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Abstract: Over recent years, deep learning methods have become an increasingly popular choice
for solving tasks from the field of inverse problems. Many of these new data-driven methods
have produced impressive results, although most only give point estimates for the reconstruction.
However, especially in the analysis of ill-posed inverse problems, the study of uncertainties is
essential. In our work, we apply generative flow-based models based on invertible neural networks
to two challenging medical imaging tasks, i.e., low-dose computed tomography and accelerated
medical resonance imaging. We test different architectures of invertible neural networks and provide
extensive ablation studies. In most applications, a standard Gaussian is used as the base distribution
for a flow-based model. Our results show that the choice of a radial distribution can improve the
quality of reconstructions.

Keywords: image reconstruction; invertible neural networks; normalizing flows

1. Introduction

The image reconstruction task arising in computed tomography (CT) or medical
resonance imaging (MRI) can be formulated as an inverse problem. A forward operator
A : X → Y maps the image x† to (noisy) measurements

yδ = Ax† + ε, (1)

where ε ∈ Y describes the noise. Research in inverse problems has mainly focused on
developing algorithms for obtaining stable reconstructions of the true image x† in the
presence of noise. In recent years, data-driven methods have been increasingly used in
research and applications to solve inverse problems [1]. The choice of methods ranges
from post-processing approaches [2], unrolling iterative schemes as neural network lay-
ers [3,4], and learned regularization terms [5] to complete learning of an inversion model
from data [6]. However, many data-driven methods only give a point estimate of the
solution as output. However, especially for ill-posed inverse problems, an estimation of
the uncertainties is essential. In order to incorporate uncertainties arising in the inversion
process, the reconstruction process can be interpreted in a statistical way as a quest for
information [7,8]. Instead of approximating a single point estimate, we are interested in
the entire conditional distribution p(x|yδ) of the image given the noisy measurement data.
Traditionally, methods such as Markov chain Monte Carlo [9] or approximate Bayesian
computation [10] have been used to estimate the unknown conditional distribution. How-
ever, these methods are often computationally expensive and unfeasible for large-scale
imaging problems. A new approach is the application of deep generative models for this
task. In general, the goal of a deep generative model is to learn a surrogate model for
the unknown distribution based on samples. Well-known approaches from the field of
generative networks are variational autoencoders (VAEs) [11,12] and generative adversar-
ial networks (GANs) [13]. Recently, flow-based generative models [14] were introduced,
which use an invertible transformation to learn a continuous probability density. One of the
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advantages is that flow-based models allow exact likelihood computation, thus allowing
for maximum likelihood training.

1.1. Related Work

A variety of neural network methods have been proposed to analyze inverse prob-
lems [1]. We are especially interested in methods that can estimate the uncertainties arising
in the inversion process. Several approaches have been developed in the past, e.g., Bayesian
neural networks can be combined with deep learning models [15], or conditional GANs
can be used to learn the unknown posterior density implicitly [16]. Recently, flow-based
models have been used to learn a surrogate model for the unknown posterior. These
flow-based models are often implemented using invertible neural networks. They have
been used to predict oxygen saturation in tumors [17], image colorization [18], day-to-night
translation [19], reconstruction of the grazing incidence in X-ray fluorescence [20], or the
identification of the permeability field of an oil reservoir [21]. There is also the first ap-
plication for computed tomography [22,23]. Recent work also studied the application of
stochastic normalizing flows to inverse problems [24]. Our work builds on the concept of
conditional invertible neural networks (cINNs) as introduced in [18], but our focus lies on
medical image reconstruction.

1.2. Contributions

Prior work on cINNs for inverse problems dealt mainly with image-to-image prob-
lems [18,19] or lower-dimensional applications [17]. These cINNs are implemented using
two components: an invertible neural network used for the normalizing flows and a con-
ditioning network used to extract features from the conditional input. This conditioning
network does not have to be invertible and is often implemented as a convolutional neural
network (CNN). In our work, we expand these concepts to inverse problems in medical
imaging, where the topology of the measurement space and the image space differ signifi-
cantly. In CT reconstruction, the measurements are line integrals over the image domain.
In MR imaging, the measurements can be interpreted in the frequency domain. This
creates an additional challenge, as CNNs are built to take advantage of local relationships
and often fail when there are global relationships in the measurements. We address this
problem by integrating a traditional reconstruction operator into the conditioning network
of the cINN. For the problem of CT reconstruction, we use the filtered back-projection
(FBP) operator, and for MRI, we use the zero-filled inverse Fourier transform. Further, we
experiment with two different invertible neural network architectures found in literature:
the multi-scale architecture popularized in the Real NVP framework [25] and an invertible
UNet, as proposed by Etmann et al. [26]. Additionally, we propose the use of a different
base distribution, a radial Gaussian distribution, instead of the widely used standard
normal distribution.

2. Materials and Methods

In this section, we introduce normalizing flows and discuss how flow-based models
can be implemented. We describe building blocks for invertible neural networks and how
they can be used for conditional normalizing flows. In the last part of this section, we
explain the different architectures used for the experiments.

2.1. Deep Generative Models

The aim of generative modeling is to build a model using a dataset that represents
the underlying distribution of the data. There are two distinct goals in generative mod-
eling. The first is to approximate the probability density function of given samples (i.e.,
density estimation). The second goal is to generate new data samples distributed according
to the distribution (i.e., sampling). The term deep generative modeling is used when
the underlying model is implemented using neural networks. In recent years, a wide
variety of powerful methods have been proposed. These can be broadly grouped into
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latent-variable models, autoregressive models [27,28], and normalizing flows (NFs) [29].
The latent-variable models include implicit models, such as generative adversarial net-
works (GANs) [13] and variational autoencoders (VAEs) [11,12]. These latent-variable
models work by specifying a lower-dimensional latent space and learning a conditional
distribution to sample from the image space. GANs are trained using a critic or discrimina-
tor network in an adversarial scheme. It was recently shown that GANs have the ability to
produce realistic-looking images [30]. However, it is not possible to compute the likelihood
with a GAN. VAEs induce a noisy observation model and utilize a lower bound to the exact
likelihood function for training. So, it is only possible to evaluate an approximation to the
exact likelihood. Additionally, the noisy observation model often leads to blurry-looking
images. For autoregressive models (ARMs), the joint distribution is factorized into a prod-
uct of conditional distributions using the product rule. Using this factorization, neural
networks are used to model the dependencies. In this way, the likelihood of an ARM can
be computed exactly, but sampling from such a model can be slow. Recently, score-based
generative models were proposed [31], which are trained to approximate the gradient of the
density and rely on Langevin dynamics for sampling. Models based on the concept of NFs
have the advantage of allowing exact likelihood calculation, thus offering the possibility
to use a maximum likelihood training and a fast sampling procedure. In distinction to
VAEs, they are invertible by design and have no reconstruction loss. Recently, stochastic
NFs [32] were introduced, which interweave the deterministic invertible transformations
of an NF with stochastic sampling, promising more expressive transformations. For more
information, we refer to the recent review article by Ruthotto and Haber [33].

