CCA operations are implemented in hardware. These operations use a square-connective
window; see Figure 17a. Due to the streaming architecture, only four neighboring pixels
(n1 to n4) are processed per clock cycle. Similar to [80], the single-pass CCA gives the current
pixel the smallest label found within the sliding window. Equivalent labels of a connected
component are tracked using index labels, while its root label, i.e., the smallest representative
of a component, is tracked using root flag. Root labels point to themselves by containing
their own number as their index label. Moreover, a data table contains the desired features
and characteristics of connected components. The three regular single-pass CCAs used in
the text line extraction step of the iDocChip system compute commonly extracted features,
such as area, bounding box, width, and height. However, the two single-pass CCA operations
of the text and image segmentation pipeline require two images to process output. The
initial operation finds unique labels after intersecting the two incoming images. Then, the
subsequent single-pass CCA reuses both incoming images to recompute CCA and generate
result pixels by indexing the unique labels and applying a union operation. The single-pass
CCA operations that require recomputation use BRAMs to buffer input images and/or
delay the faster stream line from the two incoming images as shown in Figures 12 and 14.
The root flag, index label, and data table are tracked, stored, and updated using dedicated
line buffers.

6.1.3. Computations with Irregular Memory Access

Algorithms that exhibit irregular memory access patterns show poor performance
on hardware architectures, particularly when memory access latency is variable. These
operations reduce the hardware throughput due to an unbalanced workload. The out-
put stream irregularity then propagates through the subsequent operations. Different
techniques have been used to mask the long latency caused by irregular memory access
patterns, as described below.

In the binarization step of iDocChip, two nearest-neighbor interpolations are implemen-
ted in hardware. To scale down the incoming image by a zoom factor of z, a block of z× z
pixels is reduced to a single pixel. The hardware implementation of the nearest-neighbor
interpolation requires to buffer z rows to produce a single output. In order to save valuable
resources while avoiding the large latency, we use a custom memory access pattern, where
the original input image of the binarization step is streamed from off-chip memory in a
block of pixels instead of row by row, as shown in Figure 20a. Since the normalization core
is pixel-based computation, out of order memory access pattern does not affect its result.
Instead, the proposed memory access pattern regulates the interval at which the percentile
filters receive pixels. After processing the percentile filters, the resulting image is scaled up
using nearest-neighbor interpolation. This operation outputs multiple pixels in a block, refer
to Figure 20b.

J. Imaging 2021, 7, 175 31 of 42

(a) (b)

Figure 20. Custom memory access pattern for transferring pixel blocks (PBs) from external memory
to the FPGA and hardware designs of (a) normalization and image downscale operations (b) image
upscale operation using nearest-neighbor interpolation (NNI).

After the second nearest-neighbor interpolation, the following operations of the bina-
rization step are pixel-based computations that are not affected by the block processing (see
Figure 10). Similarly, the inversion operation of the text and image segmentation pipeline
inverts each pixel from the output pixel blocks of the binarization step. Then the two
reduction operations of T = 1 are applied to resize the incoming image by a factor of 4, as
shown in Figure 21. At the end of this step, the pixel block is flattened into consecutive
pixels, which are fed into the alternate hole-fill operation.

(a) (b)

Figure 21. Hardware architecture for the two consecutive reduction operations. (a) first reduction
with T = 1 (b) second reduction with T = 1.

The alternate hole-fill operation uses multiple datapaths to generate multiple pixel
outputs. Then the following two reduction operations of T = 4 and T = 3 are applied.
These blocks require pixels of two rows to produce an output. Hence, line buffers are used
to store row pixels, as shown in Figure 22. The irregularity of the output interval of the
reduction operations propagates to the opening hardware block. However, this irregularity
does not propagate further, as the expansion operations together with the image buffer (see
Figure 12) resume the raster scan order of pixels.

J. Imaging 2021, 7, 175 32 of 42

(a) (b)

Figure 22. Architecture of the reduction operations with (a) with T = 4 and (b) with T = 3.

The reduction operations of the text line extraction step with T = 1 receive input images
from the off-chip memory. Similar to the original grayscale input image, the memory access
pattern is customized to stream block of pixels in order to avoid irregular output streams.

6.2. Hardware Architectures of Text Line Recognition

The main challenge to design an efficient architecture of an algorithm with a feedback
loop comes from recurrency that becomes a throughput bottleneck. The next step, the
column of a text line image, can be processed if the previous step has been finished due to
a precedence constraint that stalls the pipeline part of the time. An efficient solution is to
make the pipeline busy with calculations that do not have recurrent dependencies between
each other. In the case of Bi-LSTM, the processing of the inputs from different directions
is independent. We rearrange memory access patterns and propose an architecture that
processes the image with the forward and the backward columns interleaved. First, the
architecture processes the first column from the forward direction, then the first column
from the backward direction, then the second column, etc. This approach keeps the pipeline
always busy without throughput penalties if the number of sequentially processed LSTM
cells is sufficient. In the following, we describe a hardware architecture of the text line
recognition step depicted in Figure 23.

Figure 23. The system-level architecture of the iDocChip text line recognition step.

