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Abstract: Limited navigation capabilities of many current robots and UAVs restricts their applications
in GPS denied areas. Large aircraft with complex navigation systems rely on a variety of sensors
including radio frequency aids and high performance inertial systems rendering them somewhat
resistant to GPS denial. The rapid development of computer vision has seen cameras incorporated
into small drones. Vision-based systems, consisting of one or more cameras, could arguably satisfy
both size and weight constraints faced by UAVs. A new generation of thermal sensors is available
that are lighter, smaller and widely available. Thermal sensors are a solution to enable navigation in
difficult environments, including in low-light, dust or smoke. The purpose of this paper is to present a
comprehensive literature review of thermal sensors integrated into navigation systems. Furthermore,
the physics and characteristics of thermal sensors will also be presented to provide insight into
challenges when integrating thermal sensors in place of conventional visual spectrum sensors.

Keywords: review; UAVs; optical flow; simultaneous localization and mapping; SLAM; thermal
imaging; LWIR; navigation; neural network

1. Introduction

Research on unmanned aerial vehicles (UAVs) has grown rapidly in the past decade.
First, initially developed for military purposes [1], UAVs have been widely used in
many applications including industrial inspection [2,3], remote sensing for mapping
and surveying [4,5], rescue missions [6–11], border control [12] and for other emerging
civil applications.

Reliable navigation for autonomous or semi-autonomous operation is essential for
these applications. Currently, UAVs rely heavily on an array of sensors for its navigation.
Various navigation techniques can be divided into three groups: inertial navigation, satellite
navigation and vision-based navigation [13]. The global positioning system (GPS), inertial
measurement units (IMU) and barometers are primarily used for determining position,
attitude and velocity of the aircraft. However, GPS is known for errors and drop-outs [14]
due to signal loss and interference in forests, under tall buildings, in narrow canyons or in
remote areas at particular times. IMUs provide a limited period of accurate positioning
after external aiding is lost, as they drift without bound from integrating cumulative errors
over time [15].

Vision-based navigation systems are a promising research direction in the field of
autonomous navigation. Vision sensors can provide real-time information about a dynamic
surrounding environment that is resistant to conventional jamming. Vision sensors detect
reflected photons or radiated photons in specific bands across the electromagnetic spectrum.
Optical sensors perform detection in the visible spectrum that humans can see, while
thermal sensors detect infrared wavelength that is invisible to humans.
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The predominance of research to date considers optical sensors that require some form
of illumination of the scene. There is a substantial gap in the ability to navigate at night
given that it has the potential to increase the operational period of vision systems.

2. Navigation Problems with Thermal Sensors

Although thermal cameras have been used in visually degraded conditions before,
they were mainly used for purposes other than navigation, including: inspection [16–20],
crop monitoring and water management in agriculture [21–25]. The main complication
that prevents their usage for navigation in natural scenes includes limited features such
as edges or textures compared to their visible band counterparts [13]. Furthermore, early
versions of thermal sensors included built-in internal corrections that dynamically changed
the contrast in the images before output, violating many vision algorithm requirements.

Additionally, early sensors were large, preventing their use on small UAVs. There
were also limitations of availability of small and powerful on-board processing hardware.
Due to these constraints, many navigation algorithms were initially designed for unmanned
ground vehicles (UGV) rather than UAVs. Later, thanks to the introduction of smaller
thermal sensors and more capable processing hardware, thermal UAV navigation techniques
began to attract interest.

The number of research articles published on this topic has increased in recent years
due to the availability of thermal sensors and robotics technology combined with navigation
challenges in new applications. However, no single review has yet summarised the relevant
articles with a focus on the integration of thermal sensors into navigation systems of UAVs.

2.1. Aims and Search Methodology

Considering the observations above, we provide a review with a focus on the integration
of thermal sensors for navigation applications within the last decade, from 2010 to the
present period. Our paper addresses the hierarchy of issues for a thermal sensor in a
navigation system, including the fundamental physics of operation, sensor configurations
and computational aspects.

Our method for identifying all relevant papers to include in this study is by using
keywords from google scholar and the university library database: “navigation”, “thermal
imaging”, “long wave infrared”, “GPS denied”, “deep learning” and “vision-based
techniques.” The range of papers according to their year of publication is from 2010
to 2021. The selected articles were then divided into different categories based on the
type of algorithms used. Furthermore, sensor specifications and configuration aspects will
be discussed in order to analyse which navigation applications can be achieved and the
performance of each system.

2.2. Structure of the Paper

The paper is organised into thirteen sections. Section 3–5 will focus on the development
of commercial thermal sensor technologies, the physics concepts and the sensor
configurations for different navigation applications.

Section 3 considers the thermal sensor developments in the last 10 years, from the
oldest to the most recent studies. Section 4 introduces the fundamental concepts behind the
electromagnetic and infrared spectra. After that, Section 5 will highlight some important
features of thermal sensor configurations, including sensor calibration and the relevant
aspects of built-in correction techniques.

After discussing hardware characteristics of thermal sensors, Section 6 presents the
basic concepts of different algorithm types for vision-based systems. Section 7 presents
works in Simultaneous Localisation and Mapping (SLAM). Section 8 presents works in
optical flow, and Section 9 reviews works in neural networks.

Section 10 discusses the various roles used for thermal sensing in navigation, while
Section 11 describes the difference in system requirements for the thermal image in different
navigation approaches.
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Sections 12 and 13 present the discussion and our observations about future research
directions of the field.

3. Thermal Sensor System Considerations for Navigation Applications

Although the history of thermal sensor technologies is well described in [26], it is
worth considering the sensors in the context of navigation sensing in small to medium
autonomous vehicles, particularly those that are airborne. This section will discuss the
specifications of different thermal sensors that are suitable for navigation application,
including cooled and uncooled sensor technologies, dimensions, weights, power
consumptions, resolutions and effective frame rates.

