
Journal of

Imaging

Article

Detecting Salient Image Objects Using Color Histogram
Clustering for Region Granularity

Seena Joseph and Oludayo O. Olugbara *

����������
�������

Citation: Joseph, S.; Olugbara, O.O.

Detecting Salient Image Objects

Using Color Histogram Clustering for

Region Granularity. J. Imaging 2021, 7,

187. https://doi.org/10.3390/

jimaging7090187

Academic Editor: Edoardo Provenzi

Received: 1 August 2021

Accepted: 13 September 2021

Published: 16 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Information Technology, Durban University of Technology, Durban 4000, South Africa;
seenaj@dut.ac.za
* Correspondence: oludayoo@dut.ac.za

Abstract: Salient object detection represents a novel preprocessing stage of many practical image
applications in the discipline of computer vision. Saliency detection is generally a complex process to
copycat the human vision system in the processing of color images. It is a convoluted process because
of the existence of countless properties inherent in color images that can hamper performance. Due
to diversified color image properties, a method that is appropriate for one category of images may
not necessarily be suitable for others. The selection of image abstraction is a decisive preprocessing
step in saliency computation and region-based image abstraction has become popular because of
its computational efficiency and robustness. However, the performances of the existing region-
based salient object detection methods are extremely hooked on the selection of an optimal region
granularity. The incorrect selection of region granularity is potentially prone to under- or over-
segmentation of color images, which can lead to a non-uniform highlighting of salient objects. In
this study, the method of color histogram clustering was utilized to automatically determine suitable
homogenous regions in an image. Region saliency score was computed as a function of color contrast,
contrast ratio, spatial feature, and center prior. Morphological operations were ultimately performed
to eliminate the undesirable artifacts that may be present at the saliency detection stage. Thus, we
have introduced a novel, simple, robust, and computationally efficient color histogram clustering
method that agglutinates color contrast, contrast ratio, spatial feature, and center prior for detecting
salient objects in color images. Experimental validation with different categories of images selected
from eight benchmarked corpora has indicated that the proposed method outperforms 30 bottom-up
non-deep learning and seven top-down deep learning salient object detection methods based on the
standard performance metrics.

Keywords: color contrast; contrast ratio; histogram clustering; region saliency; saliency detection

1. Introduction

Salient object detection is an arduous open research problem aimed at retrieving the
most conspicuous visually distinct foreground information from an image in a manner
reminiscent of the human vision system [1–8]. It is a challenging task because human
vision is difficult to mimic by automated systems. Salient object detection methods attempt
to extract points and regions of a visual scene that are more significant to human visual
attention by forming a map that defines how a region stands out from its background and
analyzing image surroundings [1,8,9]. Saliency detection is extensively used to mitigate
the complexity of image analysis and speed up the processing time, and it has gained
popular applications in the disciplines of computer vision and artificial intelligence [8,10].
The numerous application domains of saliency include image segmentation [11–14], object
detection and recognition [15–17], anomaly detection [18,19], image retrieval [20,21], image
compression [22], object classification [23], object tracking [24], image retargeting, and
summarization [25,26], alpha matting [26], target detection [27], video object segmenta-
tion [28], video summarization [29], user perceptions of digital video contents [30], and
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visual tracking [31]. Countless applications of saliency detection have led to the occurrence
of numerous methods for saliency computation. The orthodox saliency detection methods
can be classified into two approaches, top-down and bottom-up, based on the perspective
of information processing [9,32–35]. The top-down approach is task-driven with seman-
tic information, prior knowledge and it focuses on supervised machine learning from a
plethora of training images [8,32,36]. The approach has had great success in salient object
detection with the progress of deep learning methods [8,37–41]. Deep saliency detection
methods are often trained with a large set of finely annotated pixel-level ground truth im-
ages [42–44]. However, the performance of deep learning methods is highly dependent on
the construction of well-annotated training datasets and can be adversely affected [43,45].

The bottom-up approach is data-driven without semantic information but grounded
in the connotation of primitive features such as color, intensity, shape, and texture that are
simple to implement [32,46,47]. The bottom-up methods compute uniqueness in primitive
features of image pixels and surrounding regions. These saliency detection methods have
extensively used different visual rarities to separate foreground and background regions in
images. The visual rarities include color prior [3,48,49], contrast prior [32,50], brightness
prior [11,51], background prior [33,52], boundary prior [4,53], center prior [13,54], shape
prior [55], context prior [25], object position prior [56], and connectivity prior [7,44,53,57].
However, despite the development of several methods for salient object detection, there are
still intrinsic challenges with different categories of images. The presence of cluttered and
non-homogeneous background regions, inter-object dissimilarity, heterogeneous objects
with varying sizes, counts, and positions have led to ambiguous and diverse challenges.
Examples of image categories are salient objects with erratic sizes, positions, and counts,
cluttered backgrounds, and low dissimilarity among regions of heterogeneous foreground
or heterogeneous background. The task of completely highlighting salient objects in
different image categories is still not adequately resolved in most of the existing saliency
methods [58–60]. The other major challenge is the mitigation of computational complexity
because salient object detection is an essential preprocessing stage in computer vision.

This study addresses the problem of automatic selection of optimum homogenous
regions for image abstraction to reduce the computational complexity, improve the ef-
fectiveness, and increase the efficiency of salient objects detection for different classes of
images. The method of color histogram-based clustering has been developed in this current
study for this purpose. A near resolution of detecting salient objects in different images has
been achieved by successfully integrating holistic strategy of color contrast, contrast ratio,
center prior, and regional spatial feature while adhering rigidly to the efficacy requirement
of salient object detection. The idiosyncratic contributions of this study to the existing
research in computer vision are threefold:

• The comprehensive review of related literature on salient object detection methods
and approaches to demonstrate trends, uniqueness, recency, and relevance of the
current study.

• The construction of a novel bottom-up saliency computation method that exploits the
strategy of color contrast, contrast ratio, center prior, and spatial feature to obtain a
robust salient object detection process.

• The intensive experimental comparison with different prominent salient object detec-
tion methods that were reported in the literature to determine the effectiveness of the
proposed method.

The remainder of this paper is succinctly structured as follows. Section 2 gives a
comprehensive review of the related literature. Section 3 describes the proposed salient
object detection method. Section 4 explicates the intensive experimental comparison of
the proposed method against the existing modern methods based on the widely known
benchmarked corpora and performance evaluation metrics. Section 5 provides a discussion
of experimental results and a brief concluding remark.
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2. Review of Literature

A plethora of color image saliency detection methods have been reported in the
literature, strikingly developed in the last two decades. The bottom-up method by Itti
et al. [61] is considered a cornerstone strategy grounded in the biological model for eye-
fixation activities of humans. The method is based on center-surroundedness differences
in color, intensity, and orientation that can detect spatial discontinuities in a scene. It
estimates the locations of visual gaze by computing multi-scale feature maps using a
Gaussian pyramid. The second category of saliency detection methods has emerged from
the works [15,62] where saliency was defined as a binary segmentation problem. The
third wave of saliency has emerged with the introduction of the convolutional neural
network (CNN) to lessen the reliance on center bias knowledge. Neurons in the CNN
model with large receptive fields of global information can enhance the detection of the
most salient region in an image [63]. A plethora of salient region detection methods have
been developed among which bottom-up methods are pervasive because of their simplicity,
elegance, and computational efficiency.

2.1. Bottom-Up Saliency Detection Methods

Bottom-up salient object detection methods are stimulated by the human visual system
and can be categorized into the eye fixation prediction (EFP) approach [61,64,65] and
salient object detection (SOD) approach [4,6,66–70]. The two approaches are based on the
definition of saliency as “where people look” or “which objects stand out” in an image [71].
The former approach focuses on the prediction of a location where people are freely
observing natural scenes, while the latter approach targets the detection and segmentation
of salient objects in images. The SOD approach has gained more popularity than the EFP
approach because of its ability to identify the essential characteristics of salient objects
than predicting their locations only [56,72]. The salient regions are usually considered
as perceptually distinct image parts that are dissimilar to their backgrounds [42]. The
dissimilarity, rarity, or uniqueness has been extensively studied with several advancements
in the bottom-up SOD approach [42,60]. The contrast features have gained substantial
popularity in SOD applications because they reflect the human visual system that gives
more attention to high contrast regions. The contrast-based salient object detection methods
are frequently employed locally or globally.

2.1.1. Local Contrast-Based Saliency Detection

Local contrast-based salient object detection methods compare the rarity of image
units to their surrounding neighborhoods. The local uniqueness maps from various fea-
ture channels are nonlinearly integrated to highlight the most attractive region [64]. The
center-surroundedness local contrast by the difference of mean filter applies Euclidean
distance between average feature vectors of center and surrounding regions to formu-
late center-surroundedness color contrast [15]. The center-surroundedness method [73]
applied self-resemblance measure to compute pixel-level saliency by employing the lo-
cal steering kernels and matrix cosine similarity-based nonparametric kernel density to
discriminate a pixel from its surroundings. The pixel-wise center-surroundedness local
saliency method [74] used a probabilistic framework fused with features of illumination,
color contrast, and optical flow to compute pixel saliency. The saliency is computed at pixel
level with the help of a sliding window over the entire image to yield stable results on the
selected datasets. However, the method has difficulty in clearly separating objects from the
background when there is no distinct visual contrast between the object and background
pixels.

A local central surroundedness contrast-based saliency map using inverse wavelet
transform for each color channel at a multi-spatial scale was proposed [75]. The center-
surroundedness method that integrates local color contrast features and center bias to com-
pute saliency exploits sparse sampling and kernel density estimation [54]. The method [36]
incorporated compactness cues and local contrast with a diffusion process using manifold
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ranking to lessen the constraint of local contrast that highlights the boundaries of objects
rather than the entire region. However, consideration of local relevance among neighbor-
ing regions can lead to incorrect suppression of salient regions, especially in images with
heterogeneous salient object features [76]. A local contrast-based method for detecting
small targets by computing contrast between the targeted small regions and surrounding
regions was proposed [77]. Due to the limited spatial neighborhood consideration in the
local contrast method, large salient regions can be easily excluded [42].