The Bi-LSTM Hidden Layer module implements the Bi-LSTM layer with parametrizable
parallelization as depicted in Figure 24a, where xt is an input activation corresponding to
column t with (t ∈ 0 . . . C− 1), f yt and byt are output/recurrent activations corresponding
to the forward and backward processing directions, respectively. W and R are weight matri-
ces, while b is a bias corresponding to the gates of LSTM cell (a, k, f , o). The parametrizable
architecture allows for the application of coarse-grained parallelization on a level of LSTM
cells and fine-grained parallelization on a level of dot products with all LSTM’s gates
instantiated. The former, indicated as PE_LSTM unrolling allows the concurrent execution of
different LSTM cells, while the latter, indicated as SIMD_INPUT and SIMD_RECURRENT, folds

J. Imaging 2021, 7, 175 33 of 42

the execution of a single cell in multiple cycles. PE and SIMD stand for Processing Element
and Single Instruction, Multiple Data, respectively. This flexibility allows for tailoring
parallelism according to the required latency and throughput. Using the proposed memory
access pattern, only a half of memory bandwidth and computing resources are required
compared to the duplicated datapath due to bidirectional LSTM. However, a doubling of
weights’ memory is unavoidable. The Recurrent Path module converts the output from the
hidden layer that has a width that is a multiple of PE_LSTM into input with a width that is a
multiple of SIMD_RECURRENT.

(a)

(b)

Figure 24. (a) Hardware design of the BiLSTM layer. (b) Hardware design of the Output Layer.

The Output Layer module implements the dense layer folded with batch normalization;
see Figure 24b, where f zt and bzt are output activations corresponding to the forward and
backward processing directions. W is a weight matrix, and b is a bias corresponding to a
neuron. Conventionally, the Output Layer processes the concatenated output sequences
from the forward hidden layer and the backward hidden layer taken in reverse order. In
this case, it requires waiting for 2× NH × C clock cycles before all outputs from the hidden

J. Imaging 2021, 7, 175 34 of 42

layers are available and 2× NH × C memory entries to store the outputs. We propose to
start processing as soon as the outputs from the forward hidden layer are available. As
a result, we avoid implementing a large buffer. The Output Layer is implemented with a
coarse-grained parallelization on a level of neurons denoted as PE_FC, and fine-grained
parallelization on a level of dot products denoted as SIMD_FC equal to PE_LSTM of the
previous hidden layer to match the throughput.

The Matching Buffer is a hardware module used to store and align the outputs from
the Output Layer. The outputs from the Output Layer corresponding to the forward and
the backward hidden layer from the same columns have to be summed up and that
requires buffering of the half-sums. Without the proposed memory access pattern, the
algorithm would require storing of 2× HO × C values; see Figure 25a. In contrast, in the
proposed architecture, the required memory is reduced to half. As soon as the last value
corresponding to the centric column from the backward direction has been written to the
memory, we stop writing to the memory and start reading the values from the Output
Layer corresponding to the forward direction from the centric column; see Figure 25b. This
way, we reduce the size of the required buffer and processing time to half. In the end, the
half-sums are summed and forwarded to the next module.

Figure 25. Writing and reading patterns: (a) the conventional approach on general-purpose platforms,
(b) the proposed approach that halves the memory and time. The numbers indicate the writing order
assuming, e.g., 6 columns per image.

The MaxPerColumn module finds a label with the highest value per column and
forwards its index and corresponding value to the Labeling module, which is implemented
according to the algorithm explained in Section 3.4.

7. Experimental Setup and Results

To evaluate the heterogeneous hardware-software architecture of the optimized
iDocChip system, it is implemented and compared with different software-based imple-
mentations. As stated previously, in the experiments, we use the historical Latin document
images dataset [25]. For our experiments, we use two versions of the dataset: (1) high-
resolution scanned images of 400 ppi and (2) lower resolution images of 72 ppi taken by
smartphone camera (Samsung Galaxy A9).

To provide a comparison to modern commercially available OCR solutions, we com-
pare character-level accuracy achieved by the iDocChip and Cloud Vision OCR from
Google, using high- and low-resolution images. As shown in Table 3, the accuracy achieved
by iDocChip is higher in both cases. The better accuracy of iDocChip is explained by the
particular focus of the system to transcribe historical documents. Most of the character
errors of the Cloud Vision OCR occur due to falsely detected text in the image area, which
is related to specificity of the illustrations in the particular document images.

J. Imaging 2021, 7, 175 35 of 42

Table 3. Character-level accuracy of Cloud Vision OCR and iDocChip OCR.

High-Resolution
Images, Accuracy [%]

Low-Resolution
Images, Accuracy [%]

Cloud Vision OCR, Google 76.32 76.39
iDocChip OCR 80.10 79.82

7.1. The iDocChip Hardware Accelerator

For the iDocChip hardware accelerator, the IP blocks of the operations offloaded
to hardware are designed using Xilinx® Vivado® High-Level Synthesis version 2018.1.
The complete system is implemented using Vivado block design targeting Zynq®-7000
All Programmable SoC, specifically Zynq 7045, which features xc7z045ffg900-2 FPGA
fabric and dual-core ARM® Cortex™-A9 processor. The implementation of the end-to-
end iDocChip system is evaluated and tested on Zynq®-7000 SoC ZC706 board, which
contains the target device. The acquired dataset images are transferred to the dynamic
random-access memory (DRAM) of the ZC706 board.

The ARM CPU runs Linaro Ubuntu Linux version 16.1. The software-programmable
parameters, such as kernel values of filters, are transferred from the PS through the
general-purpose input/output (GPIO) ports using an AXI-Lite interface. Custom DMAs
are implemented, which are responsible for the reads/writes of data from/to DRAM using
AXI memory-mapped non-coherent interface and converting each transaction into AXI
stream. The DMAs transfer data in bursts of 64 bits. The DMAs enable overlapping of
computations with memory transfers. The software parts of the heterogeneous iDocChip
architecture that run on the ARM Cortex-A9 processor cores of the Zynq 7045 device are
implemented in C/C++. These CPU cores run at 800 MHz, while the FPGA fabric runs
at 166 MHz. The system block diagram of iDocChip implemented on Zynq is shown in
Figure 26.