Table 1 shows the specifications of all of the thermal sensors appearing in work we
have reviewed from the last 10 years for navigation applications.

Table 1. Specifications of thermal sensors presented in this study.

Sensor Dimension Weight Resolution Fps Radiometric Power Platform Cost Released

Thermal-Eye 2000B 282 × 279 × 290 mm 4.54 kg 320 × 240 12.5 No 28 W UGV discontinued n/a

Gobi-640-GigE 49 × 49 × 79 mm 263 g 640 × 480 50 No 4.5 W UGV discontinued 2008

Miricle 307 K 45 × 52 × 48 mm 95 g 640 × 480 15 No 3.3 W UAV discontinued 2006

FLIR Tau2 44.5 × 44.5 × 30 mm <70 g 640 × 480 60 Yes 1 W UAV $6500 [27] 2015

FLIR A65 120 × 125 × 280 mm 200 g 640 × 512 30 Yes 3.5 W UAV $7895 [28] 2016

FLIR Boson 21 × 21 × 11 mm 7.5 g 640 × 512 60 Yes 0.5 W UAV $3520 [29] 2020

FLIR Lepton 3.5 10.5 × 12.7 × 7.14 mm 0.9 g 160 × 120 8.7 Yes 0.15 W UAV $199 [30] 2018

3.1. Cooled and Uncooled Sensor

A major practical classification of thermal technologies is cooled vs. uncooled sensors.
A cooled thermal sensor has an integral cooling system to lower the sensor temperature to
cryogenic temperatures (120 K or −153 ◦C) in order to achieve a higher signal to noise ratio
(SNR), thereby allowing higher thermal sensitivity, higher spatial resolution and higher
frame rates. However, cryocoolers typically contain mechanical parts, produce far more
heat on the other side of circuit, which contributes to larger size and weight, and reults in
high power consumption of the imaging device. These characteristics might be tolerable
in large vehicles, but such devices are likely to exceed space, weight and power (SWAP)
capacities of smaller multirotor and hand launched drones.

Uncooled sensors, on the other hand, are smaller in both size and weight at the cost of
inferior all-around performance. However, the study in [31], which compared a high-end
cooled FLIR Phoenix to the more affordable uncooled system Variocam, showed that the
uncooled thermal system could compensate for its lower resolution sensitivity via further
image processing. Furthermore, the study also showed that the uncooled thermal sensor
was still suitable for use in UAVs for navigation applications by analysing SNR data. It has
been observed that all of the thermal sensors used for commercial mass-market purposes
in the last decade have been uncooled.

3.2. Sensor Specification Constraints for Unmanned Platforms

Earlier thermal sensors were heavy and bulky. The earliest study consisted of a
4.54 kg thermal sensor and was conducted on UGVs where size and weight were tolerable.
For small and medium commercially available quadrotor drones, the recommended
payload limit is usually less than 800 g. For example, the DJI Phantom 3 and Phantom
4 can safely carry a payload of 700 g and 800 g, respectively [32]. When considering the
entire payload, it will include other components such as onboard computers, batteries and
other sensors and the size and weight of the thermal sensor alone that require substantial
reduction from early airborne implementations.
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Other factors include effective frame rate, resolution and power consumption, which
are related to each other. Higher frame rate and resolution translate to higher power
consumption for the system overall. Higher frame rate and resolution require more
computational effort from the onboard computer combined with higher power demand
from the sensor itself, resulting in a bigger battery and a bulkier system. For highly dynamic
systems, however, there is no substitute for frame rate.

In addition to flying platforms, when selecting a suitable sensor, the type of navigation
algorithm is also a crucial factor. Map building algorithms such as SLAM require higher
frame rate, higher resolution and are more computationally expensive. While the map-less
techniques do not require very high resolution and frame rate and are cheap to execute,
they tend towards navigation in relative terms rather than absolute. The details of the two
approaches will be presented in Section 6.

Recent sensors from FLIR such as the FLIR Tau2, Boson and Lepton have weights and
sizes significantly lower while still maintaining resolution and frame rate. Furthermore,
the prices of the recent thermal sensors such as the FLIR Boson and the FLIR Lepton
have become more attainable for research compared to the previous generation of sensors.
Consequently, more researchers have begun to integrate thermal sensors into UAV
navigation systems.

3.3. Platform Considerations

Different UAVs fit different missions, which requires different system configurations,
size and algorithms [33,34]. For example, for a search and rescue or survey mission in a
confined area such as underground in mines or in urban areas, a multirotor is a good choice
due to its size and maneuverability. The multirotor tends to be smaller than fixed-wing
aircraft and is not used for long distance transits. They have a major advantage in their
ability to stop and hover, which is a very specific navigation state resulting in behaviour
focused on maintaining a stationary image and constant height.

On the other hand, for missions such as border control, search or survey over large
open areas, a fixed wing aircraft can be a better choice than a quadrotor due to its long
operating time and superior range. In defense applications, fixed wing aircraft are more
often used due to their long range and endurance, high operating ceiling and the ability to
carry large payloads of sensors and weapons. Fixed wing UAVs require more complicated
take off and landing procedures, are more challenging to operate, are less compact and
range in size from that of a human hand to a passenger airliner. With their need to stay
in forward flight and requirement to fly longer distances, their navigation behaviour is
focused on trajectories, wind and forward movement.

4. Physics of Thermal Sensors

Thermal sensors operate differently than optical sensors. Unlike optical sensors,
thermal sensors rely on emissions of longer wave infrared radiation rather than reflection
of shorter visual wavelengths. While thermal infrared wavelengths can reflect off surfaces
and images captured using thermal sensors can be somewhat affected by the surrounding
environment, this is a minor effect in general. Given the emission driven mode of the
sensor, it is essential to examine the physics of thermal sensors and emissivity values of
different materials.

This section briefly introduces the fundamental concepts behind infrared sensors,
including black body radiation theory, the electromagnetic spectrum and the emissivity
value of different materials. All related concepts are well described in [35,36].