2.2. Application of Generative Models to Inverse Problems

Inverse problems can be studied from a statistical point of view [8]. In this interpreta-
tion, we are interested in the conditional distribution p(x|yδ) of the unknown image x given
the measurement data yδ, the so-called posterior. Using Bayes’ theorem, this posterior can
be decomposed into a prior p(x) and the likelihood p(yδ|x):

p(x|yδ) ∝ p(yδ|x)p(x) (2)

For a given noise model, the likelihood p(yδ|x) can be evaluated using the forward
model A : X → Y [34]. The prior p(x) encodes information about the image. Deep
generative models are usually incorporated in two ways: learning a model for the prior
p(x) [35] or learning a model for the full posterior distribution p(x|yδ) [19,22]. To explore
the posterior distribution, other point estimates can be used. Commonly, the maximum a
posteriori (MAP) estimate

x̂ = arg max
x∈X

p(x|yδ)

= arg max
x∈X

log(p(yδ|x)) + log(p(x))
(3)

or the pointwise conditional mean E[x|yδ] is used as a reconstruction, and the pointwise
conditional variance Var[x|yδ] is used to assess the uncertainty. As computing the con-
ditional mean and the conditional variance would require solving a high-dimensional
integral, we use an approximation to estimate both moments as

Ê[x|yδ] =
1
N

n

∑
i=1

xi and ̂Var[x|yδ] =
1
n

N

∑
i=1

(xi − Ê[x|yδ])2, (4)

with N i.i.d. samples {xi} drawn from the trained model. In our experiments, we focus on
directly learning a model for the full posterior p(x|yδ).
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2.3. Normalizing Flows

The concept of NFs is based on the work of Tabak and Turner [14]. Flow-based
models are constructed using two components: a base distribution and an invertible
transformation. Let z be a random variable with a known probability density function
pz. This distribution is called the base distribution and should be simple to evaluate and
sample from. The second component is a transformation Tθ : X = Rn → Y = Rn, which is
parametrized by θ. This transformation has to be invertible, and both Tθ and T−1

θ have to
be differentiable. This particular class of functions is called a diffeomorphism. The base
distribution pz induces a distribution via the invertible transformation Tθ on the image
space x = Tθ(z). Using the change-of-variable theorem, it is possible to evaluate the
likelihood of this induced distribution:

pθ(x) = pz(T−1
θ (x))|det JT−1

θ
(x)|. (5)

Here, JT−1
θ
(x) denotes the Jacobian of T−1

θ . In some cases, it may be advantageous to
express (5) using the Jacobian of Tθ :

pθ(x) = pz(T−1
θ (x))|det JTθ

(T−1
θ (x))|−1. (6)

This exact formulation of the probability density offers the possibility to fit the pa-
rameters θ of the NF using maximum likelihood estimation [36]. Assume that we have a
dataset of i.i.d. samples {x(i)}N

i=1 from an unknown target distribution; then, this objective
is used for training the NF:

maxL(θ) =
N

∑
i=1

log(pθ(x(i)))

=
N

∑
i=1

(
log p(T−1

θ (x(i))) + log |det JTθ
(T−1

θ (x(i)))|
)

.

(7)

This maximum likelihood objective is equivalent to minimizing the Kullback–Leibler
divergence between the unknown target distribution and the induced distribution of the
flow-based model [29].

The key challenge is to build an expressive invertible transformation Tθ . For this
purpose, two essential properties of diffeomorphisms can be exploited. Diffeomorphisms
are composable, i.e., if T1 and T2 are invertible and differentiable, then, the same holds
for T2 ◦ T1. Further, it is possible to decompose the computation of the inverse and the
Jacobian determinant:

(T2 ◦ T1)
−1 = T−1

1 ◦ T−2
2 and det JT2◦T1(z) = det JT2(T1(z)) · det JT1(z) (8)

This allows us to build a complex transformation as a concatenation of simple trans-
formations. We start by defining a base distribution for z0. Using the concatenated
Tθ = TK ◦ · · · ◦ T1, we can compute the probability density of x = zK = Tθ(z0) via

pθ(zK) = pz0(T
−1
θ (zK))

K

∏
k=1
|det JTk (T

−1
k (zk))|−1 (9)

with zk−1 = T−1
k (zk). This composition of transformations leads to the name normal-

izing flow [29]. The transformations Ti are a critical part of this formulation. We need
transformations that:

• are easily invertible,
• offer an efficient calculation of the logarithm of the Jacobian determinant,

and are still expressive enough to approximate complex distributions. Several differ-
ent models offer invertibility and tractable determinants, e.g., planar flows [37], residual
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flows [38,39], or Sylvester flows [40]. We focus on a class of models that are based on
so-called coupling layers [36,41]. Besides the invertibility of the transformations, the sta-
bility of the inverse pass must also be taken into account. Behrmann et al. [42] showed
that typical normalizing flow building blocks can become highly unstable and, therefore,
numerically non-invertible.

2.4. Invertible Neural Networks

Invertible neural networks consist of layers that guarantee an invertible relationship
between their input and output. Therefore, they are ideally suited to be used as normalizing
flow. There is also the advantage that the intermediate activations do not have to be stored
during backpropagation in training. Compared to regular neural networks, the memory
consumption decreases considerably, so more extensive networks or batch sizes can be
realized. For both CT [26,43] and MRI [44], there are already invertible architectures that
actively use this property.

The main building blocks of invertible neural networks used in this work are the
so-called coupling layers [36,41]. Coupling layers are invertible by design and have block
triangular Jacobians, which allow for an efficient calculation of the logarithm determinant.
The main idea of a coupling layer is that the input is split into two parts, where one
part is transformed, whereas the other is left unchanged. It is crucial to implement some
mixing or permutation between coupling layers for all dimensions to influence one another.
In imaging applications, invertible spatial downsampling operations are also integrated
into the network [17,25,26,45].

2.4.1. Coupling Layers

Let x ∈ Rn and I1, I2 disjoint partitions of {1, . . . , n} with |I1| = d and |I2| = n− d.
Then, a coupling layer is defined via

yI1 = xI1

yI2 = G(xI2 , M(xI1)),
(10)

where G : Rn−d ×Rn−d → Rn−d is called the coupling law, which has to be invertible with
respect to the first argument. The function M : Rd → Rn−d is the coupling function, which
does not need to be invertible and can be implemented as an arbitrary neural network. Two
main types of coupling functions have been studied in the literature: additive coupling
functions and affine coupling functions. Additive coupling, as used in [36], follows this
design:

yI1 = xI1

yI2 = xI2 + M(xI1)
⇔ xI1 = yI1

xI2 = yI2 −M(yI1).
(11)

A more flexible type of coupling is affine coupling [25]. Affine coupling layers intro-
duce an additional scaling function to the translation of the additive coupling layer. In this
way, a scale s(x) and a translation t(x) are learned, i.e., M(x) = [s(x), t(x)]:

yI1 = xI1

yI2 = xI2 � exp(s(xI1)) + t(xI1)
⇔ xI1 = yI1

xI2 = exp(−s(yI1))� (yI2 − t(yI1))
(12)

Instead of choosing exp(·), sometimes other functions that are non-zero everywhere
are used. Because one part of the input is unchanged during the forward pass of a coupling
layer, we get a lower block triangular structure for the Jacobian matrix:

∂y
∂x

=

(
Im 0

∂yI2
∂xI1

∂yI2
∂xI2

)
. (13)
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This allows us to compute the determinant as det
(

∂y
∂x

)
= det

(
∂yI2
∂xI2

)
, which drastically

reduces the computational complexity. For additive coupling layers, this further reduces
to the identity matrix, i.e., they have a unit determinant. Affine coupling layers have a
diagonal structure in the block:

det
(

∂yI2

∂xI2

)
= exp

(
∑
i∈I1

s(x1)i)

)
. (14)

However, as s(x1) is already evaluated in the forward pass, computing the determi-
nant does not involve significant computational effort. The special structure of the Jacobian
highlights the fact that some parts of the input are not processed and have no influence on
each other. It is essential to include some permutation or mixing of dimensions in order to
build an expressive sequence of coupling layers.