2.1.2. Global Contrast-Based Saliency Detection

Global contrast saliency detection methods are capable of evenly highlighting a com-
plete salient region by assigning comparable salient values across similar regions and are
extensively used in salient object detection. The frequency-tuned global contrast-based
method was introduced to measure pixel-level saliency by computing the Euclidean dif-
ference between each pixel feature and the mean color feature in L*a*b* color model of a
smoothed image [48]. Color histogram was introduced as a global contrast method that
employed the Gaussian mixture model (GMM) to define a weighted sum of the color
difference of region contrast to the rest of image regions [50]. It was hypothesized that high
contrast to a neighborhood region exhibits more saliency than high contrast to faraway
regions [50]. The spatial relationship of regions was integrated to increase the effect of
surrounding regions in saliency computation because the distribution of spatial compact-
ness is an important complementary feature to color contrast [36]. However, regardless of
the importance of contrast-based saliency detection, these methods are still prone to some
inherent limitations. The global contrast methods alleviate the problem of attenuated object
saliency values of local contrast methods, but highlighting salient regions uniformly is still
a delinquent they are facing. The incorrect highlighting of background region than the
salient object is another drawback of global contrast-based methods, especially for images
with complex backgrounds or large salient objects [47].

The global color cues based on statistics and color contrast was recently utilized to
overcome the inherent limitation of exploiting surroundedness cue alone [70]. Failure to
detect a salient object linked to image borders is a major drawback of this method. The
method based on context-aware saliency detection that integrated local and global features
was introduced in [25] to obtain a patch-level saliency. A method based on both local and
global approaches was presented for saliency computation by Liu and Wang [78]. The
authors used local contrast difference features to obtain an attention map based on a block
variance map. A learning-based method that combined both global and local saliency
features was described in [67]. A method of salient object detection that agglutinated
multiscale extrema of local perceptual color difference, global measure rarity, and global
center bias was recommended to detect large salient objects [3]. The successful detection of
salient objects in images that share similar color contrast features between foreground and
background regions is a major drawback that has been identified in a recent method that
integrates contrast, background, and foreground features [44].

The methods based on contrast prior generally work well on images with distinctive
color contrasts, but have difficulty when there is no distinct visual contrast between the
foreground and background regions [78]. Hence, it is vivacious to incorporate useful
information on foreground and background regions for segmenting diverse image cate-
gories. Suitable prior knowledge can enhance the quality of saliency detection, but the
ultimate results are not absolute on images with complex background and foreground
objects that possess variable shapes, sizes, locations, and appearances. The center prior
methods are not sufficient to trace salient objects when the image background is framed
near the image center or salient objects are close to the image boundary [36,47,59,79]. The
methods of exploiting background and connectivity priors have suffered from incorrect
suppression of salient objects that touch image boundary [6,32,79,80]. Some existing meth-
ods are insufficient to detect large salient objects that overlap foreground and background
regions because they consider the objects as part of a background and accomplish low
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accuracy on saliency detection [3]. Color contrast prior is not sufficient to successively
detect salient objects from images with low color contrast between foreground or back-
ground and complex background or foreground scenes. This restraint emphasizes that even
though a significant improvement has been witnessed, salient object detection remains
a challenging issue because of image diversity, inherent complexity, and uncertainty of
salient regions [32,81,82].

2.1.3. Graph-Based Saliency Detection

The bottom-up saliency detection methods based on graph structure have recently
gained attention for object detection. Graph-based methods partitioned an image into
regions using the superpixels algorithm. They consider each image region as a graph and
nearby nodes are related using weighted edges to diffuse saliency information by seeds and
propagation. However, superpixel-based algorithms require the specification of the desired
number of superpixels beforehand, but users may not have such knowledge. The graph-
based method reported in [83] used boundary prior and manifold ranking to measure
the similarity of a region to foreground or background cues. Even though the method
has demonstrated good results in terms of computational efficacy, it is still challenged by
inaccurate detection of boundary superpixels as background queries. In addition, it is not
ideal for detecting salient objects from images with a complex background scene.

The graph-based method proposed in [80] utilized random walk in absorbing Markov
chain for salient object detection by exploiting boundary prior. However, boundary-
positioned objects and objects that show high color similarity to background regions are
challenging cases for this method. A label propagation method using deformed smooth-
ness was developed based on manifold ranking by exploiting objectness and smoothness
constraints to overcome the aforementioned limitation [84]. In general, most of the existing
graph-based methods are not adequate to successfully separate salient objects from images
with complex background scenes or salient objects with various features [8]. The graph-
based salient object detection method that integrates background prior and objectness
before creating a coarse saliency map was proposed to overcome the deficiencies of graph
methods [8]. The authors used the boundary-guided graph-based iterative propagation
technique to refine a saliency map. Still, this method has challenges in completely sup-
pressing background noise and successfully highlighting salient objects from complex
scenes.

2.1.4. Supervised Learning Saliency Detection

Other saliency detection methods have exploited high-level features through the
supervised machine learning approach. The supervised learning methods form regional
descriptors by extracting sophisticated image features and regional level saliency scores
are predicted by utilizing a classifier or regressor [42]. Kim, Han, Tai, and Kim [67]
proposed a learning-based saliency detection method that estimates global saliency using
high dimensional color transform and local contrast by regression. A tree-based classifier
was used to separate the identified superpixels into the foreground, background, and
unknown regions. Saliency maps based on a linear combination of a high dimensional
color model and learning-based methods were aggregated to obtain a final saliency map.
However, accurate classification of background and foreground regions of images with
high foreground and background color similarity is a challenging case for this method. A
salient object detection method that used the supervised machine learning approach was
proposed to fuse regional descriptors and high-dimensional features [85]. These learning
methods have comparatively achieved better performance, but they are still inadequate for
rapid and simple detection of salient objects because of the inherent computational time
complexity.
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2.2. Saliency Methods for Challenging Image Categories

The wide spectrum of image datasets with uncertain and diverse salient objects can
be more challenging for the existing saliency detection methods. There are few methods
proposed to address salient object detection on a few challenging image categories. In [85],
a supervised learning method was developed to detect salient objects that are farther from
the image center but located at the image boundary. A pixel-based center-surroundedness
method was proposed to detect salient objects and multiple salient objects from complex
scenes [86]. A learning method based on logistic regression was proposed in [87] to detect
a complex salient object by deriving saliency from ultra-contrast features. A saliency
method that utilized multiscale extrema of local perceptual color difference was devised
to successfully detect large salient objects [3]. A saliency detection method that applied
deformed smoothness-based manifold ranking was presented to overcome the problem
of misclassified salient objects with low contrast backgrounds [84]. A saliency detection
method based on the fusion of foreground-center with background priors was recently
proposed to solve the challenge of detecting salient objects touching image boundary [68].
The color volume of regions was created by the superpixels algorithm [88] with perceptual
homogenous color differences between regions exploited to detect salient objects.

A graph-based method based on global and local cues that integrated background and
foreground saliency maps were introduced to overcome the inadequacy of existing graph-
based methods in successfully detecting salient objects from complex scenes [89]. The
detection of salient objects adjacent to the image boundary is a major glitch for methods
that treat boundary regions as background [6]. The glitch was addressed by a graph-
based saliency detection method that exploited background divergence using edge weight
and center prior [6]. These various contributions have emphasized the development of
myriads of saliency detection methods to address some of the challenging image categories.
However, a single method that can be used for a wide gamut of image categories is still far
away from a breakthrough in object detection research.

2.3. Deep Learning Saliency Detection Methods

Deep-learning-based methods are leading the league of top-down salient object de-
tection methods. A saliency detection method reported in [90] aggregated deep neural
network (DNN) sparse and dense labeling schemes to extract hybrid image features by
multiscale kernels. A DNN that embedded high-level features captured using the CNN,
contrast, and spatial information-based low-level features for detecting saliency were pro-
posed [91]. A deep network saliency prediction method that exploited the in-network
feature hierarchy of CNN and stochastic gradient descent (SGD) for training was proposed
in [38]. A data-driven deep-learning-based saliency detection method utilizing semantic
features of salient objects based on a fully convolutional neural network (FCNN) and
non-linear regression to refine a saliency map was proposed in [92]. A multi-context deep
learning method that integrated global and local contexts based on CNN was proposed
in [93]. The use of semantic information and prior knowledge of a scene has helped to
achieve superior performance by these learning methods, but the feat comes with the
superfluous cost of the computational complexity of training and testing [45]. The demand
for large-labeled datasets for saliency detection is a strenuous chore and deep learning
methods generally require high-performance computing devices for training and testing
that generally refrained them from real-time applications [41,94].

2.4. Unit of Processing

Bottom-up saliency detection methods are primarily characterized by low-level fea-
tures and computational efficiency [42]. The methods usually consider either individual
pixels or regions of pixels as the unit of processing [35,95]. The abstraction of an image
into pixel regions has a significant role in reducing computation time by considering each
region as a unit of processing. Hence, the selection of an image abstraction process is a
crucial step for computationally efficient bottom-up saliency methods.
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2.4.1. Pixel-Based Saliency Detection

Pixels are considered in pixel-based methods as independent image elements for
extracting features. Pixel-based saliency detection methods are computationally expensive
and they disregard pixel connectivity and structure of regions that influence pixel saliency
values [56]. The early methods [61,64,74,86] can be classified as the pixel-based approach.
However, object interior suppression, boundary-blurring, and poor object segmentation
are their main shortcomings. Hence, pixel-based methods are seldom explored in recent
times [96]. In contrast, the region-based methods cluster an image into an abstract repre-
sentation of homogenous regions and perform saliency computation by contrasting region
pairs [56,66,95]. They consider non-overlapping patches or homogenous regions as image
elements for saliency computation.

2.4.2. Region-Based Saliency Detection

The string of different methods has been applied in the literature to construct a
group of pixels that is more attracted by salient regions than individual pixels [46,66].
The methods include fixed-size patches or blocks [25,97–100] graph-based segmenta-
tion [66,85], mean-shift [101] and simple linear iterative clustering (SLIC) superpixels
algorithm [4,7,36,68,79,102]. A Bayesian framework was developed to integrate bottom-
up saliency and top-down knowledge for saliency computation by extracting features of
patches [100]. Regions were computed as non-overlapping patches by dividing an input
image into patches of pixel size [97]. The dissimilarity of patches is calculated in terms of
spatial distance, center bias, and reduced dimensional space to compute saliency. Since
statistical features of patches are irregular, both background and foreground objects can
be presented in regular patches, but these methods tend to produce fuzzy salient maps.
A patch-based saliency detection method was proposed to combine both local and global
features for computing rarity-based saliency [99]. Multiscale patches were used to compute
a saliency map that integrated context prior, center prior, local, and global features [25].
Regional covariance color, orientation, and spatial features were employed to obtain struc-
tural information of image patches for saliency computation [98]. The method in [101] was
aimed at resolving the issues related to patch-based methods by employing a mean-shift
clustering algorithm to segment an image into uniform regions of non-overlapping patches.
The saliency of a patch was computed by integrating local, global, and spatial features.