4.1. Black Body Radiation

A black body radiator is an object at near thermodynamic equilibrium that absorbs
and emits all radiation frequencies [37]. At near thermodynamic equilibrium, the emitted
radiation or thermal radiation can be expressed by Planck’s law [38]. Planck’s law expresses
the spectral radiation emitted by a black body at thermodynamic equilibrium:
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β(ν, T) =
2h̄ν3

c2
1

e(νh̄/kT) − 1
(1)

where

• β(ν, T) is the spectral radiance of the object at temperature T(K) and frequency ν;
• h̄ is the Planck constant;
• c is the speed of light in vacuum;
• k is Boltzmann’s constant;
• ν is the frequency of the electromagnetic radiation;
• T is the absolute temperature of the object.

When the temperature of a black body is at several hundred degrees Kelvin, most of
the emitted radiation is infrared. When the temperature is higher, it is emitted at shorter
wavelengths which are in the visible region.

4.2. Electromagnetic Spectrum

Figure 1 shows different wavelengths in the electromagnetic spectrum. Radio and
microwaves lie at the longer end of the spectrum of electromagnetic energy, while gamma
ray and X-rays have very short wavelengths. Humans can only see a limited range of the
spectrum from 380 nm to 700 nm [39].

Figure 1. Comparison of wavelength, frequency and energy in the electromagnetic spectrum [40]
(credit: NASA).

Infrared radiation was discovered in 1800 by William Herschek [41]. Infrared is the
part of the electromagnetic spectrum from 8 to 15 µm [42]. Most of the energy in this
spectrum is radiated as heat and can be observed both during the day and night. Since the
infrared spectrum has longer wavelength than visible light, it is less attenuated by denser
mediums such as vapour, dust or smoke [43]. This paper will focus on applications of the
infrared spectrum.

4.3. Emissivity

Emissivity of an object is a measurement of its ability to emit thermal energy [44].
Emissivity of 0% is a perfect thermal mirror that reflects all infrared energy, and 100% is a
black body that absorbs and radiates all energy [38].

Table 2 shows the emissivities of some objects, both metal and non-metal, including
polished or oxidised/roughened metal. It is clear that polished non-oxidised materials
have lower emissivity values compared to oxidised materials. Non-metallic materials
such as glass and water have a high emissivity value; thus, infrared wavelengths do not
penetrate glass or water.

It is also apparent from Table 2 and the principle of black body radiation that thermal
imaging is substantially different from optical imaging. The low emissivities of some
manufactured surfaces but relatively high emissivities of natural surfaces show that thermal
imaging devices will tend to observe scenes through radiation rather than reflection. Objects
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radiate energy absorbed from the sun earlier and reflect thermal radiation for other objects
and the ground at quite modest levels unless they are finished metal surfaces. Thermal
scenes are usually equivalent to scenes composed of light sources if they were in the optical
domain, which has implications for how and why they are used for navigation.

Table 2. Emissivity values for some materials [45].

Material Emissivity Value

Metal

Aluminium: oxidised 0.4
Aluminium: polished 0.05

Brass: oxidised 0.6
Brass: polished 0.02

Copper: oxidised 0.71
Copper: polished 0.03

Non-metal

Clay 0.95
Ice 0.98

Rubber 0.95
Water 0.93
Glass 0.98

Figure 2 shows an example from FLIR [46] showing that different materials, metal and
non-metal, emit infrared radiation due to different emissivity values at the same temperature.

Figure 2. Sample of infrared radiation of different materials [46].

In addition to the material of emitting objects, other factors that should be considered
include the temperature, humidity, reflective surfaces and convection airflow of the
intended operational environments [47]. This has substantial implications for navigation in
natural environments. Cloud, rain and dust are likely to affect optical and thermal cameras.

In vision-based navigation algorithms, textures, corners and edges in the image
are vital requirements. Hence, a thermal system will not provide much information in a
uniform temperature scene, such as water, snow or sand. Conditions with little temperature
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variation between day and night and with minimal solar radiation during that day might
have very little thermal contrast in scenes that are imaged even if the scenes are not a
uniform material.

The study by [48] utilised this concept by applying thermal markers made of thin 5
mm acrylic sheets over objects in smoke filled environments. Due to high emissivity values
of acrylic at 0.88 [49], the thermal markers are distinct in the thermal frame, which later
could be used for map-building SLAM techniques.

5. Thermal Sensor Configurations

Sensor configurations have a direct effect on how data are collected and processed.
This section details the crucial concepts of thermal sensor calibration and their impact on
vision-based navigation. Problematically for autonomous system applications, modern
thermal sensors have external and internal correction techniques that are designed for
human visualisation and inspection purposes rather than computer vision, and this
difference and its implications are discussed in this section.

5.1. Sensor Calibration

Geometric calibration is an essential task when using a combination of cameras
in navigation applications. Chessboard is a standard method for optical camera
calibration [50–52], but when translated to thermal cameras, heated lamps or using material
with different emissivity values, it not only makes the task more complex but also inaccurate
and expensive [53,54].

The authors in [55,56] found that the calibration results significantly vary between tested
thermal cameras. Furthermore, cameras have shown very large decentering distortions and
deviations in both image coordinate axes.

A trinocular vision system [57] of one optical camera and a thermal camera was
calibrated with a plastic board with 25 holes with 25 miniature bulbs arranged at each
hole to emit heat and light. This method successfully obtained the required calibration
parameters for the thermal sensor for their application. Vida et al. proposed that a geometric
mask-based approach could obtain an improvement of 78% compared to the conventional
method of a heated chessboard [58]. The work described an A2 board that was built from
Medium Density Fibreboard (MDF) due to its good thermal insulation properties, and
although it required substantial warming time, the part was laser cut with 40 × 40 mm
squares across the board.