2.4.2. Channel Mixing and Downsampling

For each coupling layer, the input is split into two parts, and only one-half is processed.
For image data, this splitting is usually done in the channel dimension. Let u ∈ Rc×h×w be
an image with c channels. We choose c1, c2 such that c1 + c2 = c. The image is then split
into two parts, uI1 ∈ Rc1×h×w and uI2 ∈ Rc2×h×w. In earlier works, the permutation after
each coupling layer was implemented as a fixed random channel shuffling [36]. In the Glow
architecture, an improvement was seen when using fixed 1× 1 convolutions instead of
simple permutations [45]. These fixed convolutions can be seen as a generalization of ran-
dom shuffling. Another central part of invertible neural networks in imaging applications
is invertible downsampling operations, i.e., reduction of the spatial dimensions of image
data. The standard downsampling operations in CNNs, such as pooling layers or strided
convolutions, are inherently non-invertible, as they reduce the dimensionality of the image.
Invertible downsampling operations reduce the spatial dimension while simultaneously
increasing the number of channels, thus keeping the overall dimensionality the same. Let
u ∈ Rc×h×w be an image with c channels, where both the height h and the width w are even.
An invertible downsampling operation halves both spatial dimensions and quadruples
the number of channels, i.e., ũ ∈ R4c×h/2×w/2. There are three main types of invertible
downsampling operations used in the literature. The first is checkerboard downsampling,
which is a simple rearrangement of the image pixels [46]. A more advanced type of down-
sampling is haar downsampling, introduced in [17], which uses the 2D haar transform
to decompose the image into average channels and vertical, diagonal, and horizontal
components. These two downsampling operations are illustrated in Figure 1. Recently
Etmann et al. introduced a learnable invertible downsampling operation [26].

a) b) c)

Figure 1. Input image (a) and output of checkerboard downsampling (b) and haar downsampling (c).
Inspired by [26].

2.5. Base Distribution

In most applications, a standard n-dimensional Gaussian z ∼ N (0, I) is chosen as the
base distribution, which leads to the following log-likelihood:
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log(pz(z)) = −
1
2
‖z‖2

2 −
n
2

log(2π). (15)

The second term is constant with respect to z and can be dropped during training. It
has been observed that the likelihood of flow-based models sometimes exhibits artifacts,
i.e., out-of-distribution data are often assigned a higher likelihood than training data [47].
In [48], the authors suggested that this behavior is due to the difference between the
high-likelihood set and the typical set in high-dimensional Gaussian distributions. For a
standard Gaussian, the region of the highest density is at its mean, but the typical set is
at a distance of

√
d away from the mean. In [49], the authors addressed this problem for

Bayesian neural networks and chose a radial Gaussian distribution where the typical set
and high-density region coincided. This radial Gaussian was formulated in hyperspherical
coordinates, where the radius is distributed according to a half-normal distribution, i.e.,
r = |r̂| with r̂ ∼ N (0, 1), and all angular coordinates follow a uniform distribution over the
hypersphere. We use this radial distribution as a base distribution for training flow-based
models. This radial distribution leads to the following log-likelihood:

ln pz(z) = ln

( √
2√

πSn

)
− (n− 1) ln(‖z‖2)−

‖z‖2
2

2
, (16)

where Sn is the surface of the n-dimensional unit sphere. The derivation can be found in
Appendix A.1. Sampling is nearly as efficient as for the standard Gaussian distribution.
First, a point x ∼ N (0, In) is sampled and normalized. This point is then scaled using a
radius r = |r̂| with r̂ ∼ N (0, 1).

Other base distributions have also been considered in the literature. Hagemann and
Neumayer used a Gaussian mixture model as a base distribution, which led to higher-
quality samples, especially in multi-modal applications [50].

2.6. Conditional Normalizing Flow

Let x and y be two random variables over two spaces, X and Y. For our applications,
we always use X = Rn and Y = Rm. The goal of conditional density estimation is
to approximate the conditional probability distribution p(x|y) given an i.i.d. data set
{(x(i), y(i))}N

i=1 of input–output pairs sampled from the joint distribution p(x, y). We use a
conditional normalizing flow (CNF) to build a probabilistic model pθ(x|y) to approximate
the unknown conditional distribution p(x|y) [17,51]. A CNF consists of a transformation
Tθ : Z×Y → X that has to be invertible with respect to the first argument, and both Tθ(·; y)
and T−1

θ (·; y) have to be differentiable for every y ∈ Y. By choosing a base distribution pz,
the CNF model induces a probability distribution, and the density can be evaluated via the
change-of-variable method:

pθ(x|y) = pz(T−1
θ (x; y))

∣∣∣∣∣det

(
∂T−1

θ (x; y)
∂x

)∣∣∣∣∣. (17)

We use JT−1
θ
(x; y) = ∂T−1

θ (x;y)
∂x as a shorthand notation for the Jacobian matrix. Fitting

the parameters θ of the CNF can be done using a maximum likelihood loss:

max
θ
L(θ) =

N

∑
i=1

log(pθ(x(i)|y(i)))

=
N

∑
i=1

(
log p(T−1

θ (x(i); y(i))) + log
(
|det JT−1

θ
(x(i); y(i))|

))
.

(18)

We use the same trick as for the NF and implement the CNF as a concatenation of
simple invertible building blocks.
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Conditional Coupling Layers

Conditional coupling layers are the primary way of constructing expressive CNF mod-
els. They can be seen as an extension of the original coupling layers and were introduced
in [18] for modeling conditional image densities. For a conditional coupling layer, we
extend the coupling function M to take the measurements yδ as an additional input. Let
x ∈ Rn be the input, yδ ∈ Rm the measurements, and I1, I2 disjoint partitions of {1, . . . , n}
with |I1| = d and |I2| = n− d. Then, a conditional coupling layer is defined by

yI1 = xI1

yI2 = G(xI2 , M(xI1 , yδ))
(19)

where G : Rn−d ×Rn−d → Rn−d is called the coupling law, which has to invertible with
respect to the first argument. Function M : Rd × Rm → Rn−d is the coupling function.
Conditional coupling layers offer the same advantages as regular coupling layers, i.e.,
a block triangular Jacobian and analytical invertibility. In our experiments, we mainly
use conditional affine coupling layers, i.e., replacing s(xI1) and t(xI1) with s(xI1 , yδ) and
t(xI1 , yδ). For any fixed conditional input yδ, the conditional normalizing flow is invertible.

Another way of introducing the conditional input yδ into the model is to use a
conditional base distribution [51]. In this approach, the base distribution can be mod-
eled as a normal distribution where the mean and variance are functions of yδ, i.e.,
p(z|yδ) = N (z; µ(yδ), σ2(yδ)). Both the mean and variance function can be parametrized
as a neural network and trained in parallel to the flow-based model.

2.7. Conditioning Network

Instead of directly using the measurements yδ as an additional input to the con-
ditional coupling layer, a conditioning network H is used, which transforms the yδ to
h = H(yδ) [18,51]. The motivation behind this is that the conditioning network can learn to
extract essential features. This decouples the feature extraction and the density modeling.
It is possible to either use a fixed, pre-trained network H or to train the conditioning
network parallel to the CNF. This conditioning network is often implemented as a big CNN.
As convolutional networks are built to exploit equivariance in natural images, they are not
ideally suited for CT or MRI measurement data. Instead, we implemented this conditioning
network as a model-based inversion layer A†, which maps from the measurement space to
the image space, concatenated with a post-processing CNN to extract features from this
initial reconstruction.

Depending on the structure of the conditioning network, an additional loss term for
this network can be used during training. One option is to compare the output of H to the
ground-truth data and thereby train a second reconstruction path within the whole cINN.
The goal is to get a single high-quality reconstruction from the conditioning network and
cover the uncertainties, e.g., from ambiguous solutions, in the sampled reconstruction from
the CNF. During inference, the output from the conditioning network and the CNF can be
combined to create the final reconstruction.

2.8. Multi-Scale Architecture

Unlike other latent variable models, such as GANs or VAEs, flow-based models work
with a full-dimensional base distribution. This is necessary to ensure bijectivity. However, it
is also expensive in terms of both memory cost and computational complexity to propagate
the full-dimensional image through the network. A typical architecture for flow-based
models is the multi-scale architecture [25]. This architecture combines coupling blocks,
downsampling, and splitting operations. A part of the intermediate representation is split
off and directly forwarded to the output for each scale. This combination of splitting and
feed-forwarding creates a hierarchy of features and reduces the computational effort. We
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visualize this architecture in Figure 2. In our experiments, we always use downsampling
of factor 2 after each scale. A multi-scale architecture with L scales can be described by:

x0 = x

(zi+1, xi+1) = f i+1(xi, Hi(yδ))

zL = f L(xL−1, HL−1(yδ))

z = (z1, . . . , zL).