Figure 26. Zynq implementation of Text and Image Segmentation hardware architecture.

The total resource consumption of the hardware accelerator of iDocChip implemented
on Xilinx Zynq 7045 is given in Table 4. Compared to the total utilization of the previous
separately implemented pipeline steps [26–29], the end-to-end accelerator utilizes on
average twice more resources. The higher resource consumption is because in the end-to-
end implementation (1) we have used higher parallelism for some blocks, (2) the hardware-
software partitioning has been changed that resulted in more functions to be implemented
in hardware, (3) some blocks support higher parameterization, and (4) coupling the four
separate pipeline steps together demands extra routing resources.

J. Imaging 2021, 7, 175 36 of 42

Table 4. Resource utilization of the hardware implementation for the end-to-end OCR iDocChip
system (this work) compared to the total resource utilization of the previous separately implemented
pipeline steps [26–29] using Zynq 7045 device @ 166MHz.

Pipeline LUT FF BRAM 36 Kb DSP

Total of previous works 109,701 (51%) 101,179 (24%) 248 (46%) 99 (11%)

End-to-end OCR 201,895 (93%) 323,067 (74%) 512 (94%) 129 (15%)

Available 218,600 437,200 545 900

7.2. Comparisons between the Hardware and Software Implementations

The original anyOCR is a Python-based software that uses the multi-dimensional
image processing library [84] and runs on a multi-threaded Intel® Core™ i7-4790T with
Turbo Boost up to 3.9 GHz for one active core and 2.7 GHz for four active cores. For further
analysis, the runtime and energy efficiency of the optimized software implementations are
examined on different platforms; see Table 5.

Table 5. Configurations of different platforms for software based tests.

Platform Num.
Cores

Threads
per Core

Total
Threads

Freq.
[GHz]

Tested on

Python
Baseline

Python
Optimized

C++
(ST)

C++
MT

i7 4790T 4 2 8 2.7 X X X X

Atom C2758 8 1 8 2.4 X X X

Cortex A53 4 1 4 1.5 X X X

Cortex A9 2 1 2 0.8 X X X

7.2.1. Software Optimizations

For a fair comparison of the software implementations against the hardware design,
different platform-dependent and algorithmic optimizations are performed to accelerate
the OCR pipeline. Additionally, the Python implementation of the reference anyOCR chain
is optimized in a similar manner to the iDocChip algorithm. For the multi-threaded C/C++
implementations, an image-level coarse-grained parallelization is applied using OpenMP
API. As a result, all available threads of the given CPU process separate images at each
point in time. This coarse-grained approach has appeared to be more efficient than fine-
grained parallelization applied on a level of functions or loops because it does not require
any inter-core or inter-thread synchronization. Dynamic scheduling in OpenMP is used to
avoid idling threads, such that the threads start processing the next image right when they
finish the current image. Moreover, hyper-threading is used in the case of Intel CPU. All
software implementations are compiled with GCC 7.4.0 and -O3 optimization flag.

7.2.2. Energy Consumption

The processors used for comparison have hardware setups with peripherals and extra
components that contribute to the overall power consumption. For a fair comparison of
power and energy consumption among the different platforms, we consider only dynamic
power consumption (Pdyn) that exhibits minimal influence from components that do not
contribute to the computation. To compute Pdyn, we use equation Equation (9). The Pdyn is
calculated by subtracting the idle power Pidle from the power consumption of the complete
system during the processing of all the images in the dataset, Pcomplete. The consumed
energy Econs is computed from the average dynamic power Pdyn, as shown in Equation (10).

Pdyn = (Pcomplete − Pidle) (9)

J. Imaging 2021, 7, 175 37 of 42

Econs = Pdyn × Runtime (10)

The idle power consumption of the processor systems is measured without any
workload. By subtracting this value, the influence of the unwanted power consumption of
the extra hardware peripherals is minimized. The Econs, however, includes the unavoidable
energy consumption for the extra cooling caused by intense computations. Similarly for
Zynq, Pidle is the power consumption of the complete board while CPU is idle and FPGA is
not configured. The power has been measured physically using digital wall socket power
meter Voltcraft® VC-870.

7.3. Results and Discussion

Figure 27 shows comparisons of the iDocChip design and software implementations
of the anyOCR running on different platforms in terms of runtime and power. The hybrid
hardware-software implementation on FPGA provides a speedup of more than 44× and
15× compared to the baseline and optimized anyOCR implementations running on i7-
4790T, respectively. The multi-threaded C/C++ implementation of the algorithm running
on the same processor has the highest performance that is 1.6× higher than the hardware
implementation. However, it also exhibits the highest power, which is 82×more than the
FPGA. The embedded CPUs, Cortex A53, and Cortex A9 lag in performance even when
running the highly optimized software implementation, resulting in 14× and 53× slower
run-times compared to the iDocChip, respectively. Moreover, their energy consumption
is higher than the hardware solution, namely 63× for Cortex A53 and 32× for Cortex
A9. Moreover, the FPGA implementation has the highest energy efficiency providing >
1 FPS/W, as shown in Figure 28. The Intel Core i7-4790T CPU running the single- or multi-
threaded C/C++ implementation and the multi-threaded Atom implementation provide
sufficient throughput (above 1FPS), however, at the expense of high power consumption. In
contrast, the single-threaded embedded CPUs achieve the power requirements consuming
less than 2 W; however, they fail to meet the throughput requirements.