5.2. Re-Scaling and Correction Techniques

Thermal infrared sensors typically sample radiometric data at 14 bit [59] resolution,
while modern electronic display standards and many computer vision libraries require
an 8 bit input source. As a result, many previously proposed approaches either rely on
Automatic gain control (AGC) or normalisation to convert 14 bit raw data to 8 bit.

When converting from 14 bit to 8 bit format, there is a 6 bit loss of information
and a reduction in dynamic range which degrades performance in many circumstances.
The study in [60] shows that, while using the same algorithm, using full radiometric
thermal information as inputs produced better performance than a re-scaled version. They
also showed that using re-scaled data may accumulate errors over time, resulting in thermal
data being presented incorrectly.

5.2.1. Automatic Gain Control

Many thermal sensors rely on Automatic Gain Control (AGC) to convert raw
radiometric data to usable 8 bit input for modern standard displays. The main purpose of
AGC is to improve the contrast of an image based on the radiometric range in an observed
scene when converting to 8 bit depth. The AGC technique is usually applied by default
when there is a change in scene temperature due to hot or cold objects exiting or entering
the field of view. A practical example shows that it comes at a cost: A substantial change
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in overall brightness in two consecutive frames is observed when a hot cup moves into a
scene, as shown in Figure 3. The contrast change is likely to cause problems for many image
matching techniques that are fundamental to visually aided navigation due the drastic
changes in image appearance and the likelihood that some information might be discarded
between frames. Although 8 bit processing seems like an arbitrary concern, the vast amount
of software is written with 8 bit processing in mind, and hardware acceleration libraries
make it a non-trivial consideration.

(a) Frame 1 (b) Frame 2

(c) Frame 3
Figure 3. Change of contrast caused by AGC when a hot object moves into a scene.

To solve this problem, some work-around methods have been proposed. The authors
in [61] reduced the response time of the AGC so that the brightness does not change
rapidly in order to perform matching of the features. However, this approach only reduces
the problem and does not completely solve it. It also creates errors in image processing
techniques that use spatiotemporal gradient information. Another approach is to set the
range for the AGC while operating via some external means or manually [62]. Nevertheless,
this requires prior knowledge of the environment or a new set of scene analysis logic,
making it less adaptable to unknown environments.

Rosser et al. re-scaled one pair of 14 bit images at a time to work with feature
detection for optical flow [63]. The technique works particularly well in OpenCV [64] by
using Shi–Tomasi corner detection [65] and the Lucas–Kanade optical flow technique [66].
The technique is based on the maximum and minimum pixel intensities in a pair of images,
which will be explained in Section 8.1.

5.3. Flat Field and Non-Uniformity Corrections

A correction technique to fix accumulated pattern noise over time in thermal sensor
systems is Flat Field Correction (FFC) for sensors with a shutter or Non-Uniformity
Correction (NUC) for sensors without a shutter. During operation, the FFC/NUC freezes
the sensor for a small amount of time (0.3–2 s), depending on the camera model, in order
to correct for errors. This operation is essential for stationary applications where the sensor
captures the same scene for a long time. However, it comes with a downside of occasional
data interruption which is potentially undesirable for navigation applications. Vidas et al.
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designed a thermal odometry system that performed NUC only when needed depending
on the scene and pose [67].

On the other hand, in some recent sensors such as the FLIR lepton 3.5 [59], a built-in
internal calibration algorithm that is capable of automatically adjusting for drift effects
can compensate for FFC/NUC for moving applications. As described in studies in [63],
the FFC was not needed since the sensor was mounted on constantly moving aircraft.

6. Vision-Based Navigation Systems

Vision-based systems rely on one or more visual sensor to acquire information about
the environment. Compared to other sensing systems such as GPS, LIDAR, IMUs or
conventional sensors, visual sensors obtain much more information such as colours or
texture of the scene. The available visual navigation techniques can be divided into three
categories: Map based, Map building and Mapless systems.

6.1. Map Based Systems

Map based systems rely on knowing the spatial layout of the operating environment
in advance. Hence, the utility of this type of system is limited in many practical situations.
At the time of writing, there is no proposed work with thermal cameras.

6.2. Map-Building Systems

Map-building systems build a map while operating, and they are becoming more
popular with the rapid advancement of SLAM algorithms [68]. Early SLAM systems
relied on a system of ultrasonic sensors, LIDAR or radar [69]. However, this type of
payload limits their use in small UAVs. Therefore, more researchers have shown interest in
single and multiple camera systems for visual SLAM. Related works will be presented in
Section 7.

6.3. Mapless Systems

A mapless navigation system can be defined as a system that operates without a map
of the environment. The system operates based on extracting features from the observed
images. The two most common techniques in mapless systems are optical flow and feature
extracting techniques. The related works will be presented in Section 8.

7. Simultaneous Localisation and Mapping

Simultaneous Localisation and Mapping (SLAM) is a mapping technique for mobile
robots or UAVs to generate maps from operating environments. The generated map is
used to find the relative location of the robot in the environment to achieve appropriate
path planning (localisation). The first SLAM algorithm was introduced in [70], where they
implemented the Extended Kalman Filter technique EKF-SLAM.

In early works, many different types of sensor such as LIDAR, ultrasonic, inertial
sensors or GPS were integrated into the SLAM system. Montemerlo et al. [71] proposed
a technique named FastSLAM, a hybrid approach utilising both the Particle Filter and
Extended Kalman filter techniques. The same team later introduced a more efficient version:
FastSLAM2.0 [72]. Dellaert et al. [73] proposed a smoothing technique called Square Root
Smoothing and Mapping (SAM) that used the square root smoothing technique to solve the
SLAM problem in order to improve the efficiency of the mapping process. Kim et al. [74]
proposed a technique based on unscented transformation called Unscented FastSLAM
(UFastSLAM), which is more robust and accurate compared to FastSLAM2.0.