The histogram of color namespaces was utilized to measure color differences for com-
puting the weighted attention saliency maps [70]. The saliency detection method described
in [66] applied a graph-based segmentation algorithm to construct uniform regions that can
preserve object boundaries more efficiently. A learning-based saliency detection method
reported in [85] used a graph-based segmentation to divide images into regions to compute
region-level saliency. In addition, the global contrast-based saliency detection method
reported in [50] used graph-based segmentation to divide an input image into regions.
However, the efficiencies of these methods are limited because of the computational com-
plexity of a graph-based region creation process [103]. The connotation of superpixels was
introduced as an alternative method for dividing an image into perceptually homogenous
regions [104]. In recent times, myriads of salient object detection methods have employed
the superpixels approach to divide the input images into perceptually homogenous regions.
However, the main limitation of these methods is that isolated or cluttered pixels cannot be
grouped correctly because of the constraint of spatial domain connectivity coupled with the
determination of an optimum number of superpixels [56]. Moreover, the counts of small
and large superpixels may, respectively, lead to under-segmentation and over-segmentation
of images, which can lead to the non-uniform highlighting of salient regions [95]. The im-
pact of superpixels granularity on the performance of saliency detection was demonstrated
in [68]. Hence, the accuracy of saliency detection is highly dependent on the optimal selec-
tion of the superpixels granularity [105]. Determining an optimal superpixels granularity is
a difficult task because of the diverse image categories. Multi-level abstraction of an input
image by repeatedly applying the superpixels algorithm was proposed to obtain the finest
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and coarsest abstraction of regions to resolve the granularity problem of superpixels [56].
However, the iteration process increases the computational complexity that can adversely
affect the performance of the saliency detection process in real-time applications.

In summary, emphasizing high-contrast edges while suppressing the interior of salient
regions is a major obstacle of the pixel or patch-based methods. Region-based image
abstractions are considered superior to pixel- or patch-based methods because they can
employ a richer feature representation for saliency detection. Superpixel-based methods
have gained popularity in recent years because of their computational efficiency. However,
finding an optimum superpixels granularity is a challenging task for the superpixel-based
image abstraction process. This is because the efficiency and robustness hallmarks of
saliency detection methods are highly dependent on the granularity of superpixels. This
empathizes the significance of constructing an efficient method that can automatically
detect the number of regions for image abstraction. The proposed color histogram-based
image abstraction can automatically detect the appropriate image region granularity based
on the color distribution of an image as explicated in the subsequent section.

3. Methods

The novel regional color histogram clustering method is introduced in this study for
detecting salient objects in red, green, and blue (RGB) images. The quantized RGB (QRGB)
color image is the input to the histogram-based clustering process to reduce the number of
colors in the input image. The numerous color models used in saliency detection methods
include RGB [67,70,106], hue, saturation, value (HSV) [107], lightness, redness, yellowness
(L*a*b*) [66,68,84,108,109] and combination of color models [67,85,106]. This study has
used the QRGB color image for clustering while the L*a*b* color image was applied for
the extraction of color features because of its perceptual uniformity [50,66,110]. Literature
has shown that color quantization in the RGB color model relatively performed better than
quantization in the L*a*b* color model [111]. The purpose of transforming the original RGB
color image into the L*a*b* color image instead of the QRGB image was to minimize the
effects of quantization error. Consequently, the L*a*b* color model was selected for color
feature extraction in the range of [0, 1] to suppress the effect of any possible dominant colors
and to take the intrinsic advantages of perceptual uniformity of the color model [108,112].
The proposed method exploits the strategy of color contrast, contrast ratio, spatial feature,
and center prior to efficiently compute pixel-level saliency scores. The method is comprised
of three essential steps of input image segmentation into regions, calculation of region
saliency scores, and post-processing of the computed saliency map. The outline of the
proposed method for salient objects detection is depicted in Figure 1.

3.1. Segmentation of Input Image

The segmentation of an image into regions of similar pixels is an acceptable prepro-
cessing stage in a saliency detection process. The purpose is to reduce the computational
complexity of image data because pixels in a region exhibit similar color features [32].
Multilevel image segmentation methods such as superpixel-based clustering, K-means
clustering, and mean-shift clustering have been extensively utilized to divide an image
into multiple regions. The superpixel-based segmentation is extensively used among these
methods [4,8,36,68,79,80,102,106,113–115]. Nevertheless, superpixel-based segmentation
methods have suffered from high computational complexity because of multiple itera-
tions and they are not adequate for diversified classes of images [68,116]. The automatic
detection of region count is a difficult problem because of the diversity in color images.
Moreover, the number of homogenous regions in an image is unknown. The regional
color histogram clustering proposed in this study was inspired by the properties of a color
histogram to obtain pixel regions. Color histogram is widely used in computer vision algo-
rithms because it can provide the global statistics of color images to describe the proportion
of different color features [117]. The segmentation method is achieved in two subprocesses
of color quantization and region generation.
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3.1.1. Color Quantization

The true-color image contains a maximum possibility of 2563 = 16, 777, 216 colors
that is generally greater than the number of pixels in an image [118,119]. Since extremely
rare colors are not significant for highlighting salient regions, less dominant colors can be
excluded for saliency detection [66]. Color quantization is a widely used technique for
merging less dominant colors into dominant colors to significantly reduce the computa-
tional complexity of image processing [119,120]. The minimum variance method [66] or
pixel intensity clustering algorithm [121] can be effectively applied to perform color quanti-
zation. However, the ‘imquantize’ built-in color quantization function in MATLAB (2019a,
The MathWorks, Inc., Natick, MA, USA) was effectively used to obtain the dominant colors
of the input RGB image. The function uses the multilevel image thresholding method of
Otsu to quantize an input image into the specified number of desired colors. The individual
color channels of red (R), green (G), and blue (B) of the RGB color model was quantized
into QR, QG, and QB at the level of 8 to realize a maximum number of 512 colors. This
number corresponds to a maximum of 512 possible regions in a color image. The quantized
intensity levels are combined to obtain the index, QRGB of a quantized RGB color in the
color palette using Equation (1).

QRGB = wr ∗Qr + wg ∗Qg + wb ∗Qb (1)

where wr = 8, wg = 64, and wb = 1 are the weights of R, G, and B colors, respectively. The
green channel was assigned the highest weight value because the human visual system is
highly sensitive to the green color than other colors [122].
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3.1.2. Region Generation

The automatic generation of regions is based on a global color histogram with
q ∗ q ∗ q bins computed from the QRGB image using all pixels in the input image. The
8 × 8 × 8 quantization system with 512 bins is ideal by considering a tradeoff between
performance and computational complexity [123]. This line of reasoning has been followed
to accept parameter ‘q = 8′ to be sufficient for effective color quantization. The global
histogram was used to create regional clustering for image abstraction. The histogram bins
with pixels are used as representative regions and bins that have no pixels are discarded.
Thus, a data structure with ‘M’ entries is created to store features of pixels that fall into
each region. This technique implies that each region is represented by a feature vector that
includes the average color pixel intensity, average color pixel coordinates, and distance
from the regional center to the image screen center.

3.2. Calculation of Region Saliency

The global color contrast CC(ri) of a region ri is determined in terms of the re-
gion weight Wi and color difference of a region to all other regions in the image as in
Equation (2).

CC(ri) =
M

∑
j=1

Wj‖(Li, ai, bi)− (Lj, aj, bj)‖2 (2)

where (L, a, b) is the color value of the region in L*a*b* color model, ‖·‖2 indicates the L2
norm, and M is the number of regions automatically detected. There will be a maximum
of 8 colors in an image, assuming each image channel has 2 distinct intensity levels. The
number, M of the possible colors or regions in a quantized color image, will lie in the range
of [8, 512]. The regional weight function W = (W1, . . . , WM) is integrated into the region
saliency calculation process. The weight function will account for the contribution of high
saliency by larger regions than for the smaller ones. The weight of a region is calculated
based on the relative probability of the pixels in the region to emphasize the color contrast
of larger regions [50,66], as defined by Equation (3).

Wi =
fi
f

(3)

where fi is the frequency of the pixels occupied in each region ri and f is the total number
of pixels in the input image. The spatial contrast function SC(ri) integrates the global color
contrast with the spatial feature and color ratio of a region (ri) as follows:

SC(ri) = WiCC(ri) +
M

∑
j=1

Wjφ
(
ri, rj) exp(−DS(ri, rj

)
) (4)

In a divergence from the work [66] that utilized regional saliency differences as a
weighting coefficient to suppress the effect of non-salient regions, our method utilizes a
more resilient function, φ(ri, rj) based on the contrast ratio given by Equation (5). The
contrast ratio is an important aspect of image quality that measures the difference between
the maximum and minimum brightness of an image. In the context of this study, it measures
the difference between the maximum and minimum brightness of regions in an image.

φ(ri, rj) =

(
CC(ri) + 0.05
CC(rj) + 0.05

)
(5)

The significance of center prior in saliency detection as given by Equation (6) has
been highlighted in literature following the fundamental assumption that salient objects
are framed near the image center while background pixels are distributed at the image
borders [36,59,66,68,102]. It is usually formulated and extensively used in literature as
a Gaussian distribution [3,36,66,106,113]. The region saliency score CS(ri) is obtained in
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terms of spatially weighted color contrast and the Euclidean distance between the region
spatial center and image screen center. This is to integrate the center prior with color
contrast, contrast ratio, and spatial feature using Equation (6).

CS(ri) = SC(ri) ∗ exp(−DS(S(ri), C)/α2) (6)

where S(ri) is the spatial center of a region and C = (0.5, 0.5) is the image screen center.
Since salient objects are always not positioned at the image center, the concept of center
prior can lead to the exclusion of salient objects located at the image boundary or inclusion
of a background region [66,106,124]. This can occur, especially when an object possesses
multiple colors such that object colors at the image center are different from those in the
background. The parameter α ∈ [0.1, 1.0] is incorporated into the region saliency score
function to strengthen the center prior. Even though the function can compute a low
saliency score for a region around the boundary, an appropriate α value can make adequate
salient objects more salient, regardless of their positions. In addition to the color contrast
features, spatial features play a significant role in human attention, and the use of spatial
coherence in saliency computation is widely accepted by many researchers [36,50,66–68,97].
The spatial distance DS(ri, rj) between two regions is computed using Equation (7).