Figure 27. Power vs. runtime comparisons of the reference anyOCR and the optimized iDocChip algorithm on different
platforms. Runtime is given per image. Single-threaded and multi-threaded implementations are represented as ST and MT.
The grid lines show energy consumption in Joules (J).

J. Imaging 2021, 7, 175 38 of 42

Figure 28. Power vs. FPS comparisons of the reference anyOCR and the optimized iDocChip algorithm on different
platforms. The grid lines show energy efficiency in FPS/W.

Revisiting the system design specifications detailed in Section 1, the heterogeneous
end-to-end iDocChip system achieves the goal for an energy-efficient portable device with
1 FPS/W under the constrained power budget of 2 W. Furthermore, with a throughput
of 2 FPS, the design has a real-time processing latency of 500 ms per image. Hence, the
iDocChip system meets all design constraints.

The presented accelerator provides a unique platform for testing various document
image processing algorithms in hardware, due to its reconfigurability and flexibility. The
parameters of the algorithms can be adjusted for new datasets or even the complete
steps can be replaced with newer algorithms without disturbing the integrity of the
complete solution.

8. Conclusions

In this paper, we presented a heterogeneous hardware-software architecture for an
end-to-end optical character recognition system along with various highly optimized soft-
ware implementations. Based on the new architecture, we implemented a heterogeneous
accelerator on Zynq 7045. The resulting hybrid system outperforms the original software
implementation running on i7-4790T by a factor of 44 in terms of runtime and by a factor
of 2201 with respect to energy efficiency. For further analysis, our design is compared
with other platforms running the optimized software implementations with respect to
runtime, power, and energy efficiency. Our device achieves a throughput of 2 FPS for an
image with 2166× 3219 size while exhibiting a power consumption of 1.9 W and energy
efficiency of 1 J per image. None of the considered CPUs fulfill the power (≤2 W) and
real-time (≥2 FPS) requirements at the same time. In contrast, our accelerator meets all
design requirements for an energy-efficient portable OCR device. Hence, we conclude
that the presented computer vision and image processing algorithms benefit from being
migrated to our dedicated accelerator.

Author Contributions: Conceptualization, M.K.T., V.R. and J.A.V.; Data curation, M.M.G.; Investiga-
tion, M.K.T., V.R. and M.M.G.; Methodology, M.K.T. and V.R.; Software, M.K.T. and V.R.; Supervision,
N.W. and A.D.; Writing—original draft, M.K.T.; Writing—review and editing, V.R., N.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

J. Imaging 2021, 7, 175 39 of 42

Abbreviations

ASIC application-specific integrated circuit
AXI advanced extensible interface
Bi-LSTM Bidirectional LSTM
BRAM block random-access memory
CC connected component
CCA connected component analysis
CCL connected component labeling
CER character error rate
CMOS complementary metal oxide semiconductor
CNN Convolutional Neural Network
CPU central processing unit
CTC connectionist temporal classification
DIBCO Document Image Binarization Competition
DMA direct memory access
DRAM dynamic random-access memory
EDT Euclidean Distance Transform
ELM Extreme Learning Machine
FPGA field-programmable gate array
FPS frames per second
GPIO general-purpose input/output
GPU graphics processing unit
IP intellectual property
LSTM long short-term memory
MD-LSTM multidimensional long short-term memory
OCR optical character recognition
PBB percentile-based binarization
PL programmable logic
PS processing system
SE structuring element
SIPO Serial In-Parallel Out
SoC System-on-Chip
SVM support-vector machine
TDP thermal design power

References
1. PenPower. Available online: http://www.penpowerinc.com (accessed on 28 July 2021).
2. Scanning Pens. Available online: https://www.scanningpens.com/ (accessed on 28 July 2021).
3. Scanmaker. Available online: https://scanmarker.com/ (accessed on 28 July 2021).
4. Ectaco C-Pen. Available online: https://www.ectaco.com/cpen-30/ (accessed on 28 July 2021).
5. IRISPen. Available online: https://www.irislink.com/EN-US/c1870/Compare-IRIS-digital-pens.aspx (accessed on 28 July

2021).
6. C-PEN. Available online: https://cpen.com/ (accessed on 28 July 2021).
7. Google Cloud Vision OCR. Available online: https://cloud.google.com/vision/docs/ocr (accessed on 28 July 2021).
8. Microsoft Computer Vision. Available online: https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/

(accessed on 28 July 2021).
9. ABBYY Cloud OCR. Available online: https://www.abbyy.com/cloud-ocr-sdk/ (accessed on 28 July 2021).
10. CloudOCR. Available online: https://cloudocr.com/ (accessed on 28 July 2021).
11. Forbes-FPGA Chip on iPhone 7. Available online: https://www.forbes.com/sites/aarontilley/2016/10/17/iphone-7-fpga-chip-

artificial-intelligence/?sh=6fbb634d3c69 (accessed on 28 July 2021).
12. Vuzix Glass OCR. Available online: https://www.vuzix.com/appstore/app/glass-ocr-for-m300 (accessed on 28 July 2021).
13. ORCAM OCR Device to Wear on Glasses. Available online: https://www.orcam.com/en/media/life-changing-optical-character-

recognition-glasses/ (accessed on 28 July 2021).
14. Envision Glasses. Available online: https://www.letsenvision.com/envision-glasses (accessed on 28 July 2021).