Recently, SLAM system using cameras are actively explored with the hope of achieving
reduced weight and system complexity. Since SLAM takes only visual images as input,
it is referred to as visual SLAM (vSLAM) [75]. Various low computation techniques have
been proposed in the literature that are suitable for UAVs with limited resources onboard.
A typical SLAM application for small UAVs is visual odometry.
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7.1. Combined Spectrum Techniques

In early works, some authors tried to utilise both the LWIR and visible spectra to
enhance or mitigate features that were hidden due to external factors such as fog or smoke.

Maddern and Vidas [76] proposed a technique to combined 8 bit thermal with RGB
images for UAV navigation. The study showed that there are extreme changes in the visible
spectrum during the day and night, while the thermal spectrum remains consistent but with
lower contrast over time. The combined spectrum produced better results with algorithms
that used visual or thermal frames alone. Poujol et al. [77] showed that combining visual
and thermal spectrum can greatly improve the performance of classic visual odometry
approaches. The study used two image fusion techniques: monochrome threshold based
image fusion [78] and monocular visual odometry [79]. The data were collected from an
electric vehicle moving around a city. The experimental results show that the fused images
could provide extra data to achieve more robust solutions.

Brunner et al. [80] presented a preliminary evaluation study of combining optical
and thermal cameras for localisation in an environment filled with smoke or dust for
autonomous ground vehicle (AGV). The study showed that relative motions could not
be estimated from visual images in that environment, while motions can be estimated
from thermal images but with less accuracy. The authors in [81] proposed a technique to
combine both LWIR and the normal spectra in order to enhance a VSLAM algorithm by
rejecting low quality images that may have introduced localisation errors. The technique
was tested in several adverse conditions such as smoke, fire, at dusk and in low light
conditions that have unfavourable effects on both the thermal and visual spectra.

A flexible SLAM network described in [82] utilised both thermal and visual information
to build a colour map of the environment under low illumination environments. Multispectral
stereo odometry from optical and thermal sensors was introduced in [83] for a ground vehicle.
Khattak et al. [84] relied on a combination of radiometric sensors, the FLIR Tau2 and a
visual camera to create the navigation capacity for a small quadrotor in an indoor dark and
dust filled environment. An Intel NUC-i7 computer (NUC7i7BNH) was installed in the
UAVs to perform all the calculation tasks onboard. Thermal frames enabled robust feature
selection combined with an Extended Kalman Filter for odometry estimation by the drone.
The study showed that the thermal sensor helped the fusion system to work reliably in low
visibility environments.

7.2. Thermal Spectrum Techniques

This section presents work and algorithms that use thermal sensors as the only source
for collecting data, which can be divided into two categories: techniques that use 8 bit
re-scaled data or work that makes use of higher bit depth radiometric data.

7.2.1. Re-Scaled Data

Mouats et al. [61] also developed a thermal stereo-odometry for UAV applications
based on localisation solutions from a pair of thermal images. The authors used a pair of
re-scaled 8 bit images with applied AGC and the FFC turned off. To compensate for the
sudden change in contrast from the AGC, they employed a technique to reduce response
time for the AGC so that the matching feature algorithms could still function. However,
this made the algorithm less adaptive to the environment.

Another study by Khattak et al. [48] used a LWIR sensor alone to detect low thermal
conductivity fiducial markers in order to localise in a dark indoor scene. The team attached
a thermal fiducial marker to fixed objects around the environment in an incremental manner.
The new marker was observed at the same time as previously predefined ones. The poses
and the coordinates of the platform estimated from this method showed it to be on par
with the ground truth Inertial Measurement Unit (IMU).

The ROVIO [60] algorithm was shown to work well with re-scaled 8 bit images in
indoor environments. The algorithm was modified to work with full scale radiometric data,
named ROTIO. The ground truth was provided by a motion capture system. The result
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shows the advantages of using full radiometric data. The FFC was turned off to prevent
tracking loss due to data interruption.

7.2.2. Full Radiometric Data

Shin and Kim were the first to propose a thermal-infrared SLAM system using
measurements for 6-DOF motion estimation from LIDAR on full radiometric 14 bit raw
data [85]. The experimental results show that the 14 bit system overcame the limitation
of the re-scaling process and was more resilient to data loss. Moreover, relying on full
radiometric data, Khattak et al. [86] proposed a thermal/inertial system that utilised the
full range of radiometric data for odometry estimation. The study showed that using full
radiometric images was more resilient against loss of data due to sudden changes caused
by the AGC re-scaling process.

Although the previous works show promising outcomes, the SLAM algorithms are
computationally demanding and many require high resolution thermal images. Many
aforementioned works use high resolution thermal cameras such as the FLIR Tau2, which
costs thousands of dollars. Furthermore, a compact yet powerful onboard computer system
is also expensive in terms of money as well as space, weight and power. All of these are
difficult challenges for integration into small UAVs.

8. Optical Flow

Optical flow is a map-less measurement technique defined as the pattern of apparent
movement of brightness across an image [87]. Optical Flow can be used in navigation
solutions that have been inspired from insects such as the honeybee [88]. The honeybee
navigation system relies on optical flow for graze landing [89,90] and detecting obstacles
avoidance [91]. Unlike SLAM, optical flow algorithms require much less computational
resources and do not require very high resolution input images. Additionally, optical
flow algorithms, such as the sparse Lucas–Kanade technique in OpenCV, are known
for their efficiency and accuracy for many applications [63,92–97]. Hence, optical flow
based systems can satisfy both weight and size constraints for integration into small UAV
navigation systems.

8.1. Thermal Flow

The term “Thermal FLow” (TF) applies to LWIR-based flow sensing. Rosser et al.
proposed a technique to calculate optical flow from re-scaled 8 bit thermal data [63]. Optical
flow estimation operates based on several assumptions, including brightness consistency
across two images. However, due to the effect of the AGC when re-scaling to 8 bit, there
is a violation of this crucial requirement. Hence, the authors came up with a technique to
preserve contrast for each pair of images as shown in Figure 4.