DS(ri, rj) = ‖
(

Cx
i , Cy

i

)
−
(

Cx
j , Cy

j

)
‖

2
(7)

where
(

Cx
i , Cy

i

)
is the spatial center of a region ri that is computed by averaging the x and

y coordinates of pixels in the region. The regional saliency score generated is normalized to
the range of [0, 1] before assigning the pixel level saliency. The saliency score of each pixel
is assigned by the saliency score of the respective region to obtain the saliency map, CMap
as shown in Equation (8). The assignment is based on the assertation that pixels belonging
to the same region have the same saliency.

CMap = CS(ri) (8)

3.3. Post-Processing of Saliency Map

The post-processing stage is performed to eliminate undesirable artifacts that may be
present at the saliency detection stage because of the quantization error. In our method,
post-processing is accomplished by three stages of morphological reconstruction, mean
suppression, and nonlinear intensity mapping. Morphological reconstruction is a good
approach to retrieve objects with connected components of similar intensity values while
keeping information such as contour, shape, and intensity to suppress background noise
concomitantly [125,126]. Inspired by this, our method adopted a grayscale morphological
reconstruction with a disk-shaped structuring element of radius, to uniformly highlight
the detected saliency regions while effectively suppressing background noise. Morpho-
logical reconstruction can also suppress high-intensity values of salient objects by leaving
unobtrusive background regions with non-black pixels [70]. Background noise is further
suppressed by computing the average intensity value of the reconstructed saliency map
and then subtract this value from each pixel intensity of the saliency map to overcome
the pitfall of reconstruction [127,128]. The final saliency map, Smap of the intensity values
of salient objects, is adjusted to an appropriate range of intensity values by a nonlinear
mapping introduced in [70]. The mapping is as given by Equation (9), where values for the
parameters r and γ are 0.02 and 1.5, respectively.

Smap = Map(Cmap, r, γ) (9)

These three post-processing stages have effectively facilitated the suppression of
background noise that is presented in the initial saliency map to obtain the final desirable
saliency map.
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4. Experimental Results

This study has applied the properties of salient objects to categorize various images
into different groups to provide a more comprehensive experimental evaluation of the
proposed saliency detection method. Figure 2 shows these properties to be the location
of salient objects (center or boundary), object sizes (salient objects that overlap center and
boundary regions), number of salient objects (multiple objects), color contrast (low contrast),
and complex background. The performance of the proposed method was validated against
30 modern bottom-up and seven deep-learning-based top-down methods. Since we do not
have access to source codes of the deep learning, and five bottom-up saliency methods,
they were considered for the extended complex scene saliency dataset (ECSSD). The rest of
the methods were included for comparison on six categories of images. The only parameter
that was used in the proposed method is the central bias weight, α, selected experimentally
as α ∈ [0.1, 1.0].

1 
 

 
 
 

 
Figure 2. Category of images: (a) boundary; (b) center; (c) complex background; (d) low contrast; (e) overlap; (f) multiple
objects; (g) ECSSD.

4.1. Datasets

Experimental images were selected from different benchmarked datasets of MSRA10K [62],
ASD [48], SED2 [129], ImgSal [130], DUT OMRON [83], ECSSD [131], HKU IS [132], and
SOC [133]. These datasets have been extensively used for evaluating salient object detection
methods [5,38,56,63,66,68,79,80,106,133]. The MSRA10K is a descendent of the Microsoft
Research Asia (MSRA) dataset, where many images in this dataset are often with a single
salient object and simple background [26,57]. The ASD is a subset of the MSRA dataset
with ground truth region annotation, single foreground, and simple background [35].
These two datasets are mainly used for selecting center located, boundary located, fore-
ground or background overlapped, and low contrast images. The SED2, ImgSal, and
DUT-OMRON datasets are known for multiple salient objects with relatively complex
backgrounds [57,102,112,134]. The images with multiple salient objects and complex back-
grounds were selected from these three datasets. The salient objects of the SED2 dataset
exhibit different color, position, and size properties.

In addition, images from the ECSSD were selected for evaluation [131]. The EC-
SSD dataset includes 1000 images that contain salient objects with colors that are af-
fected by background regions, and salient objects with heterogeneous colors, sizes, and
location properties to present huge ambiguity for the methods of salient object detec-
tion. The dataset is fundamentally considered to be complex for performance compar-
isons [5,57,67,68,84,135,136]. The HKU-IS dataset has 4447 complex scenes with multiple
disconnected objects that are highly similar to the background regions with a diverse spatial
distribution [43,132]. Salient objects in clutter (SOC) is a recently introduced dataset [133]
and is a subset of the common objects in contexts (COCO) dataset [137]. SOC is a chal-
lenging dataset of salient objects with attributes reflecting occlusion, cluttered background,
and challenges in real-world scenes developed for evaluating CNN-based salient object
detection methods. The proposed method is not featured for detecting salient objects from
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occluded or cluttered backgrounds and is not based on the CNN approach. It was tested
against 1500 images of the SOC dataset to determine its ability to detect salient objects in
real-world scenes.

4.2. Methods Compared

This study has tried to incorporate a combination of different bottom-up saliency meth-
ods of pixels, and regions based on different approaches such as center-surroundedness,
global contrast-based, graph-based, learning-based, and prior knowledge, as shown in
Table 1. Many of these bottom-up saliency detection methods have been typically bench-
marked in several studies [9,10,63,66,70,84,112,138]. In addition, we have included the
RPC [66], and CNS [70] methods because of their relatedness to our method, which is
not related to top-down methods. However, we have also compared our method with
seven deep-learning-based top-down methods because they are central to a lot of high-end
innovations in recent times.

Table 1. Saliency methods compared.

Bottom-Up Saliency Methods

No Method Approach and Prior Knowledge Unit of Processing

1 FES [54] Center-surroundedness contrast, center prior

Pixel

2 IT [61] Center-surroundedness, intensity, color, and orientation contrast
3 GB [64] Graph-based, center-surroundedness activation map
4 SeR [73] Local steering kernel features and color features
5 SEG [74] Local feature contrast, boundary prior
6 SR [139] Spectral residual approach

7 AC [15] Center surroundedness color contrast prior

Patch/Block
8 CA [25] Global, and local features, context prior, center Prior
9 SWD [97] Center prior, color dissimilarity, spatial distance
10 COV [98] Local color contrast, center prior
11 SUN [100] The local intensity and color features, feature space

12 MRBF [7] Boundary connectivity, foreground prior

Region by SLIC algorithm

13 DCLC [36] Diffusion-based using manifold ranking, compactness local contrast, center prior
14 MCVS [44] Background prior, foreground prior, and contrast features
15 CSV [56] Global color spatial distribution, object position prior

16 HDCT [67] Learning-based approach, global and local color contrast features, location,
histogram, texture, and shape features

17 FCB [68] Foreground and background cues, center prior
18 MC [80] Boundary prior, graph-based, Markov random walk
19 MR [83] Boundary prior, graph-based manifold ranking
20 DGL [84] Graph-based, boundary prior
21 FBSS [94] Boundary, texture, color, and contrast priors
22 DSR [106] Background prior
23 MAP [108] Boundary prior, graph-based, Markov absorption probabilities
24 BGFG [109] Background and foreground prior
25 GR [113] Convex-hull-based center prior, contrast and smoothness prior, graph-based
26 BPFS [140] Global color contrast, background prior, and foreground seeds

27 RPC [66] Color contrast, center prior Regions by graph-based segmentation28 DRFI [85] Color and texture contrast features, backgrounds features

29 CNS [70] Surroundedness and global color contrast cues Regional histogram of color name
space)

30 SIM [75] Center surroundedness color contrast Spatial scale

31 OURs Color contrast, contrast ratio, spatial feature, and central prior Regional color histogram clustering

Deep-learning-based top-down saliency methods

1 MSNSD [38]
2 MSNSD-A [38]
3 TSL [90]
4 LCNN [91]
5 DS [92]
6 MCDL [93]
7 [141]

In this study, we run the source codes of the methods of AC, BGFG, CNS, DCLC,
DGL, DRFI, GB, GMR, HDCT, IT, MAP, MR, and RPC with their default parameters. The
implementations of salient object detection methods in [63] with default parameters were
employed to obtain the saliency maps of CA, COV, DSR, FES, GR, MC, SEG, SeR, SR, SUN,
and SWD. Since we have no access to the source codes of the remaining methods, they were
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excluded for qualitative comparison, analysis of computational time complexity, and could
not compare with all the selected image categories. The method of FCB was considered for
the category of overlap images and ECSSD dataset based on the saliency results provided
by their authors.

4.3. Evaluation Metrics

The visual observance of saliency maps against the ground truth annotation is gen-
erally accomplished by qualitative analysis, which has assisted to scrutinize the degree
of resemblance of saliency maps with the ground truth. In addition, a quantitative eval-
uation was performed to compare the competency of the proposed method against a set
of modern methods. The quantitative evaluation is more accurate than the qualitative
evaluation that is highly subjective. The standard performance metrics universally used for
evaluating salient object detection methods are precision, recall, F-measure, mean absolute
error (MAE), and overlapping ratio (OR) [36,63,67,68,70,84,142,143]. Hence, this study has
incorporated these metrics to evaluate the performance of the proposed method against
the selected modern methods. Precision is the ratio of the number of correctly identified
salient pixels to the total number of pixels in a salient map [13,144,145]. Recall or sensitivity
is the degree of correctly identified salient regions to the total number of salient pixels in
the ground truth [13,144,145].

Precision and recall values were obtained by comparing the binary map equivalent of
a salient map with the ground truth image. A fixated threshold value from 0 to 255 was
used to bipartite the saliency map to obtain the binary map equivalent. The pair of precision
and recall values were computed for each threshold to plot the performances at different
situations [63,143]. The successfully identified non-salient pixels are not considered either
by precision or recall. This affects the methods that correctly identified non-salient pixels
but failed to correctly detect salient pixels [146,147]. In this study, MAE between saliency
map and ground truth was also computed for a balanced evaluation to take this effect into
account. The MAE is a common metric to measure dissimilarity between the estimated
and actual values [26]. It is defined as the average absolute error between the continuous
saliency (CS) map, and ground truth (GT). The OR is the ratio of overlapping between the
binarized saliency map and ground truth [57], where better performance is indicated by
higher values of OR.