http://www.penpowerinc.com
https://www.scanningpens.com/
https://scanmarker.com/
https://www.ectaco.com/cpen-30/
https://www.irislink.com/EN-US/c1870/Compare-IRIS-digital-pens.aspx
https://cpen.com/
https://cloud.google.com/vision/docs/ocr
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://www.abbyy.com/cloud-ocr-sdk/
https://cloudocr.com/
https://www.forbes.com/sites/aarontilley/2016/10/17/iphone-7-fpga-chip-artificial-intelligence/?sh=6fbb634d3c69
https://www.forbes.com/sites/aarontilley/2016/10/17/iphone-7-fpga-chip-artificial-intelligence/?sh=6fbb634d3c69
https://www.vuzix.com/appstore/app/glass-ocr-for-m300
https://www.orcam.com/en/media/life-changing-optical-character-recognition-glasses/
https://www.orcam.com/en/media/life-changing-optical-character-recognition-glasses/
https://www.letsenvision.com/envision-glasses

J. Imaging 2021, 7, 175 40 of 42

15. eSight. Available online: https://esighteyewear.com/ (accessed on 28 July 2021).
16. ABBYY. Available online: https://www.abbyy.com/en-eu/ (accessed on 28 July 2021).
17. Omnipage. Available online: https://www.kofax.com/Products/omnipage?source=nuance (accessed on 28 July 2021).
18. OCRopus. Available online: https://github.com/ocropus/ocropy (accessed on 28 July 2021).
19. Tesseract. Available online: https://github.com/tesseract-ocr (accessed on 28 July 2021).
20. Bukhari, S.S.; Kadi, A.; Jouneh, M.A.; Mir, F.M.; Dengel, A. anyOCR: An Open-Source OCR System for Historical Archives. In

Proceedings of the 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, Japan,
9–15 November 2017; IEEE: Piscataway, NJ, USA, 2017; Volume 1, pp. 305–310.

21. Narragonien-Digital. Available online: http://www.narragonien-digital.de/exist/home.html (accessed on 28 July 2021).
22. Kallimachos. Available online: http://kallimachos.de/kallimachos/index.php/Projektbeschreibung (accessed on 28 July 2021).
23. German Research Centre for Artificial Intelligence (DFKI). Available online: https://www.dfki.de/web/news/detail/News/

any-ocr/ (accessed on 28 July 2021).
24. University of Würzburg. Available online: https://www.uni-wuerzburg.de/aktuelles/einblick/single/news/narrenschi/

(accessed on 28 July 2021).
25. Narrenschif. Available online: http://kallimachos.de/kallimachos/index.php/Narragonien (accessed on 28 July 2021).
26. Rybalkin, V.; Bukhari, S.S.; Ghaffar, M.M.; Ghafoor, A.; Wehn, N.; Dengel, A. iDocChip: A Configurable Hardware Architecture

for Historical Document Image Processing: Percentile Based Binarization. In Proceedings of the ACM Symposium on Document
Engineering 2018, Halifax, NS, Canada, 28–31 August 2018; ACM: New York, NY, USA, 2018; p. 24.

27. Tekleyohannes, M.K.; Rybalkin, V.; Ghaffar, M.M.; Varela, J.A.; Wehn, N.; Dengel, A. iDocChip: A Configurable Hardware
Architecture for Historical Document Image Processing. Int. J. Parallel Program. 2021, 49, 253–284. [CrossRef]

28. Tekleyohannes, M.K.; Rybalkin, V.; Ghaffar, M.M.; Wehn, N.; Dengel, A. iDocChip-A Configurable Hardware Architecture
for Historical Document Image Processing: Text Line Extraction. In Proceedings of the 2019 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 9–11 December 2019; IEEE: Piscataway, NJ, USA, 2019;
pp. 1–8.

29. Rybalkin, V.; Wehn, N.; Yousefi, M.R.; Stricker, D. Hardware architecture of bidirectional long short-term memory neural
network for optical character recognition. In Proceedings of the Conference on Design, Automation & Test in Europe, Lausanne,
Switzerland, 27–31 March 2017; European Design and Automation Association: Leuven, Belgium, 2017; pp. 1394–1399.

30. Tekleyohannes, M.K.; Rybalkin, V.; Bukhari, S.S.; Ghaffar, M.M.; Varela, J.A.; Wehn, N.; Dengel, A. iDocChip—A Configurable
Hardware Architecture for Historical Document Image Processing: Multiresolution Morphology-based Text and Image Segmentation.
In Proceedings of the 6th International Embedded Systems Symposium (IESS), Friedrichshafen, Germany, 9–11 September 2019.

31. Brugger, C.; Dal’Aqua, L.; Varela, J.A.; De Schryver, C.; Sadri, M.; Wehn, N.; Klein, M.; Siegrist, M. A quantitative cross-
architecture study of morphological image processing on CPUs, GPUs, and FPGAs. In Proceedings of the 2015 IEEE Symposium
on Computer Applications & Industrial Electronics (ISCAIE), Langkawi, Malaysia, 12–14 April 2015; IEEE: Piscataway, NJ, USA,
2015; pp. 201–206.

32. Qasaimeh, M.; Denolf, K.; Lo, J.; Vissers, K.; Zambreno, J.; Jones, P.H. Comparing Energy Efficiency of CPU, GPU and FPGA
Implementations for Vision Kernels. In Proceedings of the 2019 IEEE International Conference on Embedded Software and
Systems (ICESS), Las Vegas, NV, USA, 2–3 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–8.