In their works, thermal flow relied on the Pyramid Lucas–Kanade [66] algorithm in
OpenCV [98]. Good tracking points were found based on the Shi–Tomasi corner detection
algorithm [65]. Table 3 shows settings for parameters of the LK and tracking functions
in OpenCV.
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Figure 4. A technique to re-scale from 14 bit to 8 bit images based on max and min pixel intensities [63].

Table 3. Settings parameters for LK technique and Shi–Tomasi corner detection algorithm [63].

Feature Detection Setting Maximum corners 1000
Quality level 0.02

Minimum distance 5
Block size 5

LK Settings Window size (15,15)
Maximum pyramid level 2
Search termination count 10

Search termination ε 0.03

They built a low-cost system consisting of a Raspberry Pi with a low-resolution
radiometric FLIR sensor Lepton 3.5. The low cost system was designed to mimic the
operation of the PX4Flow [93], a low cost and light weight optical flow sensor system,
as shown in Figure 5. The sensor was designed to produce reliable two dimensional flow
vectors for small hovering platforms such as pocket drones [99–101], quadrotor [99,102]
and small fixed wing aircraft [92]. Due to the PX4Flow sensor operating in the visual
spectrum, its operation is heavily compromised in low light conditions but it was useful as
a ground truth to evaluate the thermal flow sensor performance during the day.

Rosser et al. [63] mounted the payload on a fixed wing aircraft to reduce lateral drift.
The aircraft took two flights, one during the day with sufficient illumination and one
later in the night after dark. The results showed that the TF system operated equivalently
compared to the optical flow sensor during daylight while also being able to operate at
night. Figure 6 shows the results from this study.
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Figure 5. The PX4FLOW optical flow sensor with mounted lens on the left and ultrasonic sensor on
the right [93].

Figure 6. Optical flow (OF) and thermal flow (TF) comparison during (a) day and (b) night flights.
(a,b) Each include four plots. From the top to bottom sections are the following: OF and TF X-axis
angular displacement (radians/second); OF and TF Y-axis angular displacement (radians/second);
OF and TF Manhattan distance angular displacement; and Normalized cross-correlation of the OF
and TF Manhattan distance displacement signals (dimensionless). Results for the day flight shows
high correlation between optical and thermal values, while the night flight shows low correlation as
visible spectrum OF is degraded in low light [63].

The results in Figure 6a show that thermal flow works comparatively well compared
to optical flow in the X and Y directions. The third plot shows the Manhattan displacement
for both, which show that the signals from OF and TF are closely matched. The fourth
plot indicates a strong normalised cross correlation value of 0.86 showing the two signals
represent the same phenomenon.

The results in Figure 6b show that TF works to some degrees at night, and OF obviously
does not work. The Manhattan displacement and low cross correlations signals at 0.3
indicate that the signals are no longer similar. It can be concluded that TF performs well
during the day and still works to some degree during the night.
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9. Deep Learning

Deep learning and neural networks are the primary choice in many vision tasks since
the introduction of the convolutional neural network (CNN) architecture, AlexNet [103].
AlexNet won the large scale visual recognition competition (ILSVRC) by a large margin.
As a result, many researchers have since applied CNNs to many computer vision tasks
with great success.

9.1. Thermal Image Enhancement

Choi et al. proposed a neural network to enhance low resolution thermal images [104].
The network was inspired from a RGB counterpart from [105] but with much less
computational demand. The network consisted of three convolutional layers to extract a
set of feature maps, followed by the last layer to combine the predictions to reconstruct the
high resolution output.

The study used the RGB training dataset from [106] for the entire training process.
During the testing phase, a test dataset consisting of both RGB and thermal images
from [107–109] was used. The model was evaluated in three different scenarios, pedestrian
detection, image registration and visual odometry, which showed that the proposed
technique was not only capable of reproducing higher resolution images but also with
lower noise and fewer unwanted artifacts.

9.2. Deep Learning Neural Network Based Odometry

Saputra et al. [110] are the first to propose a DNN-based odometry architecture
using thermal images as input. They proposed a DNN-based method for thermal-inertial
odometry (DeepTIO) using hallucination networks. They modified an existing state-of-
the-art neural network that uses visual images as input into a Visual/Inertial Odometry
(VINet) model [111] combined with selective fusion [112]. Since radiometric data contain
only one channel, two extra channels were duplicated from the first one, resulting in three
channels for the neural network. To provide missing information, a hallucination network
was implemented to provide complementary information. The model consisted of the
following: a feature encoder, a selective fusion module and a pose regressor.

Hand-held thermal data were collected with FLIR E95 operates at 60 fps with 464 × 348
resolution to collect data in five different buildings, some filled with smoke. Furthermore,
a FLIR Boson with 640 × 512 resolution, placed on a mobile robot operated in different
testing rooms with various obstacles and lighting conditions. The results show that
DeepTIO outperformed VINet in most scenarios. In particular, the performance of VINet
decayed when there was insufficient illumination while DeepTIO could still produce
reliable and accurate trajectory. However, the DeepTIO network could only work well at
4–5 frames per second; anything lower or higher resulted in a decrease in accuracy. While
this is not explained, this indicates some effect caused by camera noise and change in
images caused by platform motion.

10. Roles of Thermal Sensors in Navigation Systems and Applications

This section discusses the role of thermal sensors in the literature in order to explore
how thermal systems have evolved in the last 10 years.

Early use of thermal sensors in robotics saw sensors mounted on UGVs due to their
size and weight. The earliest relevant paper was conducted on a UGV [80]. Later, with the
introduction of lighter and smaller sensors, UAVs have been the primary choice throughout.
Ultimately, there are cheaper and higher resolutions options for UGVs, such as carrying
illumination (head lights) for optical sensors.