Each f i consists of a coupling→ downsampling→ coupling→ splitting operation.
The multi-scale architecture follows the NICE and Real-NVP framework [25,36] and is

related to the i-RevNet architecture [46]. However, in i-RevNet, the authors refrained from
splitting the dimensions in their bijective architecture.

Conditional Coupling Block

Invertible Up-/Downsampling

Split and Copy

Figure 2. Multi-scale architecture with conditioning network H. The conditioning network processes
the conditioning input yδ and outputs this to the respective conditional coupling layer.

2.9. Invertible UNet

With the iUNet, we follow the work of Etmann et al. [26]. The idea is to adapt the
concept of the UNet architecture [52] and replace all common layers with their invertible
counterparts. In addition, we introduce a conditioning network H, which also has a UNet
structure. In this case, the layers do not have to be invertible. Network H uses the same
spatial down- and upsampling scales as the iUNet. At each scale, the current activation
Hi

u;d is used as conditioning for the respective block f i+1
d;u in the iUNet. Note that the

direction of the UNet is inverse to the iUNet, since it starts from measurement yδ ∈ Y and
maps to X. A representation of the whole network is shown in Figure 3. For an architecture
with L scales, we get:

x0
d = x

(ci+1, xi+1
d ) = f i+1

d (xi
d, Hi

u(y
δ)), i = 0, . . . , L− 2

xL
d = f L

d (xL−1
d , HL−1

u (yδ))

xL
u = xL

d

xi−1
u = f i

u((xi
u, ci), Hi

d(y
δ)), i = L, . . . , 1

z = x0
u

where indices d, u denote the down- and upsampling paths, respectively. Block f i
d consists

of coupling→ downsampling→ split, f L
d is just coupling, and f i

u is upsampling→ concat
→ coupling. Compared with the multi-scale architecture, the iUNet concatenates the splits
step-by-step in the upsampling path and not all together in the last layer.
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The conditioning UNet H creates outputs in the image domain X. Therefore, we can
introduce an additional conditioning loss, as proposed in Section 2.7. Specifically, we use

min
θ
− log(pθ(x|yδ)) + α MSE(H(yδ), x), (20)

where α ≥ 0 is a weighting factor. Note that one can also use a pre-trained UNet with fixed
parameters as conditioning and benefit from the advantages of the CNF in comparison to a
simple post-processing approach.

Conditional Coupling Block

Invertible Up-/Downsampling

Split and Concat

Figure 3. End-to-end invertible UNet with conditioning network H. The conditioning network
processes the conditioning input yδ and outputs this to the respective conditional coupling layer.

3. Experimental Setup

In this section, we present three different applications used to evaluate different ar-
chitectures for conditional flow-based models. In the first example, we study compressed
sensing with Gaussian measurements on the popular MNIST dataset [53]. The other two
applications cover essential aspects of medical imaging: accelerated magnetic resonance
imaging and low-dose computed tomography. In these two medical imaging scenarios,
different sources introduce uncertainty into the reconstruction process. We have an un-
dersampling case in accelerated MRI, i.e., we have fewer measurements than necessary
according to the Nyquist–Shannon sampling theorem. So, a strong prior is needed for a
good reconstruction. The challenge in low-dose CT is that the lower radiation dose leads to
a worse signal-to-noise ratio. Although we are in an oversampling case, the reconstruction
is complicated by a more significant amount of noise.

Our source code is publicly available at https://github.com/jleuschn/cinn_for_
imaging (last accessed: 16 November 2021).

3.1. Compressed Sensing

As an initial example, we study a similar setup to that in [54]. The goal is the recovery
of an image from Gaussian measurements. We evaluate our models on the popular
MNIST [53] dataset, which consists of 28× 28-size images of handwritten digits. MNIST
contains 60,000 training images and 10,000 test images. We split the 60,000 training images
into 50,000 for training the CNF model and 10,000 for validation. The forward operator
is a matrix A ∈ Rm×n. It has independent Gaussian entries with zero mean and variance
1/m, i.e., Ai,j ∼ N (0, 1/m). We use m = 196, n = 784, i.e., 4 times downsampling. We
added 10% relative noise to the simulated measurements. In this experiment, we want
to study the influence of the inversion layer in the conditioning network H. We use the
generalized inverse A† = A+ and a TV-regularized solution A† = (ATA+ λ∇T∇)AT

with a regularization parameter λ = 0.02. We further use the same neural network
architecture for both the conditional invertible network and the conditioning network
for both choices of A†. The cINN was implemented as a multi-scale architecture with

https://github.com/jleuschn/cinn_for_imaging
https://github.com/jleuschn/cinn_for_imaging


J. Imaging 2021, 7, 243 11 of 27

two learnable downsampling operations. The exact implementation can be found in
Appendix A.2.

3.2. Computed Tomography

When describing the propagation of radiation through biological tissue, two pro-
cesses have to be considered: absorption and scattering. For high-energy X-ray beams,
the scattering effect is usually neglected. The forward problem in parallel-beam computed
tomography can then be described by the 2D Radon transform [55]:

Ax(s, ϕ) =
∫
R

x
(

s
[

cos(ϕ)
− sin(ϕ)

]
+ t
[
− sin(ϕ)
cos(ϕ)

])
dt, (21)

where x is the spatial varying mass absorption coefficient, which depends on tissue type
and density. The Radon transform corresponds to the log-ratio between the source intensity
and the measured intensity.

For continuous, noise-free measurements, the filtered back-projection (FBP) in combi-
nation with the Ram-Lak filter gives the exact inversion formula [56]. In general, recovering
the image is a mildly ill-posed problem in the sense of Nashed [57,58]. This means that
slight deviations in the measurement, e.g., noise, can lead to significant changes in the
reconstruction. The influence of the noise can be reduced by choosing an adequate filter for
the FBP. Another challenge arises from the discretization of real measurements, which can
lead to artifacts in the FBP reconstruction. Over the years, a number of different reconstruc-
tion methods, such as algebraic reconstruction techniques [59] (ART) and total variation
(TV) regularization [60], were introduced to compensate for the drawbacks of the FBP.
Recently, deep learning approaches extended the choice of methods to push the boundaries
on image quality for low-dose, sparse-angle, and limited-angle measurements [2,3,23,61].

In our experiments, we use the LoDoPaB-CT dataset [62] to replicate the challenges
that arise from low-dose CT measurements. The dataset contains over 40,000 normal-dose,
medical CT images from the human thorax from around 800 patients. Poisson noise is used
to simulate the corresponding low-dose measurements. See Figure 4 for an example of
a simulated low-dose measurement, an FBP reconstruction, and the ground-truth image.
LoDoPaB-CT has a dedicated test set that we use for the evaluation and comparison of our
models. In addition, there is a special challenge set with undisclosed ground-truth data.
We evaluate the best model from our experiments on this set to allow for a comparison
with other reconstruction approaches. The challenge results can be found on the online
leaderboard (https://lodopab.grand-challenge.org/evaluation/challenge/leaderboard/,
last accessed: 16 November 2021).

a) Sinogram b) Filtered back-projection c) Ground truth

Figure 4. Reconstruction and measurements for the low-dose LoDoPaB-CT data.

3.3. Magnetic Resonance Imaging

We will now briefly introduce MRI and the considered simple model, following the
description in [63], to which we refer the reader for more details, including limitations of
the model.

https://lodopab.grand-challenge.org/evaluation/challenge/leaderboard/
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In MRI, one measures the radio-frequency (RF) responses of nuclei (e.g., protons) to
RF pulses while applying different external magnetic fields in order to obtain a density
image. A strong static magnetic field is applied, which causes the resonance frequency
of the nuclei to be within the RF range. Pulses at this frequency are emitted using an RF
transmitting coil, triggering RF response signals detected by an RF receiving coil. For
spatial encoding, configurable magnetic gradient fields G = (Gx, Gy, Gz) are applied that
change the applied magnetic field and thereby the resonance frequency depending on the
location. During a scan, different gradient fields G are selected for each repetition of a
pulse sequence.