4.4. Qualitative Results

The visual comparison of our method against the selected existing methods on dif-
ferent categories of images is demonstrated in Figure 3. The ability of the proposed
method to effectively suppress non-salient pixels while highlighting the salient objects
with well-formed edges regardless of the type of images is perceptible. The proposed
method can uniformly and accurately detect salient regions in diverse classes of images
over many of the existing modern methods. It is clear from the results that most of the
existing methods are performing well on the categories of relatively simple images with
single or homogenous objects. However, they present challenges on image categories with
complex backgrounds, low contrast, or multiples objects. Methods that utilized boundary
prior or background prior such as BGFG, DGL, DSR, MC, MR, and MAP are not able to
detect or uniformly highlight objects that touch image boundary as observed in Figure 3b.
In contrast, our method has successfully detected and uniformly highlighted the salient
objects that touch the image boundaries. This shows the ability of the proposed method in
suppressing the background adequately and highlighting salient objects with well-formed
edges regardless of the locations of salient regions in images.
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Figure 3. Qualitative performance of the investigated methods on ECSSD and selected categories of images: (a) ECSSD; (b)
Boundary; (c) Center; (d) Complex Background; (e) Low Contrast; (f) Multiple Objects; (g) Overlap.

Methods that exploited center prior performed well on images with centrally located
salient objects, but they showed challenges in some cases such as Figure 3(c2), where
two objects (bowl and strawberry) are centrally located. Hence, these methods tend to
concomitantly detect both objects as a salient region. However, methods that incorporate
color contrast such as RPC, DCLC, GR, CNS, and HDCT have managed to highlight real
salient objects. Methods such as MC, MR, MAP, and DGL that exploited boundary prior
have failed to detect salient objects in this category of images because they considered
black boundary regions as background regions and incorrectly highlighted the white bowl
as a salient object. The performance of the proposed method for this category of images
is highly commendable because it has demonstrated strength in detecting salient objects,
irrespective of variation in sizes as in Figure 3(c1) (small salient object) and Figure 3(c3)
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(large salient object). The salient object in Figure 3(c3) also shows heterogeneous properties
in terms of color and appearance; hence, many modern methods such as DCLC, GR, MAP,
MC, MR, and RPC have failed to uniformly highlight salient regions. These methods have
managed to highlight only a portion of salient regions rather than the entire salient regions.
In contrast, the proposed method shows impressive results that are almost like the ground
truth images. The visual results of the existing methods in a complex background are
shown in Figure 3d. The results show the power of the proposed method in detecting
salient objects from complex and heterogeneous backgrounds while all other methods
show lower performance. The performance of DRFI is comparatively better than the rest of
the existing methods because of the inclusion of color and texture features along with the
use of multi-level pre-segmentation maps to detect multi-invariant objects.

Salient objects with low contrast to the background are considered a challenging case
for contrast-based and graph-based methods. The visual representation of this image
category is demonstrated in Figure 3e; it is worth noticing that the performance of all
methods except ours is not remarkable. The DGL method proposed a deformed smoothness
constraint to overcome this challenge of graph-based methods. However, DGL still had
failure cases as in Figure 3(e3) that it cannot effectively handle low contrast objects. The
result in Figure 3(e3) shows that the performance of DRFI is not free from the limitation
of contrast-based cues because of the use of feature extraction by contrast vectors. The
performance of DSR is relatively better than the rest of the methods; nevertheless, the results
are not free from background noise as in Figure 3(e3). The regional contrast-based method
of RPC based on low-level color contrast features also demonstrated poor performance on
low contrast objects. The proposed method has illustrated good results as compared to the
listed modern methods. The ability to uniformly highlight salient objects in the category
of multiple objects is still challenging for many of the modern methods because of the
heterogeneous nature of objects as illustrated in Figure 3f.

The results of Figure 3(f1) have illustrated that many methods such as CNS, DGL,
DSR, MAP, MC, and MR can detect only one object. The proposed method has again
demonstrated its ability in detecting heterogeneous objects from this class of images.
Except for the proposed method, only DRFI shows relatively better results for this category
of images. The images that belong to the overlapped category are generally larger and they
touch the image boundary and image center as shown in Figure 3g. The proposed method
shows an outstanding performance for images in this category like the previous categories.
Moreover, the graph-based methods or diffusion-based methods such as DGL, MR, MC,
and MAP have achieved good performance on the category of overlapped images. In
opposition to the performance of DSR for the category of low contrast images, DSR has
demonstrated poor performance on overlapped images because the method has incorrectly
assigned all image boundaries as a background template. The methods such as COV, FES,
IT, GB, SeR, SUN, SWD, and SIM, as illustrated in Figure 3, generally showed challenges in
highlighting salient objects from all the listed categories of images.

The ECSSD dataset is generally well-known for salient objects with heterogeneous
properties and occluded backgrounds. The proposed method has again demonstrated
remarkable results on images from this dataset. The learning-based methods such as HDCT
and DRFI have shown better performance on images in this dataset. The results indicate
the merits of the proposed method on a wide spectrum of image categories and obviously,
its output is more reliable with results that are almost like the ground truth in comparison
to the existing modern methods.

Figure 4 shows the qualitative results of the proposed method in comparison with
the top-performing methods on the challenging HKU-IS and SOC datasets. The HKU-IS
is well-known for multiple and disconnected salient objects that show high similarity to
the background regions. The SOC dataset contains images that are closer to real-world
conditions. The qualitative results are shown in Figure 4 highlight the performances of
the proposed method and six other methods that generally perform well for the category
of multiple objects. The proposed method shows good results on these two challenging
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datasets with the output almost resembling the ground truth. In Figure 4b, for instance,
the proposed method highlighted the salient object as in the ground truth image, while
other methods detected all objects on the table. Similarly, the performance of the proposed
method is commendable, regardless of the complexity of these images (Figure 4a,c,d).
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(a) Metric OURs AC BGFG CA CNS COV DCLC DGL DRFI DSR FES GB GR 

Bo
un

da
ry

 (3
50

) 1  

Preci-
sion 

0.945 0.698 0.807 0.621 0.800 0.580 0.928 0.909 0.867 0.846 0.765 0.578 0.924 

Recall 0.891 0.692 0.782 0.843 0.825 0.561 0.887 0.859 0.932 0.868 0.677 0.774 0.898 
F-meas-

ure 
0.932 0.697 0.801 0.661 0.805 0.576 0.918 0.897 0.882 0.851 0.743 0.614 0.918 

MAE 0.062 0.133 0.111 0.140 0.071 0.130 0.057 0.073 0.080 0.057 0.110 0.152 0.095 
OR 0.844 0.541 0.659 0.545 0.700 0.387 0.832 0.794 0.808 0.747 0.551 0.480 0.837 

Metric 

 

HDCT IT MAP MC MR RPC SEG SeR SIM SR SUN SWD 
Preci-
sion 

0.878 0.532 0.804 0.884 0.900 0.860 0.873 0.531 0.562 0.536 0.58 0.627 

Recall 0.927 0.705 0.799 0.808 0.841 0.797 0.624 0.787 0.529 0.701 0.578 0.648 
F-meas-

ure 
0.888 0.564 0.803 0.865 0.886 0.844 0.799 0.574 0.554 0.567 0.58 0.632 

MAE 0.077 0.179 0.092 0.104 0.070 0.097 0.274 0.191 0.325 0.154 0.233 0.219 
OR 0.816 0.417 0.691 0.741 0.785 0.698 0.588 0.452 0.337 0.425 0.408 0.446 

C
en

te
r (

37
0)

 1  

Metric OURs AC BGFG CA CNS COV DCLC DGL DRFI DSR FES GB GR 
Preci-
sion 

0.949 0.633 0.854 0.606 0.819 0.733 0.910 0.906 0.862 0.856 0.772 0.664 0.913 

Recall 0.889 0.543 0.850 0.655 0.903 0.699 0.915 0.909 0.933 0.888 0.734 0.765 0.866 
F-meas-

ure 
0.934 0.610 0.853 0.617 0.837 0.725 0.911 0.906 0.877 0.863 0.763 0.685 0.901 

MAE 0.067 0.184 0.112 0.204 0.058 0.147 0.063 0.063 0.075 0.062 0.136 0.183 0.122 
OR 0.846 0.420 0.727 0.435 0.768 0.520 0.838 0.830 0.804 0.762 0.589 0.511 0.801 

Metric 
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4.5. Quantitative Results

The quantitative comparison of the proposed method against other methods in terms
of the metrics of precision, recall, F-measure, MAE, and OR are revealed in Table 2 to
objectively reinforce the performance of the proposed method on diverse categories of
images.

4.5.1. Salient Objects Located at Image Boundary

Tables 2 and 3 show comprehensive results of the investigated methods based on
the standard performance metrics. The results show that our method scored the highest
precision (0.945), F-measure (0.932), and OR (0.844) with a slightly lower recall as compared
to the learning-based methods of HDCT and DRFI. In terms of MAE, the proposed method
achieved the second-best score of 0.062, where DCLC and DSR recorded the best score
of 0.057. In addition to our method, the performances of DCLC and GR are perceptible.
The GR used a convex hull to estimate salient objects and centroid of the convex hull as
center prior instead of image center to favor the detection of salient objects located farther
from the image center. The DCLC ranked saliency based on foreground seeds obtained by
local contrast and performed well in this category unlike other diffusion-based methods
such as MC and MR, which considered the nodes that touch the image boundaries as
background seeds. The SeR achieved the lowest precision of 0.532 and for all other metrics,
SIM showed the lowest performance. Regardless of the use of a center prior, appropriate
selection of α value has enabled the proposed method to produce a robust detection of
salient objects located far off the image center. Figure 5 demonstrates the average precision,
recall, F-measure, MAE, and OR on the category of boundary images for all the investigated
methods.
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Table 2. The performance statistics for six categories of images. The up arrow ↑ indicates that a higher value gives better
performance, and the down arrow ↓ shows that a lower value gives better performance.