Initially, researchers explored the possibility of combining both the visual and infrared
spectra in normal conditions where the optical sensor would still operate. The role
of thermal sensors in this case was to identify and reject bad batches of data [76,81].
Later, the thermal sensor system was integrated to be used in reduced illumination
conditions when optical sensor performance was degraded. Thermal sensors played
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a bigger role in this scenario where thermal data were fused with optical data to construct
3D environments and visual odometry [82,83]. Additionally, thermal data were used to
correct and compensate for missing data from the optical sensor due to lack of illumination
in the environment [84].

Later, thermal sensor based navigation systems were experimented on in total darkness
or visual degraded environments, such as rooms filled with smoke and dust where the
optical sensor could not reliably capture the scene. In this case, thermal data were the
only input for navigation algorithms. At first, re-scaled 8 bit thermal data were utilised
for stereo odometry [61,83], SLAM [48] and optical flow [63]. The disadvantages of 8 bit
re-scaled data have been discussed in Section 5.2.1.

In deep learning, neural networks and mapless algorithms [63,104,110], only 8 bit data
were used, and no work has been performed to explore the possibility of full radiometric
data in this field yet. It is likely that this is partly driven by the availability of appropriate
software platforms.

With the introduction of radiometric sensors, some groups have been experimenting
with adapting their works to include full resolution thermal data at 14 bit. Results in
in [60,85,86] have shown that full radiometric 14 bit thermal data can improve the consistency
of the algorithm over time and overcome the need for AGC correction techniques.

11. Navigation Approaches with Respect to System Configuration

There are two main navigation approaches found in this survey of the literature:
VSLAM and variations on odometry. The former can provide an absolute navigation
solution, and the latter provides a dead reckoning solution that is relative to a starting
point. The former, when it fails, is likely to result in catastrophic navigation failure with the
navigation filter diverging or finding a wrong solution (in the absence of other safeguards),
and the latter inexorably drifts over time.

Due to the nature of map-building techniques, higher resolution and frame rate
thermal sensors are more desirable due to the need to detect specific features. Hence, it
has been observed that map-building techniques relied on better thermal sensors than
map-less techniques.

11.1. VSLAM

Brunner et al. [80] conducted a study to investigate the use of thermal images to
compensate for missing and erroneous information in RGB images due to external adverse
lighting effects. The same group in [81] later developed a framework to extract matching
features from thermal data. Thermal data could compensate for the missing parts of an
RGB image due to smoke or dust. The result demonstrated that the technique greatly
improved SLAM performance. In the study, a low frame rate Raytheon Thermal-Eye 2000B
thermal system was mounted on the UGV used to capture thermal frames at different times
during the day. A lower frame rate of 12.5 fps was sufficient in this case due to the slow
movement of the platform, and the framework was not intended for real-time use.

Later, the study in [82] developed a faster and more accurate framework for feature
extraction and matching SLAM. The framework was shown to be less computationally
demanding while achieving better accuracy. The thermal system specifications are not
known due to the authors’ reliance on their own dataset.

The authors in [85] integrated LIDAR into the thermal system to introduce depth
information into their LIDAR SLAM system. The team also used a radiometric FLIR A65
sensor with full 14 bit thermal data in their experiment. The SLAM algorithm was modified
to work with 14 bit thermal data and demonstrated a better overall performance compared
to previous 8 bit SLAM techniques.

11.2. Odometry

The team in [83] proposed a combined spectrum of visual odometry for ground
vehicles. The study used several thermal and optical sensors in their system configuration
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to collect data. Log-Gabor wavelets and the optical LK algorithm were used for feature
extraction and matching. The study showed that thermal data can enhance the performance
of the stereo-odometry system.

Later, the same team adapted their techniques for UAVs with a lighter and smaller
thermal sensor, the FLIR Tau2. The study relied on the 8 bit processed thermal frames.
To overcome the troublesome AGC correction, the AGC threshold and reaction time was
modified to prevent sudden change in image contrast. This modification has proven to
work with their collected dataset but did not completely solve the problem.

Using the same sensor, the same group further performed three studies on odometry
in order to estimate the state of UAVs. Firstly, the authors [84] utilised 8 bit thermal data
with the extended Kalman filter framework for feature extraction and matching. Later,
they experimented with thermal markers [48] with very high emissivity, as described
in Section 4.3. The thermal markers were applied throughout the test site as distinctive
landmarks that are visible in thermal frames that could be used for odometry estimation.

In their most recent study [86], the team proposed a thermal-inertial odometry
estimation framework utilising full thermal 14 bit data. The odometry of the platform was
estimated from the fusion of inertial measurements and jointly minimized the reprojection
errors of 3D landmarks and inertial measurement errors. The 14 bit system was shown to
be more resilient to the loss of information caused by the re-scaling process.

11.3. Other Applications

Rosser [63] introduced the concept of thermal flow, which is optical flow estimation
from thermal imaging. They introduced a bit-depth conversion process that maintained
contrast across a pair of images Section 8.1. Due to the nature of optical flow algorithms
and odometry applications, a lower resolution and frame rate thermal sensor was still
sufficient. This is also the only study that used a fixed-wing aircraft.

In the important domain of deep learning, Saputra et al. [110] utilised the best
commercial thermal OEM modules on the market, the FLIR Boson and the FLIR E95,
at a frame rate at 60 fps for data collection.

Finally, Table 4 shows a summary works reviewed in this article.
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Table 4. Summary of presented works.