A simple model for the measured receive coil signal in each repetition is given by

y(t) =
∫

x(r) exp(−2πik(t) · r)dr, k(t) = γ
∫ t

0
G(τ)dτ,

where x is the spatial signal density (i.e., the image) and k specifies a position in the so-
called k-space, which coincides with the Fourier space. The choice of G determines the
trajectory of k for this repetition. By collecting samples from multiple repetitions, one can
obtain a complete Cartesian sampling of the k-space that satisfies the Nyquist–Shannon
sampling theorem. This enables (approximate) reconstruction via the inverse fast Fourier
transform (IFFT).

A major limiting factor is the time-consuming measurement process, which directly
depends on the number of repetitions required to obtain a full sampling of the k-space.
While using fewer repetitions accelerates the process, it leads to an underdetermined
reconstruction problem and can introduce artifacts due to the missing frequencies. In
order to reconstruct from undersampled measurement data, prior information needs to
be incorporated. Additionally, measurements are noisy in practice, further increasing
reconstruction ambiguity, since all solutions matching the measured data within the noise
level would be plausible. This strengthens the requirement of prior information.

In our experiments, we used the emulated single-coil measurements from the NYU
fastMRI database [64,65]. The fully sampled measurements were retrospectively sub-
sampled to simulate accelerated MRI data. See Figure 5 for an example of a subsampled
measurement, a zero-filled IFFT reconstruction, and the ground truth obtained from the full
measurement. We used an acceleration factor of 4, i.e., only 25% of frequencies were kept.
Undersampling was performed by selecting 8% of the lowest frequencies and randomly
adding higher frequencies until the acceleration factor was reached. The public dataset
consists of a training part and a validation part. In total, the training dataset includes
973 volumes (34,742 slices) and the validation dataset includes 199 volumes (7135 slices).
Additionally, there is a private test set that consists of 108 volumes (3903 slices). For this
private test set, only the undersampled measurements are available, and the models can
only be evaluated on the official fastMRI website (https://fastmri.org/, last accessed: 16
November 2021). Our best model can be found on the public leaderboard for “Single-Coil
Knee”, allowing for comparison with other approaches (our submission is named “cINN
v2”). The fastMRI dataset includes scans from two different pulse sequences: coronal
proton-density weighting with (PDFS) and without (PD) fat suppression. We trained our
models on the full dataset, but used the distinction into PD and PDFS for evaluation on the
validation set.

https://fastmri.org/
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a) Masked k-space b) Zero filled IFFT c) Ground truth

Figure 5. Measurements and reconstruction for the single-coil fastMRI data.

4. Results

In this section, we present the results of the three different experimental setups.
The focus here is on LoDoPaB-CT and fastMRI. For these use cases, we compare different
architectures and ablations during training. To assess the performance, we evaluate the
peak-signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM) [66]
on the datasets. The PSNR is strongly related to the mean squared error and expresses the
ratio of the maximum possible value to the reconstruction error. In general, a higher PSNR
corresponds to a better reconstruction. The SSIM compares the overall image structure,
including luminance and contrast, of the reconstruction and the ground-truth image.
A detailed definition of the evaluation metrics can be found in Appendix A.3.

4.1. Compressed Sensing

Both models were trained using the Adam optimizer [67] until convergence with a
fixed learning rate of 1× 10−4. The final model was chosen as the best model regarding
the negative log-likelihood on the validation set. The conditional mean was used as recon-
struction, and we evaluated both the PSNR and SSIM for the entire test set. The results can
be seen in Table 1. The TV-regularized solution as the conditioning input leads to a drastic
improvement both in terms of PSNR and SSIM. A visual comparison of one reconstruction
is given in Figure 6. One can see that the reconstruction using the TV-regularized solution
fits way better to the original ground-truth image. In addition, the conditioned standard
deviation is more centered towards the edges of the number. The reconstruction using the
generalized inverse as a conditioning input is much smoother and more blurry. The condi-
tional standard deviation is not so focused on specific features on the image. Lastly, we
illustrated samples from both models in Figure 7. The samples drawn from the model
using the TV-regularized conditioning input look much more realistic.

Table 1. Mean and standard deviation of the PSNR and SSIM for compressed sensing on the MNIST
test dataset. The conditioned mean was computed with 100 samples.

Compressed Sensing on MNIST

A† = A+ A† = (ATA+ λ∇T∇)AT

PSNR SSIM PSNR SSIM
Multi-scale cINN 17.32± 2.05 0.752± 0.084 19.89± 2.54 0.868± 0.063

0.1

0.2

0.3

Truth Cond. std.Cond. mean

0.1

0.2

0.3

0.4

PSNR: 21.11
SSIM: 0.918 

PSNR: 15.96
SSIM: 0.702

Truth Cond. std.Cond. mean

a) TV regularized conditioning b) Generalized Inverse conditioning

Figure 6. Conditioned mean and standard deviation for the different inversion layers.
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a) Samples from Posterior with TV reconstruction conditioning

b) Samples from Posterior with generalized Inverse conditioning

Figure 7. Samples from the posterior learned by the cINN. The ground-truth sample is shown in
the upper-left corner. In (a), we used the conditioning based on the TV-regularized reconstruction,
and in (b), the conditioning was chosen as the generalized inverse. It can be seen that individual
samples from the generalized inverse conditioning do not look realistic.

4.2. Computed Tomography

First, we investigate different conditioning networks for the multi-scale architecture.
Based on these results, we compare the multi-scale network to the iUNet. The experiments
also include variations in the target distribution and the loss function. The results regarding
the different conditioning networks can be found in Table 2. The overall results on the
LoDoPaB-CT test set are shown in Table 3.

For all comparisons between the multi-scale architecture and iUNet, a unified setting
was used. Both networks had a similar size (2.9 Mio. for the iUNet and 3.2 Mio. for the multi-
scale architecture). We used five scales for all networks. The inversion model inside the
conditioning was the filtered back-projection (FBP). For the iUNet additive coupling layers
and for the multi-scale architecture, affine coupling layers were used. Channel permutation
after each coupling layer was implemented using fixed 1× 1 convolutions [45]. Gradient
descent steps with the Adam optimizer [67], an initial learning rate of 1× 10−4, and a
reduction factor of 0.8 on plateaus were performed during training. The best parameter
configuration for each setting was chosen based on the lowest negative log-likelihood on
the validation set.

4.2.1. Architecture of Conditioning Network

We tested three different architectures for the conditioning network in the multi-scale
cINN model. The first architecture (average pooling) consisted of one initial learned
convolutional layer to blow up the number of channels, followed by average pooling
operations to reduce the spatial dimensions to the correct size. In the next architecture
(CNN), the one initial convolutional layer was replaced by a fully convolutional neural
network. The last architecture (ResNet) used residual connections and replaced all average
pooling operations with strided convolutional layers. All models were trained using the
same initialization with the Adam optimizer [67]. We evaluated all three choices on the
LoDoPaB test set, and the results can be seen in Table 2. In our experiments, increasing the
complexity of the conditioning network also increased the reconstruction quality in terms
of SSIM and PSNR. We suspect that this increase in quality is related to the fact that a more
extensive conditioning network can extract a larger amount and more essential features
from the conditioning input.
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Table 2. Influence of the type of conditioning network for the multi-scale cINN. The mean and
standard deviation of the PSNR and SSIM were evaluated on the full LoDoPaB test set using 1000
samples for the cond. mean.

LoDoPaB-CT

Model Cond. Network PSNR SSIM

Multi-scale Average Pooling 33.15± 3.64 0.806± 0.156
CNN 34.64± 4.18 0.826± 0.160

ResNet 35.07± 4.34 0.831± 0.160

Based on these results, we chose the ResNet conditioning for the following experi-
ments. Note that we reduced the number of parameters of the multi-scale cINN in the other
experiments to be comparable with the iUNet model and shorten the time for training.
Overall, this has only a minor effect on the reconstruction quality.