(a) Metric OURs AC BGFG CA CNS COV DCLC DGL DRFI DSR FES GB GR

Boundary (350) 1

Precision ↑ 0.945 0.698 0.807 0.621 0.800 0.580 0.928 0.909 0.867 0.846 0.765 0.578 0.924
Recall ↑ 0.891 0.692 0.782 0.843 0.825 0.561 0.887 0.859 0.932 0.868 0.677 0.774 0.898

F-measure ↑ 0.932 0.697 0.801 0.661 0.805 0.576 0.918 0.897 0.882 0.851 0.743 0.614 0.918
MAE ↓ 0.062 0.133 0.111 0.140 0.071 0.130 0.057 0.073 0.080 0.057 0.110 0.152 0.095
OR ↑ 0.844 0.541 0.659 0.545 0.700 0.387 0.832 0.794 0.808 0.747 0.551 0.480 0.837

Metric HDCT IT MAP MC MR RPC SEG SeR SIM SR SUN SWD

Precision ↑ 0.878 0.532 0.804 0.884 0.900 0.860 0.873 0.531 0.562 0.536 0.58 0.627
Recall ↑ 0.927 0.705 0.799 0.808 0.841 0.797 0.624 0.787 0.529 0.701 0.578 0.648

F-measure ↑ 0.888 0.564 0.803 0.865 0.886 0.844 0.799 0.574 0.554 0.567 0.58 0.632
MAE ↓ 0.077 0.179 0.092 0.104 0.070 0.097 0.274 0.191 0.325 0.154 0.233 0.219
OR ↑ 0.816 0.417 0.691 0.741 0.785 0.698 0.588 0.452 0.337 0.425 0.408 0.446

Center (370) 1

Metric OURs AC BGFG CA CNS COV DCLC DGL DRFI DSR FES GB GR

Precision ↑ 0.949 0.633 0.854 0.606 0.819 0.733 0.910 0.906 0.862 0.856 0.772 0.664 0.913
Recall ↑ 0.889 0.543 0.850 0.655 0.903 0.699 0.915 0.909 0.933 0.888 0.734 0.765 0.866

F-measure ↑ 0.934 0.610 0.853 0.617 0.837 0.725 0.911 0.906 0.877 0.863 0.763 0.685 0.901
MAE ↓ 0.067 0.184 0.112 0.204 0.058 0.147 0.063 0.063 0.075 0.062 0.136 0.183 0.122
OR ↑ 0.846 0.420 0.727 0.435 0.768 0.520 0.838 0.830 0.804 0.762 0.589 0.511 0.801

Metric HDCT IT MAP MC MR RPC SEG SeR SIM SR SUN SWD

Precision ↑ 0.859 0.549 0.874 0.896 0.908 0.839 0.808 0.505 0.474 0.507 0.500 0.742
Recall ↑ 0.925 0.618 0.899 0.906 0.892 0.795 0.568 0.559 0.259 0.521 0.336 0.649

F-measure ↑ 0.873 0.564 0.88 0.898 0.904 0.828 0.736 0.516 0.398 0.510 0.450 0.719
MAE ↓ 0.091 0.218 0.063 0.079 0.061 0.109 0.279 0.273 0.381 0.214 0.319 0.230
OR ↑ 0.794 0.386 0.796 0.82 0.818 0.686 0.527 0.344 0.171 0.330 0.245 0.475

Complex background
(210) 1

Metric OURs AC BGFG CA CNS COV DCLC DGL DRFI DSR FES GB GR

Precision ↑ 0.933 0.404 0.774 0.550 0.768 0.670 0.847 0.875 0.856 0.827 0.629 0.598 0.762
Recall ↑ 0.753 0.317 0.697 0.405 0.747 0.554 0.793 0.810 0.827 0.774 0.595 0.537 0.531

F-measure ↑ 0.885 0.380 0.755 0.508 0.763 0.639 0.834 0.859 0.849 0.814 0.621 0.583 0.692
MAE ↓ 0.120 0.253 0.179 0.311 0.130 0.195 0.133 0.135 0.138 0.127 0.200 0.259 0.26
OR ↑ 0.710 0.22 0.568 0.295 0.623 0.418 0.700 0.726 0.721 0.657 0.438 0.384 0.49

Metric HDCT IT MAP MC MR RPC SEG SeR SIM SR SUN SWD

Precision ↑ 0.824 0.482 0.828 0.821 0.819 0.695 0.683 0.334 0.287 0.416 0.381 0.708
Recall ↑ 0.780 0.362 0.803 0.769 0.774 0.601 0.310 0.180 0.055 0.273 0.123 0.376

F-measure ↑ 0.814 0.448 0.822 0.808 0.809 0.671 0.535 0.279 0.146 0.371 0.257 0.588
MAE ↓ 0.160 0.303 0.131 0.164 0.139 0.185 0.341 0.439 0.454 0.318 0.430 0.321
OR ↑ 0.666 0.254 0.694 0.669 0.670 0.485 0.285 0.131 0.045 0.197 0.102 0.310

Low contrast (165) 1

Metric OURs AC BGFG CA CNS COV DCLC DGL DRFI DSR FES GB GR

Precision ↑ 0.908 0.539 0.787 0.614 0.717 0.710 0.844 0.837 0.843 0.814 0.738 0.672 0.792
Recall ↑ 0.715 0.365 0.653 0.510 0.628 0.545 0.715 0.721 0.753 0.710 0.545 0.600 0.501

F-measure ↑ 0.854 0.486 0.751 0.586 0.694 0.663 0.810 0.807 0.820 0.788 0.682 0.654 0.698
MAE ↓ 0.122 0.227 0.178 0.248 0.155 0.193 0.146 0.159 0.148 0.134 0.187 0.224 0.233
OR ↑ 0.659 0.278 0.538 0.38 0.516 0.423 0.625 0.631 0.654 0.599 0.445 0.436 0.457

Metric HDCT IT MAP MC MR RPC SEG SeR SIM SR SUN SWD

Precision ↑ 0.805 0.585 0.804 0.827 0.820 0.730 0.740 0.461 0.499 0.537 0.467 0.731
Recall ↑ 0.685 0.491 0.720 0.710 0.720 0.572 0.249 0.370 0.219 0.441 0.238 0.452

F-measure ↑ 0.774 0.560 0.783 0.797 0.795 0.686 0.508 0.437 0.385 0.511 0.382 0.640
MAE ↓ 0.173 0.252 0.156 0.175 0.153 0.182 0.310 0.340 0.388 0.261 0.371 0.274
OR ↑ 0.578 0.348 0.606 0.613 0.61 0.466 0.233 0.257 0.175 0.316 0.198 0.364

Multiple objects (160) 1

Metric OURs AC BGFG CA CNS COV DCLC DGL DRFI DSR FES GB GR

Precision 0.876 0.640 0.735 0.576 0.752 0.537 0.84 0.834 0.807 0.790 0.633 0.556 0.86
Recall 0.786 0.567 0.696 0.592 0.743 0.535 0.748 0.762 0.818 0.759 0.587 0.644 0.666

F-measure 0.853 0.621 0.726 0.580 0.750 0.537 0.812 0.816 0.810 0.783 0.621 0.574 0.806
MAE ↓ 0.836 0.921 0.888 0.958 0.840 0.911 0.850 0.860 0.842 0.839 0.896 0.955 0.909

OR 0.695 0.425 0.528 0.371 0.582 0.331 0.652 0.656 0.663 0.614 0.410 0.382 0.599

Metric HDCT IT MAP MC MR RPC SEG SeR SIM SR SUN SWD

Precision 0.801 0.536 0.741 0.813 0.820 0.741 0.771 0.427 0.422 0.506 0.442 0.583
Recall 0.791 0.586 0.733 0.741 0.714 0.666 0.381 0.469 0.245 0.537 0.259 0.464

F-measure 0.799 0.547 0.739 0.795 0.793 0.723 0.624 0.436 0.362 0.513 0.380 0.550
MAE ↓ 0.864 0.967 0.866 0.878 0.851 0.883 1.032 1.047 1.124 0.960 1.091 1.021

OR 0.638 0.338 0.574 0.619 0.619 0.521 0.352 0.255 0.141 0.314 0.176 0.295

Overlap (250) 1

Metric OURs AC BGFG CA CNS COV DCLC DGL DRFI DSR FCB FES GB

Precision ↑ 0.986 0.703 0.969 0.738 0.881 0.815 0.981 0.969 0.975 0.949 0.968 0.853 0.777
Recall ↑ 0.767 0.344 0.593 0.442 0.638 0.395 0.804 0.767 0.756 0.661 0.615 0.478 0.461

F-measure ↑ 0.925 0.567 0.845 0.639 0.810 0.654 0.934 0.913 0.924 0.862 0.855 0.722 0.671
MAE ↓ 0.134 0.313 0.217 0.280 0.148 0.285 0.130 0.105 0.130 0.157 0.140 0.260 0.274
OR ↑ 0.757 0.313 0.581 0.381 0.609 0.358 0.790 0.755 0.768 0.641 0.603 0.447 0.402

Metric GR HDCT IT MAP MC MR RPC SEG SeR SIM SR SUN SWD

Precision ↑ 0.96 0.967 0.666 0.96 0.963 0.971 0.956 0.782 0.622 0.515 0.644 0.671 0.872
Recall ↑ 0.658 0.747 0.361 0.712 0.702 0.767 0.568 0.216 0.38 0.104 0.365 0.293 0.370

F-measure ↑ 0.868 0.906 0.557 0.889 0.887 0.915 0.826 0.487 0.542 0.269 0.547 0.517 0.664
MAE ↓ 0.178 0.154 0.304 0.136 0.147 0.114 0.225 0.321 0.311 0.389 0.307 0.326 0.287
OR ↑ 0.65 0.728 0.305 0.697 0.690 0.755 0.556 0.214 0.312 0.092 0.304 0.260 0.342

1 Number of images.
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Table 3. Performance statistics on ECSSD dataset in terms of precision, recall, F-measure, MAE and OR.