33. Page, A.; Mohsenin, T. An efficient & reconfigurable FPGA and ASIC implementation of a spectral Doppler ultrasound imaging
system. In Proceedings of the 2013 IEEE 24th International Conference on Application-Specific Systems, Architectures and
Processors, Washington, DC, USA, 5–7 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 198–202.

34. Jiang, S.; He, D.; Yang, C.; Xu, C.; Luo, G.; Chen, Y.; Liu, Y.; Jiang, J. Accelerating mobile applications at the network edge with
software-programmable fpgas. In Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications,
Honolulu, HI, USA, 15–19 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 55–62.

35. Bonamy, R.; Bilavarn, S.; Muller, F.; Duhem, F.; Heywood, S.; Millet, P.; Lemonnier, F. Energy efficient mapping on manycore with
dynamic and partial reconfiguration: Application to a smart camera. Int. J. Circuit Theory Appl. 2018, 46, 1648–1662. [CrossRef]

36. Xilinx, Inc. Zynq®-7000 All Programmable SoC. Available online: https://www.xilinx.com/products/silicon-devices/soc/zynq-
7000.html (accessed on 27 June 2021).

37. Baidu’s Apollo Driverless Platform. Available online: https://www.electronicdesign.com/markets/automotive/article/211195
89/xilinx-soc-fpga-powers-baidus-apollo-driverless-platform (accessed on 28 July 2021).

38. Topic Embedded Systems. Available online: https://topic.nl/en/products (accessed on 28 July 2021).
39. AXIOM Beta: A Professional Digital Cinema Camera. Available online: https://apertus.org/axiom (accessed on 28 July 2021).
40. Ishikawa, S.N.; Takahashi, T.; Watanabe, S.; Narukage, N.; Miyazaki, S.; Orita, T.; Takeda, S.; Nomachi, M.; Fujishiro, I.;

Hodoshima, F. High-speed X-ray imaging spectroscopy system with Zynq SoC for solar observations. Nucl. Instrum. Methods
Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2018, 912, 191–194. [CrossRef]

41. Mata-Carballeira, Ó.; Gutiérrez-Zaballa, J.; del Campo, I.; Martínez, V. An FPGA-Based Neuro-Fuzzy Sensor for Personalized
Driving Assistance. Sensors 2019, 19, 4011. [CrossRef] [PubMed]

42. Guo, K.; Sui, L.; Qiu, J.; Yu, J.; Wang, J.; Yao, S.; Han, S.; Wang, Y.; Yang, H. Angel-Eye: A complete design flow for mapping CNN
onto embedded FPGA. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2017, 37, 35–47. [CrossRef]

https://esighteyewear.com/
https://www.abbyy.com/en-eu/
https://www.kofax.com/Products/omnipage?source=nuance
https://github.com/ocropus/ocropy
https://github.com/tesseract-ocr
http://www.narragonien-digital.de/exist/home.html
http://kallimachos.de/kallimachos/index.php/Projektbeschreibung
https://www.dfki.de/web/news/detail/News/any-ocr/
https://www.dfki.de/web/news/detail/News/any-ocr/
https://www.uni-wuerzburg.de/aktuelles/einblick/single/news/narrenschi/
http://kallimachos.de/kallimachos/index.php/Narragonien
http://doi.org/10.1007/s10766-020-00690-y
http://dx.doi.org/10.1002/cta.2508
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.electronicdesign.com/markets/automotive/article/21119589/xilinx-soc-fpga-powers-baidus-apollo-driverless-platform
https://www.electronicdesign.com/markets/automotive/article/21119589/xilinx-soc-fpga-powers-baidus-apollo-driverless-platform
https://topic.nl/en/products
https://apertus.org/axiom
http://dx.doi.org/10.1016/j.nima.2017.11.033
http://dx.doi.org/10.3390/s19184011
http://www.ncbi.nlm.nih.gov/pubmed/31533318
http://dx.doi.org/10.1109/TCAD.2017.2705069

J. Imaging 2021, 7, 175 41 of 42

43. Afroge, S.; Ahmed, B.; Mahmud, F. Optical character recognition using back propagation neural network. In Proceedings of the
2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), Rajshahi, Bangladesh,
8–10 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–4.

44. Wei, T.C.; Sheikh, U.; Ab Rahman, A.A.H. Improved optical character recognition with deep neural network. In Proceedings of
the 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA), Parkroyal, Malaysia, 9–10 March
2018; IEEE: Piscataway, NJ, USA, 2018; pp. 245–249.

45. Nasien, D.; Haron, H.; Yuhaniz, S.S. Support Vector Machine (SVM) for English handwritten character recognition. In Proceedings
of the 2010 Second International Conference on Computer Engineering and Applications, Bali Island, Indonesia, 19–21 March
2010; IEEE: Piscataway, NJ, USA, 2010; Volume 1, pp. 249–252.

46. Lavanya, K.; Bajaj, S.; Tank, P.; Jain, S. Handwritten digit recognition using hoeffding tree, decision tree and random forests—A
comparative approach. In Proceedings of the 2017 International Conference on Computational Intelligence in Data Science
(ICCIDS), Chennai, India, 2–3 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6.

47. Ilmi, N.; Budi, W.T.A.; Nur, R.K. Handwriting digit recognition using local binary pattern variance and K-Nearest Neighbor
classification. In Proceedings of the 2016 4th International Conference on Information and Communication Technology (ICoICT),
Shanghai, China, 22–23 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5.