4.2.2. Base Distribution

It has been proven that under reasonable conditions for the true density, any base
distribution can be used for normalizing flows [29]. However, the question arises of
whether some distributions are more suitable than others. We study two different choices
for the base distribution: a standard Gaussian distribution used in most flow-based models
and a radial Gaussian, as discussed in Section 2.5. As we are interested in the conditional
mean in most applications, sample efficiency is vital for the practical implementation and
evaluation of a flow-based model.

Table 3 shows mixed results for the different base distributions. While the iUNet
benefits from the choice of the radial Gaussian distribution, the performance is worse for
the multi-scale model. Nevertheless, the difference in PSNR and SSIM is only minor in
this test. However, we could observe a difference in the quality and deviation during the
sampling process for a single reconstruction. Networks that were trained with the radial
distribution could produce high-quality reconstructions from a single sample. On the
other hand, the standard deviation between each sampled reconstruction is significantly
smaller than for the models with normal distribution. This can also be seen in the standard
deviation plots in Figure 8. Overall, models trained with the radial distribution can use
fewer samples for the conditional mean to achieve good reconstructions. In Table 3, we
used 100 samples to compute the conditioned mean. Results for 1000 samples can be found
in Table A1. Overall, the additional effort of sampling 10 times more data does not justify
the small gain in image quality in this experiment.

Multi-Scale, normal: mean Multi-Scale, normal: std iUNet, normal: mean iUNet, normal: std

Multi-Scale, radial: mean Multi-Scale, radial: std Ground truth

0.0
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0.4
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0.015

0.020

0.025
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Figure 8. Cond. mean and point-wise standard deviation for the iUNet and the multi-scale architec-
ture on the LoDoPaB-CT data.
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Table 3. Mean and standard deviation of the PSNR and SSIM for the LoDoPaB-CT test set. Condi-
tioned mean computed with 100 samples. Unless stated otherwise, training noise was applied and
no cond. loss was used.

LoDoPaB-CT

Model Base Distribution Train Noise PSNR SSIM

Multi-scale

Normal Yes 34.94± 4.24 0.829± 0.157
No 34.92± 4.26 0.829± 0.158

Radial Yes 34.89± 4.29 0.823± 0.161
No 34.65± 4.25 0.829± 0.161

iUNet

Normal Yes 34.65± 4.11 0.805± 0.151
No 34.48± 3.96 0.824± 0.153

Radial Yes 34.58± 4.40 0.830± 0.158
No 34.57± 4.40 0.830± 0.158

Cond. Loss

iUNet

Normal Yes 34.88± 4.17 0.809± 0.148
No 34.65± 4.11 0.805± 0.151

Radial Yes 34.99± 4.39 0.825± 0.157
No 34.58± 4.40 0.830± 0.158

4.2.3. Training with Additional Noise

In most image datasets, pixel values can only take a specific, discrete range of values.
Training a continuous flow-based model on discrete data can lead to artifacts, i.e., the
model allocates arbitrary high-likelihood values to the discrete values [68]. In order to
circumvent this problem, it is common to add a small amount of noise to the data to get
a continuous distribution. This process is called dequantization and, in recent reviews,
was done on all image datasets [69]. We found that this problem was not as severe for the
medical imaging datasets studied in this paper; e.g., the LoDoPaB-CT dataset already used
a dequantization of the discrete HU values. There is, however, a different problem with
medical imaging datasets used for image reconstruction. Since there are no real ground-
truth images available, high-quality reconstructions are used for training. For LoDoPaB-CT,
reconstruction from normal-dose CT measurements and for fastMRI reconstruction from
fully sampled MRI measurements are used instead [62,65]. These reconstructions are not
free of noise, so we use an additional dequantization step and add random Gaussian noise
in the order of the background noise to the training images. As an ablation, we add random
Gaussian noise with zero-mean and a variance of 0.005 to the ground-truth images during
training. We have chosen these values to correspond to the empirical background noise in
the ground-truth images.

In Table 3, results for the multi-scale network and the iUNet with and without addi-
tional training noise are shown. For both architectures, the additional noise results in the
same or a slightly improved PSNR. Concerning SSIM, the models achieve the same or a
marginally lower score with the additional training noise. Overall, due to the high number
of images in the dataset (lower overfitting risk) and the existing dequantization, there is no
clear benefit from the additional noise in this case.

4.2.4. Training with Conditional Loss

As described in Section 2.9, the final output of the conditional network for the iUNet is
in the image domain X. As an ablation, we added a supervised mean squared error loss to
the negative log-likelihood term (see Equation (20)) during the training using a weighting
factor α = 1.0. This additional loss could guide the conditional network to learn more
relevant features.
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The results for the iUNet are given in the lower part of Table 3. The network benefits
from the additional loss on the output of the conditioning network. However, like for all
regularization terms, putting too much weight on the conditioning loss interferes with the
primary objective of the cINN model. The performance deteriorates in this case. The loss
also has a direct impact on the intermediate representations of the conditioning UNet. They
shift from feature selection to the reproduction of complete reconstructions. An example is
shown in Figure A1 in Appendix A.4.

4.2.5. Sample Refinement

Using cINN, we are able to sample realistic-looking CT reconstruction. However, we
have no guarantees that the sample explains the data y, i.e., ATθ(y, z) ≈ y. In order to fulfill
this data consistency constraint, we use an additional refinement based on a variational
Tikohonov formulation:

x̂ ∈ arg min
x
‖Ax− y‖2

2 − λ log pθ(x|y). (22)

We solve for x̂ using an iterative scheme and use as initialization our sample Tθ(y, z)
from the cINN. In our experiments, only using the maximum posterior solution as a recon-
struction often results in artifacts in the reconstructed image. Therefore, we transitioned to
the penalized version in Equation (22). An important topic is the choice of the parameter
λ. In Table 4, the results for both the iUNet and the multi-scale architecture are given.
Increasing the weighting factor λ from 0 to 1.0 leads to an improvement in terms of PSNR
and SSIM for both the multi-scale architecture and the iUNet. However, further increasing
the factor λ leads again to a deterioration in most cases.

In total, the reconstruction quality with the sample refinement is worse than for the
conditional mean approach. Therefore, we stick to the conditional mean reconstruction
technique for the following experiments on the fastMRI dataset.

Table 4. Mean and standard deviation for sample refinement on LoDoPaB for the first 100 samples
of the test set. Minimized Equation (22) for 100 iterations with a learning rate 1× 10−4. The initial
value was one sample from our model x0 = T−1

θ (z, yδ).

LoDoPaB-CT

Model λ PSNR SSIM

Multi-scale

0 32.02± 3.18 0.742± 0.135
0.01 32.10± 3.21 0.749± 0.137
0.1 32.56± 3.40 0.766± 0.142
1.0 33.03± 3.58 0.783± 0.148

10.0 32.97± 3.56 0.784± 0.149

iUNet

0 32.16± 3.12 0.731± 0.126
0.01 32.31± 3.19 0.737± 0.128
0.1 32.83± 3.41 0.759± 0.135
1.0 32.98± 3.45 0.765± 0.136

10.0 32.88± 3.40 0.756± 0.133

4.3. Magnetic Resonance Imaging

The results for the two architectures, multi-scale and iUNet, for different configura-
tions are presented in Table 5. Example reconstructions and point-wise standard deviations
between samples for the best models are shown in Figure 9. For all configurations, the mod-
els were trained using the Adam optimizer [67], and the initial learning rate of 1× 10−4

was reduced by a factor of 0.8 on plateaus. The final model was chosen as the best model
regarding the negative log-likelihood on the validation set. As the ground-truth images
for the fastMRI test set are not publicly available, we report the PSNR and SSIM on the
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validation data in Table 5. Further, following the evaluation in [65], we present the results
subdivided into PD and PDFS.

P
D

Multi-Scale: mean Multi-Scale: std iUNet: mean iUNet: std Ground truth
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Figure 9. Cond. mean and point-wise standard deviation for the best-performing multi-scale
architecture and iUNet on the fastMRI data. Both networks use the radial base distribution and no
additional training noise, and the iUNet is trained with conditional loss.