Work Sensors Configuration 8-Bit/14-Bit Sensor Name Resolution FPS Navigation System Navigation Task

Maddern and Vidas [76] Combine 8 Thermoteknix Miricle 307K 640 × 480 15 Map-building Mapping

Brunner et al. [81] Combine 8 Raytheon Thermal-Eye 2000B 480 × 576 12.5 Map-building Visual-SLAM

Shin et al. [85] Thermal only 14 FLIR A65 640 × 512 30 Map-building Visual-SLAM

Chen et al. [82] Combine n/a n/a n/a n/a Map-building Visual-SLAM

Mouats et al. [83] Combine 8 Gobi-640-GigE from Xenics 640 × 480 50 Map-building Stereo odometry

Mouats et al. [61] Thermal only 8 FLIR Tau2 640 × 480 30 Map-building Stereo odometry

Poujol et al. [77] Combine 8 Gobi-640-GigE from Xenics 640 × 480 50 Map-building Odometry

Khattak et al. [84] Combine 8 FLIR Tau2 640 × 480 30 Map-building Odometry

Khattak et al. [48] Thermal only 8 FLIR Tau2 640 × 480 30 Map-building Odometry

Khattak et al. [86] Thermal only 14 FLIR Tau2 640 × 480 30 Map-building Odometry

Rosser et al. [63] Thermal only 8 FLIR Lepton 3.5 160 × 120 8.7 Mapless Odometry

Choi et al. [104] Thermal only 8 n/a n/a n/a Deep learning Thermal image enhancement

Saputra et al. [110] Thermal only 8 Flir Boson/FLIR E95 640 × 512/464 × 348 60/60 Deep learning Odometry
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12. Discussion

Despite thermal cameras being available for research use for many years, there appears
to have been limited efforts to date with thermal imaging for UAV navigation. One of the
reasons is the popularity of very low cost GPS receivers despite the challenge presented
when it is unavailable.

The cost of thermal sensors is prohibitively high compared to visible light cameras.
For example, FLIR Tau2 costs almost $5000 in June 2021 [113]. Hence, it can greatly increase
the initial cost of a research project or dramatically increase the cost of a commercial system.

High performance thermal sensors such as the FLIR Tau2 and the FLIR BOSON are
under export control by the United State Department of Commerce [114]. For example, all
uncooled thermal sensors with frame rates above 9 Hz can only be exported to Strategic
Trade Authorized (STA) countries. Some territories are completely barred from importing
any thermal systems, while for other countries the sensors are modified to lower frame
rates. Lower frame rates are undesirable for aerial applications because many algorithms
expect frame rates higher than the dynamics of the system.

Night operations of UAVs for conducting experimentation are also a challenge. Many
jurisdictions require the operator to have an appropriate operator license. For example,
in Australia, according to the Civil Aviation and Safety Authority (CASA) [115], only
trained pilots are allowed to operate the drones at night and must be far from urban areas.
This introduces challenges in data collection, trial and testing processes.

Another issue is the resolution limitation of available thermal sensors. The highest
resolution radiometric LWIR from FLIR that can satisfy size and weights constraints for
small drone applications is the FLIR Tau2 at 640 × 480 pixels. In comparison, RGB Picam
v2 [116] has ten times the total pixels at less than one hundredth of the price. Additionally,
thermal data contain less information to work with, such as texture, colour or edges [117].
For example, objects with colour textures in colour images will usually appear uniform in
thermal data, which results in fewer detected features in thermal imagery.

Thermal images change in appearance over time due to heating and cooling cycles
of the scene. Unlike reflected visible light, thermal landmarks data are highly influenced
by uncontrolled external sources. For example, as shown in [47], thermal data can be
influenced by relative humidity, air convection, reflective surface and other heat sources
such as the sun. As a result, thermal landmarks can be vastly different from early morning
to late afternoon from which it is reasonable to expect problems with feature based tracking
algorithms such as SLAM and optical flow.

Correction conversion techniques such as AGC and FFC/NUC also have a negative
impact on image repeatability in re-scaled 8 bit data. Even though there are some proposed
workaround methods to overcome this issue, full radiometric data are enormously favoured
for producing consistent results. The downside of using full thermal data is it may not work
with standard computer vision libraries such as OpenCV. As a result, the development
phase can take longer and require more effort. Nevertheless, we strongly recommend
future studies to use full radiometric raw data.

13. Conclusions

Despite the potential of thermal imaging, limited efforts are being applied to visual
navigation to date. Many challenges remain to be fully overcome, including the higher
price tag of the sensor, difficulty in obtaining sensors in some parts of the world, thermal
landmarks changing through diurnal and seasonal cycles, lack of texture and low resolution,
uncontrollable internal image re-scaling and correction.

Thermal sensors can provide valuable information for navigation fusion systems.
Thermal sensors can reveal hidden textures behind fog, smoke or darkness and thermal
masses underground, which enhance the overall performance of the fusion system in
visually degraded conditions.
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With the introduction of more portable radiometric sensors, standalone thermal sensor
systems can produce good results in visual odometry, VSLAM, optical flow and deep
learning. Furthermore, after presenting problems with associated re-scaled thermal data,
we highlighted that using full radiometric data should be selected to bypass the re-scaling
processes in order to increase the reliability of the system.

The field is not yet mature. Thermal sensors have not been applied in every way that
optical sensors have been used. Their different mode of operation of re-radiation rather
than reflection has not been exploited apart from offering the ability to see in different
conditions than optical sensors. Thermal data changes during the heating and cooling
cycles during the day, and this effect remains to be used between seasons. While the
environments in which optical sensors are compromised are well known to most humans
before even running an experiment, thermal sensors require research and calculation in
order to establish where success and failure might occur. As a consequence, thermal sensor
strengths and weaknesses for navigation have not been comprehensively considered.

To date, there has been limited effort on researching deep learning techniques that show
potential at low resolutions. Considering how successful deep learning and convolutional
neural networks in the computer vision field have been, more work needs to be performed in
order to overcome the challenges of low resolution in thermal imagery.

Similarly, attention should be given to map-less systems due to their low computational
demand and robustness. There is also limited research on fixed-wing aircraft and unmanned
ground vehicles. The use of cooled thermal sensors should also be considered due to their
superior noise performance and resolution, particularly in cold conditions and low thermal
contrast situations.

Our future work will focus on low resolution and low cost thermal sensors as an
adjunct to existing navigation systems. We believe this area has the largest opportunity
to provide enough value in achieving ubiquitous thermal sensor integration in UAV
navigation systems.
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