48. Sampath, A.; Gomathi, N. Decision tree and deep learning based probabilistic model for character recognition. J. Cent. South
Univ. 2017, 24, 2862–2876. [CrossRef]

49. Younis, K.S.; Alkhateeb, A.A. A new implementation of deep neural networks for optical character recognition and face
recognition. In Proceedings of the New Trends in Information Technology, Amman, Jordan, 25–27 April 2017; pp. 157–162.

50. Srivastava, S.; Priyadarshini, J.; Gopal, S.; Gupta, S.; Dayal, H.S. Optical character recognition on bank cheques using 2D
convolution neural network. In Applications of Artificial Intelligence Techniques in Engineering; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 589–596.

51. Das, T.; Tripathy, A.K.; Mishra, A.K. Optical character recognition using artificial neural network. In Proceedings of the 2017
International Conference on Computer Communication and Informatics (ICCCI), Oxford, UK, 26–28 July 2017; IEEE: Piscataway,
NJ, USA, 2017; pp. 1–4.

52. Moysset, B.; Kermorvant, C.; Wolf, C.; Louradour, J. Paragraph text segmentation into lines with recurrent neural networks.
In Proceedings of the 2015 13th International Conference on Document Analysis and Recognition (ICDAR), Tunis, Tunisia,
23–26 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 456–460.

53. Murdock, M.; Reid, S.; Hamilton, B.; Reese, J. ICDAR 2015 competition on text line detection in historical documents.
In Proceedings of the 2015 13th International Conference on Document Analysis and Recognition (ICDAR), Tunis, Tunisia,
23–26 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1171–1175.

54. Kundu, S.; Paul, S.; Bera, S.K.; Abraham, A.; Sarkar, R. Text-line extraction from handwritten document images using GAN.
Expert Syst. Appl. 2020, 140, 112916. [CrossRef]

55. Breuel, T.M.; Ul-Hasan, A.; Al-Azawi, M.A.; Shafait, F. High-performance OCR for printed English and Fraktur using LSTM
networks. In Proceedings of the 2013 12th International Conference on Document Analysis and Recognition, Washington, DC,
USA, 25–28 August 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 683–687.

56. Singh, B.M.; Sharma, R.; Mittal, A.; Ghosh, D. Parallel implementation of Souvola’s binarization approach on GPU. Int. J. Comput.
Appl. 2011, 32, 28–33.

57. Chen, X.; Lin, L.; Gao, Y. Parallel nonparametric binarization for degraded document images. Neurocomputing 2016, 189, 43–52.
[CrossRef]

58. Singh, B.M.; Sharma, R.; Mittal, A.; Ghosh, D. Parallel implementation of Otsu’s binarization approach on GPU. Int. J. Comput.
Appl. 2011, 32, 16–21.

59. Soua, M.; Kachouri, R.; Akil, M. GPU parallel implementation of the new hybrid binarization based on Kmeans method (HBK). J.
Real-Time Image Process. 2018, 14, 363–377. [CrossRef]

60. Westphal, F.; Grahn, H.; Lavesson, N. Efficient document image binarization using heterogeneous computing and parameter
tuning. Int. J. Doc. Anal. Recognit. (IJDAR) 2018, 21, 41–58. [CrossRef]

61. Sultana, A.; Meenakshi, M. Design and development of fpga based adaptive thresholder for image processing applications. In
Proceedings of the 2011 IEEE Recent Advances in Intelligent Computational Systems, Trivandrum, India, 22–24 September 2011;
IEEE: Piscataway, NJ, USA, 2011; pp. 633–637.

62. Rybalkin, V.; Wehn, N. When Massive GPU Parallelism Ain’t Enough: A Novel Hardware Architecture of 2D-LSTM Neural
Network. In Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside, CA,
USA, 23–25 February 2020; pp. 111–121.

63. Kumar, A.; Rastogi, P.; Srivastava, P. Design and FPGA Implementation of DWT, Image Text Extraction Technique. Procedia
Comput. Sci. 2015, 57, 1015–1025. [CrossRef]

64. Bai, X.; Shi, B.; Zhang, C.; Cai, X.; Qi, L. Text/non-text image classification in the wild with convolutional neural networks.
Pattern Recognit. 2017, 66, 437–446. [CrossRef]

65. Vignesh, O.; Mangalam, H.; Gayathri, S. FPGA architecture for text extraction from images. Clust. Comput. 2019, 22, 12137–12146.
[CrossRef]

http://dx.doi.org/10.1007/s11771-017-3701-8
http://dx.doi.org/10.1016/j.eswa.2019.112916
http://dx.doi.org/10.1016/j.neucom.2015.11.040
http://dx.doi.org/10.1007/s11554-014-0458-2
http://dx.doi.org/10.1007/s10032-017-0293-7
http://dx.doi.org/10.1016/j.procs.2015.07.512
http://dx.doi.org/10.1016/j.patcog.2016.12.005
http://dx.doi.org/10.1007/s10586-017-1567-z

J. Imaging 2021, 7, 175 42 of 42

66. Sanni, K.; Garreau, G.; Molin, J.L.; Andreou, A.G. FPGA implementation of a Deep Belief Network architecture for character
recognition using stochastic computation. In Proceedings of the 2015 49th Annual Conference on Information Sciences and
Systems (CISS), Baltimore, MD, USA, 18–20 March 2015; pp. 1–5. [CrossRef]

67. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

68. Zho, H.; Zhu, G.; Peng, Y. A RMB optical character recognition system using FPGA. In Proceedings of the 2016 IEEE International
Conference on Signal and Image Processing (ICSIP), Beijing, China, 13–15 August 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 539–542.