Both networks were implemented such that the number of parameters was comparable
(2.5 Mio. for the iUNet and 2.6 Mio. for the multi-scale network). We used five scales for
all networks. For the iUNet additive coupling layers and for the multi-scale architecture,
affine coupling layers were used. Channel permutation after each coupling layer was
implemented using fixed 1× 1 convolutions [45]. The conditioning network for the iUNet
was based on a UNet architecture. For the multi-scale network, we used an architecture
based on a ResNet. Both used the zero-filled IFFT as model-based inversion layer.

Table 5. Mean and standard deviation for the fastMRI dataset. Conditioned mean computed with 100 samples. Unless oth-
erwise specified, no additional training noise and no cond. loss were used.

fastMRI

Model Base Distribution Train Noise PSNR SSIM
PD PDFS PD PDFS

Multi-scale
Normal Yes 29.15± 6.25 23.18± 8.20 0.777± 0.086 0.536± 0.105

No 28.54± 6.52 20.92± 9.87 0.776± 0.086 0.536± 0.105

Radial Yes 31.84± 3.56 25.76± 5.92 0.760± 0.092 0.515± 0.107
No 32.07± 2.34 26.54± 2.73 0.764± 0.090 0.522± 0.103

iUNet
Normal No 27.85± 1.38 25.76± 2.10 0.622± 0.052 0.474± 0.096

Radial No 31.89± 2.43 25.94± 2.86 0.732± 0.107 0.432± 0.126

Cond. Loss

iUNet
Normal Yes 27.91± 1.35 25.83± 2.12 0.628± 0.054 0.474± 0.096

No 27.85± 1.38 25.76± 2.10 0.622± 0.052 0.474± 0.096

Radial Yes 31.62± 2.26 26.04± 2.81 0.730± 0.096 0.469± 0.110
No 31.89± 2.43 25.94± 2.86 0.732± 0.107 0.432± 0.126

4.3.1. Base Distribution

As with the LoDoPaB dataset, we investigate the influence of the target distribution.
The results in Table 5 show that switching from the standard Gaussian distribution to the
radial Gaussian leads to an improvement in terms of PSNR for nearly all configurations
on the fastMRI dataset. This is in contrast to the observations on the LoDoPaB dataset,
where the differences are only minor. However, note that the PSNR and SSIM values for
fastMRI are calculated based on the maximum value range of a whole scan, compared to a
slice-based choice on LoDoPaB (cf. Appendix A.3). Therefore, the values between the two
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experiments cannot be directly compared. Nevertheless, the radial Gaussian appears to be
a good choice on fastMRI.

We also undertook a small study to assess the influence of the number of samples (100
vs. 1000) on the reconstruction quality. The results matched with the extensive comparison
on the LoDoPaB dataset: The additional sampling contributes little to the image quality
while using substantially more computational resources. On fastMRI, we could also observe
higher PSNR and SSIM values for single-sample reconstruction from models with radial
Gaussian base distribution.

The performance of models trained with the normal Gaussian base distribution highly
depends on a sufficient number of samples for the reconstruction. On the other hand,
an increase in the number of samples usually leads to an equivalent increase in the com-
puting time.

4.3.2. Training with Additional Noise

We follow the same noising strategy as for the LoDoPaB-CT data and add random
Gaussian noise with zero mean and a variance of 0.005 to the ground-truth images during
training. For the multi-scale architecture, we observe an improvement for the standard
Gaussian and a decline for the radial Gaussian base distributions. We noticed instabilities
during the training for the iUNet. Therefore, only values without additional noise are
given in Table 5.

4.3.3. Training with Conditional Loss

The results for the inclusion of the conditional loss term are given in the lower part of
Table 5. On fastMRI, introducing this additional term to the loss function only gives a slight
improvement in terms of PSNR and SSIM. In fact, we also observe a minor deterioration for
the iUNet trained using the radial Gaussian base distribution on the PD case for fastMRI.

5. Discussion

In this work, we studied various configurations of conditioned flow-based models on
different datasets. The focus of our research was to determine best practices for the use of
cINN models for reconstruction tasks in CT and MRI. The two networks used, multi-scale
and iUNet, showed comparable performance in many cases. The results demonstrate that
a crucial part of the cINN models is the design of the conditioning network. A precise
model-based inversion layer and a subsequent extensive neural network can provide
diverse features for the CNF. In particular, the model-based layer forms an interesting basis
for combining mathematical modeling and data-driven learning. This can go much further
than the FBP and Fourier models used here.

The choice of the base distribution also has a significant impact on the model’s perfor-
mance. The radial Gaussian proved to be a valuable alternative to the normal Gaussian
distribution, primarily in reducing the reconstruction time by needing fewer samples for
the conditioned mean and avoiding common problems with high-dimensional distribu-
tions. For the noising during training and the additional conditioning loss, on the other
hand, there is no clear recommendation. The additional noise might help on small datasets,
where it acts as a data augmentation step. The conditioning loss requires extra tuning
of the weighting factor. More promising, therefore, might be the use of a pre-trained
reconstruction network whose parameters are frozen for use in cINN.

The experiments also indicated that the training of cINN models does not always
run without problems. Although invertible neural networks are analytically invertible,
it is possible to encounter instabilities in some situations, and the networks may become
numerically non-invertible. Furthermore, in this work, we used the conditional mean as a
reconstruction method for most of the experiments. However, other choices are possible.
In the following, we will address these topics in more detail.
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5.1. Stability

Recently, it was noted that due to stability issues, an extensive invertible neural net-
work could become numerically non-invertible in test time due to rounding errors [42]. We
observed this problem when evaluating iUNets with affine coupling layers. In Figure 10,
we show the loss during training and an example reconstruction after training. It can
be observed that even when the training looks stable, one can get severe artifacts on
unknown test images. We did not observe this problem for the multi-scale architecture.
Affine coupling layers can have arbitrary large singular values in the inverse Jacobian
matrix, which leads to an unstable inverse pass. This effect is known as exploding in-
verse [42]. For increasing stability in the iUNets, we suggest using additive coupling blocks
in this architecture.

In addition, the inclusion of additional training noise led to severe instability in our
experiments with the iUNet on the fastMRI data. We did not obtain any meaningful
reconstructions for this case. In contrast, these issues occurred with neither the multi-scale
architecture on fastMRI nor the iUNet on LoDoPaB-CT.
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Figure 10. (Left) Moving average of loss during training. (Right) Ground-truth image from the
LoDoPaB test dataset and the corresponding iUNet reconstruction. The pixels in white visualize
exploding values in the reconstruction.

5.2. Reconstruction Method

A trained cINN offers us the possibility to explore the full posterior. However, for eval-
uating the reconstruction quality of our models, we use the conditioned mean as a point es-
timate. This was also done in prior work for computed tomography reconstruction [22,23],
but it would be interesting to explore different choices of estimates. In Section 4.2.5, we
evaluated a penalized version of the maximum posterior estimate. For the LoDoPaB-CT
dataset, this results in a lower PSNR and SSIM compared to using the conditioned mean.
However, one could combine the idea of the conditioned mean and the sample refinement
to combine samples that have a low, regularized data discrepancy (cf. Equation (22)).

6. Conclusions

This work explored different architectures and best practices for applying conditional
flow-based methods to medical image reconstruction problems in CT and MRI. Our experi-
ments included two popular, invertible network designs. The iUNet [26] architecture is
inspired by the UNet [52], which is used extensively in imaging applications. The multi-
scale architecture is used in all major normalizing flow frameworks, such as Glow [45]
or NICE [36]. The invertible architectures were combined with a conditioning network,
which extracts various features from the measurements for the reconstruction process.
This cINN framework combines the advantages of memory-efficient invertible networks
and normalizing flows for uncertainty estimation with a versatile reconstruction model.
Additionally, it provides a direct way to combine model-based and data-driven approaches
in a single model.