Method Precision Recall F-measure MAE OR Method Precision Recall F-measure MAE OR

OURs 0.853 0.635 0.790 0.163 0.573 GR 0.714 0.391 0.600 0.283 0.348
AC 0.439 0.300 0.396 0.210 0.263 HDCT 0.767 0.640 0.733 0.198 0.519

BGFG 0.723 0.606 0.692 0.208 0.467 IT 0.570 0.406 0.521 0.289 0.285
BPFS 0.660 0.820 0.690 0.166 MAP 0.758 0.661 0.733 0.185 0.534
CA 0.532 0.374 0.485 0.310 0.266 MC 0.768 0.652 0.738 0.202 0.531

CNS 0.708 0.600 0.680 0.166 0.480 MCVS 0.780 0.540 0.700 0.170
COV 0.679 0.527 0.636 0.215 0.388 MR 0.767 0.647 0.736 0.186 0.525
CSV 0.760 0.650 0.740 0.210 MRBF 0.780 0.670 0.760 0.177

DCLC 0.769 0.636 0.734 0.182 0.530 RPC 0.629 0.489 0.590 0.218 0.372
DGL 0.785 0.655 0.750 0.191 0.548 SEG 0.662 0.230 0.462 0.340 0.212
DRFI 0.794 0.698 0.769 0.170 0.572 SeR 0.366 0.207 0.311 0.404 0.144
DSR 0.753 0.647 0.726 0.171 0.517 SIM 0.365 0.078 0.197 0.433 0.062
FBSS 0.770 0.560 0.709 0.169 SR 0.460 0.302 0.411 0.311 0.212
FCB 0.721 0.515 0.660 0.173 0.422 SUN 0.384 0.102 0.235 0.437 0.087
FES 0.672 0.545 0.638 0.212 0.404 SWD 0.704 0.354 0.573 0.318 0.283
GB 0.629 0.519 0.600 0.263 0.364
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4.5.2. Salient Objects Located at Image Center

The proposed method achieved the highest precision (0.949), F-measure (0.934), and
OR (0.846) for this category of images. The DRFI achieved the best recall score, CNS scored
the lowest MAE score of 0.058, followed by MR and DSR with scores of 0.061 and 0.062,
respectively, while the proposed method scored 0.067. The DGL shows improvement in
terms of F-measure and OR on the center category of images than the boundary category
of images, with SIM being the last. This image category is relatively simpler as objects are
located far away from the image boundary and located close to the image center to favor
methods that exploit the location prior. The performances of center prior-based methods
such as FES, COV, and SWD are relatively better than those of the boundary images. The
methods such as DCLC, DGL, GR, and MR show precision values between 0.9 and 1.0,
while the average F-measure, MAE, and OR have demonstrated the superiority of the
proposed method over the comparative methods, as depicted in Figure 6.

J. Imaging 2021, 7, x 23 of 37 
 

 

respectively, while the proposed method scored 0.067. The DGL shows improvement in 
terms of F-measure and OR on the center category of images than the boundary category 
of images, with SIM being the last. This image category is relatively simpler as objects are 
located far away from the image boundary and located close to the image center to favor 
methods that exploit the location prior. The performances of center prior-based methods 
such as FES, COV, and SWD are relatively better than those of the boundary images. The 
methods such as DCLC, DGL, GR, and MR show precision values between 0.9 and 1.0, 
while the average F-measure, MAE, and OR have demonstrated the superiority of the 
proposed method over the comparative methods, as depicted in Figure 6. 

 
(a) 

 
(b) 

 
(c) 

Figure 6. (a) F-measure; (b) MAR and (c) OR on image category: Center. 

4.5.3. Salient Objects with Complex Background 
The results achieved by the investigated salient object detection methods indicated 

that performance is generally challenging for this image category. However, the proposed 
method shows its capability for precisely detecting salient objects, and it is the only 
method that recorded a precision score between 0.900 and 1.000 with the highest F-meas-
ure of 0.885. The proposed method also achieved the best MAE score of 0.120. Surpris-
ingly, DCLC gave good results for boundary and center image categories but achieved 
unsatisfactory results for this category of images. In contrast, DGL and DRFI improved 
their performances for this category of images. The deformed smoothness constraint-
based manifold ranking approach used by the DGL method has helped to improve per-
formance for this image category compared to other manifold ranking-based methods 
such as MR. As stated in [7], results obtained for MR have demonstrated poor perfor-
mance on complex background images when compared to other categories of images. The 
SIM again scored the lowest performance on this category of images. Figure 7 shows the 

Figure 6. (a) F-measure; (b) MAR and (c) OR on image category: Center.

4.5.3. Salient Objects with Complex Background

The results achieved by the investigated salient object detection methods indicated
that performance is generally challenging for this image category. However, the proposed
method shows its capability for precisely detecting salient objects, and it is the only method
that recorded a precision score between 0.900 and 1.000 with the highest F-measure of 0.885.
The proposed method also achieved the best MAE score of 0.120. Surprisingly, DCLC gave
good results for boundary and center image categories but achieved unsatisfactory results
for this category of images. In contrast, DGL and DRFI improved their performances for
this category of images. The deformed smoothness constraint-based manifold ranking
approach used by the DGL method has helped to improve performance for this image
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category compared to other manifold ranking-based methods such as MR. As stated in [7],
results obtained for MR have demonstrated poor performance on complex background
images when compared to other categories of images. The SIM again scored the lowest
performance on this category of images. Figure 7 shows the average precision, recall,
F-measure, MAE, and OR for all the investigated methods. The results show the capability
of the proposed method in the handling of images with a complex background to exhibit
its superiority over the other methods investigated.
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4.5.4. Salient Objects with Low Color Contrast to Background

The proposed method showed strength in effectively detecting salient objects from the
low contrast object category like other image categories. It achieved the highest scores for
most performance metrics, except for the recall. The highest recall values on images from
this category are between 0.7 and 0.8 while the proposed method scored a recall value of
0.715. It is evident from this research that the existing methods investigated have difficulty
in effectively detecting salient regions when an object shares a similar color contrast with
background regions. This includes learning-based methods because the performances of
HDCT and DRFI are not encouraging on images from this category. Furthermore, contrast
prior-based methods such as DCLC, GR, CNS, and RPC have demonstrated the lowest
performances when compared to other categories of images. Like the results of other
categories, SIM again scored the lowest values for all the performance metrics. Figure 8
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shows the average precision, recall, F-measure, MAE, and OR of all methods, wherein the
capability of the proposed method in the handling of salient objects with low color contrast
to the background is superior to the existing methods investigated.
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4.5.5. Multiple Salient Objects

It is hard to detect salient objects when they exhibit heterogeneous features in terms of
location, color, size, and count. This image category contains multiple objects with varying
locations, sizes, counts, and colors. However, the performance of the proposed method
is commendable with the best value for precision (0.876), F-measure (0.853), MAE (0.836),
and OR (0.695). The learning-based methods of DRFI (0.818) and HDCT (0.791) scored the
highest recall value, followed by the proposed method (0.786). The results obtained by
the rest of the methods clearly showed difficulty in detecting multiple salient objects with
heterogeneous properties. In this category of images, all methods showed relatively poorer
performance in terms of MAE.

In addition to our method, DGL showed comparatively good results with the second-
highest values for F-measure (0.834) and OR (0.656). The limitation of COV in detecting
multiple salient objects is clear from these results as it shows a comparatively low perfor-
mance when compared to other image categories. This is because of the consideration of
the assumption of spatial coincidence in multiscale saliency computation [98]. The SIM
method again scored the lowest performance on this category of images. Figure 9 shows
the average precision, recall, F-measure, MAE, and OR of all the investigated methods on
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image category of multiple objects. The results show the capability of the proposed method
in handling salient objects with heterogeneous properties in terms of position, count, and
size.
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4.5.6. Images with Foreground and Background Overlapped Objects

The average precision, recall, F-measure, MAE, and OR scores achieved for the cat-
egory of overlapped images are illustrated in Figure 10. In this category of images, the
DCLC obtained the best overall performance with the highest recall (0.804), OR (0.790), and
F-measure (0.934). The proposed method achieved the highest precision value of 0.986 and
is highly competitive with DCLC. Surprisingly, the graph-based methods of DGL (0.105)
and MR (0.114) achieved the best MAE scores, while SIM and SUN scored inferior MAE
values of 0.389 and 0.326, respectively. In this category of images also, the SIM method
recorded the lowest performance.

4.5.7. Comparison with ECSSD Dataset

The results of the proposed method were further compared against all the 30 bottom-
up saliency methods on the ECSSD dataset as in Table 3 and Figure 11 to evaluate its
performance. The ECSSD dataset is well known for harboring complex images while the
superiority of the proposed method is obvious because it has achieved the best values
of precision (0.853), F-measure (0.790), MAE (0.163), and OR (0.573). The learning-based
method of DRFI and graph-based methods of DGL, FBSS, and MRBF also achieved better
results; however, only the proposed method managed to score precision above 0.800. The
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foreground and backgrounds seed selection methods such as MRBF and FBSS have also
achieved a better MAE score compared to BGFG, which is also based on background and
foreground seed selection. The DCLC that showed superiority in the image category of
overlap declined its performance on the ECSSD dataset. The SIM method showed the
lowest value for most of the performance metrics, except the MAE, while the method of
SUN scored relatively the worst value for MAE. The effectiveness of the proposed method
in detecting salient objects from a wide range of image categories has been successfully
proven by experiments.
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4.5.8. Comparison with Deep-Learning-based Top-down Saliency Methods

The proposed method is not related to top-down or deep-learning-based methods.
However, we have extended the quantitative comparison to seven deep-learning-based
top-down saliency detection methods on the ECSSD dataset to demonstrate the superiority
of the proposed method. Recently, the performance of deep-learning-based top-down
methods brought some challenges for bottom-up saliency methods [140]. However, the per-
formance of our method has revealed the ability of bottom-up saliency detection methods
can compete favorably with deep-learning-based top-down methods. Table 4 illustrates
the comparison of our method with deep learning methods based on F-measure and MAE
values reported in the original references. Regardless of the complex nature of the ECSSD
dataset, the proposed method has achieved the best F-measure (0.790) when compared to
deep-learning-based methods. In terms of MAE, the deep learning method of DS shows a
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relatively best value of 0.160, but the MAE value of the proposed method is 0.163, which is
a very close result. This result shows that the proposed method is even competitive with
deep-learning-based top-down methods. The F-measure and MAE scores in Tables 3 and 4
illustrate that deep-learning-based methods of MSNSD-A and MSNSD, respectively, scored
the second and third best F-measure values and higher than those of other bottom-up
methods, including the graph-based and learning-based methods listed in Table 3. In terms
of MAE scores, deep learning methods of DS and LCNN scored the best values and showed
that their saliency maps are close to the ground truth. However, the performances of these
methods are highly dependent on supervised learning based on labeled training data [44].
Due to the high dependency and sensitivity of deep learning methods on training datasets,
these methods are restricted from using real-time and diverse categories of images [42,94].
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Figure 11. (a) F-measure; (b) MAE and OR on ECSSD dataset.

Table 4. Comparison with deep learning methods in terms of F-measure and MAE on ECSSD dataset.