69. de Oliveira Junior, L.A.; Barros, E. An fpga-based hardware accelerator for scene text character recognition. In Proceedings of the
2018 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), Verona, Italy, 8–10 October 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 125–130.

70. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference
On Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

71. Pratikakis, I.; Zagoris, K.; Barlas, G.; Gatos, B. ICDAR2017 competition on document image binarization (DIBCO 2017). In
Proceedings of the 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, Japan,
9–15 November 2017; IEEE: Piscataway, NJ, USA, 2017; Volume 1, pp. 1395–1403.

72. Bezmaternykh, P.V.; Ilin, D.A.; Nikolaev, D.P. U-Net-bin: Hacking the document image binarization contest. Comput. Opt. 2019,
43, 825–832. [CrossRef]

73. Karpinski, R.; Belaïd, A. Combination of Two Fully Convolutional Neural Networks for Robust Binarization. In Asian Conference
on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2018; pp. 509–524.

74. Huang, X.; Li, L.; Liu, R.; Xu, C.; Ye, M. Binarization of degraded document images with global-local U-Nets. Optik 2020,
203, 164025. [CrossRef]

75. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

76. Wagner, R.A.; Fischer, M.J. The string-to-string correction problem. J. ACM (JACM) 1974, 21, 168–173. [CrossRef]
77. Bailey, D.G.; Johnston, C.T. Single pass connected components analysis. In Proceedings of the Image and Vision Computing,

Hamilton, New Zealand, 5–7 December 2007; pp. 282–287.
78. Bailey, D.G. Design for Embedded Image Processing on FPGAs; John Wiley & Sons: Hoboken, NJ, USA, 2011.
79. Ma, N.; Bailey, D.G.; Johnston, C.T. Optimised single pass connected components analysis. In Proceedings of the 2008

International Conference on Field-Programmable Technology, Taipei, Taiwan, 7–10 December 2008; IEEE: Piscataway, NJ, USA,
2008; pp. 185–192.

80. Klaiber, M.J. A Parallel and Resource-Efficient Single Lookup Connected Components Analysis Architecture for Reconfigurable
Hardware. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2016.

81. Spagnolo, F.; Perri, S.; Corsonello, P. An efficient hardware-oriented single-pass approach for connected component analysis.
Sensors 2019, 19, 3055. [CrossRef] [PubMed]

82. Tekleyohannes, M.; Sadri, M.; Weis, C.; Wehn, N.; Klein, M.; Siegrist, M. An advanced embedded architecture for connected
component analysis in industrial applications. In Proceedings of the Design, Automation & Test in Europe Conference &
Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 734–735.

83. Tekleyohannes, M.K.; Weis, C.; Wehn, N.; Klein, M.; Siegrist, M. A Reconfigurable Accelerator for Morphological Operations. In
Proceedings of the 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Vancouver,
BC, Canada, 21–25 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 186–193.

84. Multi-Dimensional Image Processing (Scipy.Ndimage). Available online: https://docs.scipy.org/doc/scipy-0.14.0/reference/
ndimage.html (accessed on 27 June 2021).

http://dx.doi.org/10.1109/CISS.2015.7086904
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.18287/2412-6179-2019-43-5-825-832
http://dx.doi.org/10.1016/j.ijleo.2019.164025
http://dx.doi.org/10.1145/321796.321811
http://dx.doi.org/10.3390/s19143055
http://www.ncbi.nlm.nih.gov/pubmed/31373307
https://docs.scipy.org/doc/scipy-0.14.0/reference/ndimage.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/ndimage.html

	Introduction
	Related Works
	Cross-Platform Comparisons
	End-to-End OCR Systems
	End-to-End OCR Hardware Architectures

	The anyOCR Algorithm
	Binarization
	Text and Image Segmentation
	Text Line Extraction
	Text Line Recognition

	iDocChip Background
	Binarization
	Text and Image Segmentation
	Text Line Extraction
	Text Line Recognition
	The anyOCR System vs. Separate iDocChip Components

	Algorithmic Optimizations and Hardware-Software Partitioning for the End-to-End iDocChip
	Binarization
	Binarization: G-1 Operations
	Binarization: G-2 Operations
	Binarization: G-3 Operations
	Binarization: G-4 Operations

	Text and Image Segmentation
	Text and Image Segmentation: G-1 Operations
	Text and Image Segmentation: G-2 Operations
	Text and Image Segmentation: G-3 Operations
	Text and Image Segmentation: G-4 Operations

	Text Line Extraction
	Text Line Extraction: G-1 Operations
	Text Line Extraction: G-2 Operations
	Text Line Extraction: G-3 Operations
	Text Line Extraction: G-4 Operations

	Text Line Recognition
	Text Line Recognition: G-2 Operations
	Text Line Recognition: G-1 Operations

	iDocChip Hardware Architecture
	Hardware Architectures of Preprocessing Operations
	Pixel-Based Computations
	Window-Based Computations
	Computations with Irregular Memory Access

	Hardware Architectures of Text Line Recognition

	Experimental Setup and Results
	The iDocChip Hardware Accelerator
	Comparisons between the Hardware and Software Implementations
	Software Optimizations
	Energy Consumption

	Results and Discussion

	Conclusions
	 Abbreviations
	References