The use of cINN models for medical image reconstruction is in its beginning stages,
and many possible improvements should be explored. We investigated the radial Gaussian
distribution as an alternative to the normal Gaussian base distribution. Our experiments
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show that it can be beneficial in many cases. A promising next direction is the development
of novel invertible network architectures from existing approaches. For applications in
medical image reconstruction, state-of-the-art deep learning methods are based on unrolled
iterative methods [4]. In [23], an extensive evaluation of the LoDoPaB-CT dataset was
performed, and the best-scoring deep learning method was an unrolled learned primal–
dual algorithm [3]. These unrolled iterative methods can be made invertible [43,44], but
are currently only used for memory-efficient backpropagation. In further work, we want
to evaluate whether invertible iterative architectures can be integrated into flow-based
models.
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Appendix A

Appendix A.1. Radial Density

High-dimensional normal distributions do not behave intuitively, as known from the
low-dimensional settings. Sampling from a normal distribution gives mostly samples in
the typical set. For an n-dimensional normal distribution N (µ, σ2), this typical set has a
distance of σ

√
n from the expected value µ. In [49], the authors proposed an n-dimensional

radial Gaussian density in hyperspherical coordinates where:

• The radius r is distributed according to a half-normal distribution,
• All angular components ϕ1, . . . , ϕn−2 ∈ [0, π], ϕn−1 ∈ [0, 2π] are uniformly dis-

tributed, yielding equal probability density at every point on the surface of the
n-dimensional sphere.

Our derivation of the likelihood closely follows that of [49]. We assume that all
dimensions are independently distributed. For the radius r, we get the density:

p(r; θ) =

√
2√

πσ
exp(− r2

2σ2 ) for r ≥ 0. (A1)

Let v be a point on the unit sphere. We want every point on the unit sphere to be
equally likely, i.e.,

p(v) =
1

Sn
with Sn = 2

πn/2

Γ(n/2)
, (A2)

where Sn is the surface of the n-dimensional unit sphere. We can get the density for the
radial components p(φ1, . . . , φn−1) by solving

p(v)dA =
1

Sn
dA = p(φ1, . . . , φn−1)dφ1 . . . dφn−1. (A3)
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Here, dA is the surface element:

dA = dφn−1

n−2

∏
i=1

sin(φi)
n−1−i dφ1 . . . dφn−2. (A4)

Solving (A3) leads us to the density:

p(φ1, φ2, . . . , φn−1) =
1

Sn

n−2

∏
i=1

sin(φi)
n−1−i. (A5)

Setting σ = 1 for the radial components gives us the full density in hyperspherical
coordinates:

pε(ε = (r, φ1, φ2, . . . , φn−1)) =

√
2√
π

exp(−r2/2)
1

Sn

n−2

∏
i=1

sin(φi)
n−1−i. (A6)

For our experiments, we are always working in Cartesian coordinates, so one has to
do a final transformation x = f (ε) and use the change-of-variables theorem. The Jacobian
of the n-dimensional spherical coordinate transformation is known:∣∣∣∣det

(
∂ f (ε)

∂ε

)∣∣∣∣ = rn−1
n−2

∏
i=1

sin(φi)
n−1−i. (A7)

Finally, we get

px(x) =
√

2√
πSn

exp(−r2/2)
n−2

∏
i=1

sin(φi)
n−1−i

(
rn−1

n−2

∏
i=1

sin(φi)
n−1−i

)−1

=

√
2√

πSnrn−1 exp(−r2/2)

=

√
2√

πSn‖x‖n−1 exp(−‖x‖2/2)

(A8)

as our radial Gaussian density.

Appendix A.2. Architecture for the Compressed Sensing Example

The multi-scale architecture used for the compressed sensing experiments used in
Section 3.1 consists of two learnable downsampling operations, each followed by a con-
ditional coupling block. After a flatten layer, a last dense conditional coupling block
is used.

cINN Output size

Learnable downsampling 4× 14× 14

Level 1 conditional section 4× 14× 14

Learnable downsampling 16× 7× 7

Level 2 conditional section 16× 7× 7

Flatten 784

Split: 656 to output 128

Level 3 dense-conditional section 128

In the conditional coupling section, we use an affine coupling layer and implement
the scale s and translation t using a small convolutional neural network with either 1× 1
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convolution or 3× 3 convolutions. After each affine coupling layer, we use a fixed 1× 1
convolution to permute the dimensions. For the dense coupling section, we use a simple
random permutation of the dimensions and affine coupling layers with dense subnetworks
s and t.

Conditional section

Affine coupling (CNN-subnet with 1× 1 kernel)

1× 1 convolution

Affine coupling (CNN-subnet with 3× 3 kernel)

1× 1 convolution

8×

Dense conditional section

Random permutation

Affine coupling (Dense-subnetwork)
3×

Appendix A.3. Evaluation Metrics

Appendix A.3.1. Peak-Signal-to-Noise Ratio

The peak-signal-to-noise ratio (PSNR) is measured by a log-scaled version of the mean
squared error (MSE) between the reconstruction x̂ and the ground-truth image x†. The
PSNR expresses the ratio between the maximum possible image intensity and the distorting
noise

PSNR
(

x̂, x†
)

:= 10 log10

(
L2

MSE(x̂, x†)

)
, MSE

(
x̂, x†

)
:=

1
n

n

∑
i=1

∣∣∣x̂i − x†
i

∣∣∣2
In general, higher PSNR values are an indication of a better reconstruction. The maxi-

mum image value L can be chosen in different ways. For the MNIST and the LoDoPab-CT
dataset, we compute the value per slice as L = max(x†)−min(x†). For evaluation on the
fastMRI dataset, we choose L as the maximum value per patient, i.e., per 3D volume.

Appendix A.3.2. Structural Similarity

The structural similarity (SSIM) [66] compares the overall image structure of the
ground truth and reconstruction. It is based on assumptions about human visual perception.
Results lie in the range [0, 1], with higher values being better. The SSIM is computed
through a sliding window at M locations

SSIM
(

x̂, x†
)

:=
1
M

M

∑
j=1

(
2µ̂jµj + C1

)(
2Σj + C2

)(
µ̂2

j + µ2
j + C1

)(
σ̂2

j + σ2
j + C2

) .

Here, µ̂j and µj are the average pixel intensities, σ̂j and σj are the variances, and
Σj is the covariance of x̂ and x† at the j-th local window. Constants C1 = (K1L)2 and
C2 = (K2L)2 stabilize the division. Just as with the PSNR metric, the maximum image
value L can be chosen in different ways. We use the same choices as specified in the
previous section.



J. Imaging 2021, 7, 243 24 of 27

Appendix A.4. Additional Figures

Figure A1. Intermediate activations from a single layer in a conditioning UNet model. (Top) cINN
Model trained with just the log-likelihood. (Bottom) cINN model trained with an additional loss for
the conditioning UNet. One can observe that the conditioning network focuses on different parts
of the image if no special loss is used. Otherwise, it produces activations that are close to the final
reconstruction. In addition, there are many empty activations.

Appendix A.5. Additional Results

Table A1. Mean and standard deviation of the PSNR and SSIM for the LoDoPaB-CT test set. Condi-
tioned mean computed with 1000 samples. Unless stated otherwise, training noise was applied and
no cond. loss was used.

LoDoPaB-CT

Model Base Distribution Train Noise PSNR SSIM

Multi-scale
Normal Yes 34.99± 4.26 0.830± 0.158

No 34.97± 4.28 0.830± 0.157

Radial Yes 34.89± 4.29 0.823± 0.161
No 34.65± 4.25 0.829± 0.161

iUNet
Normal Yes 34.69± 4.13 0.806± 0.151

No 34.98± 4.19 0.823± 0.148

Radial Yes 34.75± 4.23 0.819± 0.153
No 34.57± 4.40 0.830± 0.158

Cond. Loss

iUNet
Normal Yes 34.92± 4.19 0.810± 0.148

No 34.69± 4.13 0.806± 0.151

Radial Yes 34.99± 4.39 0.825± 0.159
No 34.75± 4.23 0.819± 0.153
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