Method F-Measure MAE

MSNSD-A [38] 0.777 0.171
MSNSD [38] 0.774 0.179

DS [92] 0.759 0.160
LCNN [91] 0.715 0.162

[141] 0.430 0.255
TSL [90] 0.737 0.178

MCDL [93] 0.732
OURs 0.790 0.163
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4.5.9. Comparison with HKU-IS and SOC Datasets

Table 5 summarizes the performances measured by precision, recall, F-measure, MAE,
and OR of the investigated methods on HKU-IS and SOC datasets. In the comparison based
on these two datasets, we have considered the methods of DCLC, DGL, and DRFI because
they showed comparatively good performances on all the selected categories of images.
These methods are among the top-performing methods, especially for the category of
images with multiple objects, and HKU-IS is well-known for images with multiple salient
objects. In addition, three deep learning methods of MSNSD-A, MSNSD, and MCDL were
included for comparison on HKU-IS in terms of the F-measure and MAE scores reported
in the original references. We excluded all other deep learning methods for comparison on
the SOC dataset because of inaccessibility to their source codes. The deep learning methods
of MSNSD-A and MSNSD scored the highest F-measure (0.837) and lowest MAE (0.071),
and the second-highest F-measure (0.776) was achieved by the proposed method on the
HKU-IS dataset. Moreover, our method recorded the best performance in terms of precision
(0.813) and OR (0.578). In general, all methods showed weak performance on the SOC
dataset. It was recorded in the literature that existing saliency detection methods generally
showed unsatisfactory performance with a lower F-measure below 0.45 on realistic scenes
with occluded and cluttered backgrounds [133]. It is clear from the experimental results
of this study that the performances of the investigated methods decline on this dataset.
Surprisingly, our method scored the F-measure of 0.618 where DCLC, DGL, and DRFI
scored 0.543, 0.552, and 0.561, respectively. In addition, our method comparatively scored
the best value for MAE (0.202), and OR (0.389).

Table 5. Results of precision, recall, F-Measure, MAE and OR on HKU-IS and SOC datasets.

Datasets HKU-IS SOC

Metrics Precision Recall F-Measure MAE OR Precision Recall F-Measure MAE OR

DCLC 0.724 0.653 0.707 0.160 0.517 0.558 0.499 0.543 0.215 0.236
DGL 0.725 0.672 0.712 0.189 0.528 0.568 0.505 0.552 0.263 0.244
DRFI 0.753 0.755 0.754 0.144 0.577 0.560 0.563 0.561 0.219 0.356

MSNSD-A [38] 0.837 0.071
MSNSD [38] 0.837 0.071

MCDL 0.743 0.093
OURs 0.813 0.673 0.776 0.144 0.578 0.650 0.531 0.618 0.202 0.389

4.5.10. Computational Time Analysis

Salient object detection should mitigate the computational complexity of image analy-
sis by efficaciously detecting regions of interest. Since it is an intelligent pre-processing
stage of computer vision tasks, fast and effective detection of the most salient regions is
paramount. Computational complexity is a limiting factor of most methods in real-time
applications. Deep-learning-based methods are intrinsically suffering from this limitation
because of their computational complexity. This study incorporates runtime computational
analysis to experimentally demonstrate the efficiency of the proposed method. In the
comparison, we had to exclude few methods from running time analysis because of a lack
of access to their source codes. The experiment was performed using a machine with an
Intel(R) Core (TM) i7-8650U CPU @ 1.90GHz 2.11 GHz, and 8 GB random access memory.
Table 6 summarizes the running times of 25 methods on the ECSSD dataset. The proposed
method ran much faster than most of the other methods, except MAP, FES, SR, and SWD.
It is well illustrated in quantitative and qualitative analysis that FES, SR, and SWD have
shown poorer performance, irrespective of computational efficiency. The methods such as
DCLC, DGL, and DRFI that are competitive with our method are computationally complex
than the proposed method. The CA suffered from high computational complexity and is
mainly because of the application of the K-nearest neighbor algorithm to locate the nearest
patches. The classical learning-based method of HDCT and DRFI is also computationally
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expensive because they have consumed more time in feature extraction. The running
time of the recent method of CNS is also higher and it is mainly influenced by the sample
size parameter used in attention map computation. The DGL is computationally more
expensive than other graph-based methods such as GR, MAP, MC, and MR.

Table 6. Average running time of 25 methods on ECSSD dataset.

Method OURS AC BGFG CA CNS COV DCLC DGL DRFI DSR FES GB GR

Time (s) 0.23 80.33 5.56 15.15 11.34 4.29 0.47 1.33 6.16 1.82 0.21 0.52 0.36

Method HDCT IT MAP MC MR RPC SEG SeR SIM SR SUN SWD

Time (s) 4.17 0.26 0.21 0.24 0.54 2.08 1.91 0.51 0.39 0.12 2.39 0.12

5. Discussion and Conclusions
5.1. Discussion

The proposed method always consistently scored the best performance in terms of
precision and F-measure across all categories of images, while the MAE and OR values are
always in the top three positions, as illustrated in Tables 2–4. The pixel-based methods
of GB, IT, SeR, and SR dropped their precision values across the categories of boundary
and center objects with a surge in the recall value. The supervised learning methods of
DRFI and HDCT scored very high recall values across many of the image categories, but at
the cost of low precision and F-measure. Similarly, the method of BPFS scored the highest
recall value across images from the ECSSD dataset, but at the cost of low precision and low
F-measure. The MAP method recorded some better recall values, but the generalized initial
saliency map depends on the Markov absorption probability. This can cause challenges in
detecting images that touch boundaries, and it is obvious from the experiments that MAP
did not achieve good recall results for the categories of boundary, overlap, and multiple
objects. The recall metric is generally not considered a good choice for evaluation because
its high value can be the result of highlighting the entire image region. However, the
proposed method scored more balanced precision and recall values while at the same time
managed to score the highest F-measure on ECSSD, boundary, center, complex background,
low contrast, and multiple objects. It has achieved the second-best value for the category of
overlapped images. In terms of MAE, the method of CNS showed good performance on a
few image categories, such as center, complex background, and ECSSD dataset. However,
CNS has failed to achieve the best MAE on the boundary, overlapped, and low contrast
images because of the consideration of low-level features such as color and surroundedness
cues [70]. In addition, the DSR method consistently achieved lower MAE for all image
categories, except for the category of multiple objects and the ECSSD. Superior methods
that exploited the principle of center prior can exclude salient objects that touch the image
boundary because salient objects are not always located at the image center [47]. However,
the proposed method still managed to demonstrate outstanding performance on boundary
images with the proper integration of color contrast, contrast ratio, spatial features, and
center prior.

The effectiveness of the DGL method in handling various categories of images is
higher when compared to other graph-based methods, but at the cost of computational
complexity. The run time analysis has demonstrated that DGL is computationally com-
plex than the graph-based methods of GB, GR, MC, MR, and MAP. The GR method has
introduced a convex-hull-based center bias to mitigate the common limitation of the center
prior map that incorrectly suppresses the salient objects far from the image center. The
convex-hull center prior has improved the accuracy of salient objects that touch the image
boundary, but this method did not perform well for objects that are positioned at the image
center. The DRFI method used a 35-dimensional feature vector that includes geometric,
appearance, color, texture, and background features for region description. These features
along with multi-level segmentation have led the DRFI method to achieve a good perfor-
mance on many categories of images. The results computed by the method are free from
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the limitations of contrast-based methods, regardless of the use of color contrast features.
However, the assumption of a narrow image border as a pseudo background can affect the
performance of DRFI on the category of boundary images. Computational complexity is
another intrinsic drawback of this method. The methods such as DGL, MR, MAP, and MC
that exploited the boundary prior have shown relatively low performance on the category
of boundary images when compared to the category of images with center prior. This
shows the major challenge of boundary prior in treating boundary regions as backgrounds
and is not effective when salient objects are near to the image boundary.

The methods such as CNS, DCLC, RPC, and GR that exploited contrast prior have
demonstrated relatively low performance on the category of low contrast images. This is
because contrast prior works well with images that have distinct color contrast differences
between foreground and background regions. This indicates that performances of the
investigated methods are highly dependent on salient object properties such as count, loca-
tion, size, color contrast, or background complexity. However, the proposed method has
performed well on most categories of images, irrespective of the various object properties
and background complexity. The extended evaluation of the proposed method on HKU-IS
and SOC datasets has further revealed the strength of our method in handling images
from differing datasets. However, the performances of our method and other bottom-up
methods in detecting the salient objects in the cluttered and occluded background were
not achieved with remarkable results. This is because the primitive image features such as
color, contrast, and texture are not adequate to detect the salient objects from cluttered and
occluded images in a meaningful manner [148]. The detection of objects from the cluttered
and occluded background can be enhanced by incorporating high-level features [148,149].

The integration of color contrast, contrast ratio, spatial feature, and center prior
information in the proposed method has provided adequate segregation of salient regions
from non-salient regions and uniformly highlighted salient objects. The accomplishment
of the proposed method makes it nearly universal for detecting salient objects in a wide
spectrum of images. Moreover, the quantitative comparison of the investigated methods
has exhibited the superiority of the proposed method and we were flabbergasted by the
performance of our method against the deep-learning-based top-down methods. Finally,
all region-based methods have shown good performances when compared to the patch
and pixel-wise methods. However, the performances of these methods are completely
dependent on the selection of region granularity. Due to the ability of the proposed
method to automatically detect the optimum number of regions, it has achieved the best
results when compared to the investigated methods. There is always a tradeoff between
computational complexity and accuracy. However, this is not the case with the proposed
method because we have achieved the best performance while upholding an efficient
run time of 0.23 s per image as demonstrated in Table 6. It should be observed that
preprocessing was not considered in the proposed as in the case of most methods and can
be optional.

5.2. Conclusions

This study has enriched the research on salient object detection by proposing a simple,
effective, and efficient method that incorporates histogram-based region formation for
image abstraction. The method has successfully integrated color contrast, contrast ratio,
spatial features, and center prior for achieving an impressive salient object detection
process. The method is capable of accurate and robust detection of salient objects from
a wide gamut of challenging images by uniformly highlighting. This accomplishment is
achieved by the successful integration of color contrast, contrast ratio, spatial feature, and
center prior. Experiments on different image categories have established that our method
has outperformed all 30 bottom-up saliency methods and seven deep-learning-based top-
down saliency methods. The computational efficiency of our method has demonstrated
that it can be exploited in real-time applications such as object segmentation and object
recognition. The proposed method has proven to be effective and efficient for a large set of
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image categories, regardless of heterogeneous properties of salient objects, and complex
backgrounds. The future work will incorporate texture features and high-level features to
improve the detection of salient objects in cluttered and occluded images.
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