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Abstract: This paper considers the issues of image fusion in a spatially distributed small-size on-
board location system for operational monitoring. The purpose of this research is to develop a new
method for the formation of fused images of the land surface based on data obtained from optical and
radar devices operated from two-position spatially distributed systems of small aircraft, including
unmanned aerial vehicles. The advantages of the method for integrating information from radar
and optical information-measuring systems are justified. The combined approach allows removing
the limitations of each separate system. The practicality of choosing the integration of information
from several widely used variants of heterogeneous sources is shown. An iterative approach is used
in the method for combining multi-angle location images. This approach improves the quality of
synthesis and increases the accuracy of integration, as well as improves the information content and
reliability of the final fused image by using the pixel clustering algorithm, which produces many
partitions into clusters. The search for reference points on isolated contours is carried out on a pair of
left and right images of the docked image from the selected partition. For these reference points, a
functional transformation is determined. Having applied it to the original multi-angle heterogeneous
images, the degree of correlation of the fused image is assessed. Both the position of the reference
points of the contour and the desired functional transformation itself are refined until the quality
assessment of the fusion becomes acceptable. The type of functional transformation is selected based
on clustered images and then applied to the original multi-angle heterogeneous images. This process
is repeated for clustered images with greater granularity in case if quality assessment of the fusion
is considered to be poor. At each iteration, there is a search for pairs of points of the contour of the
isolated areas. Areas are isolated with the use of two image segmentation methods. Experiments
on the formation of fused images are presented. The result of the research is the proposed method
for integrating information obtained from a two-position airborne small-sized radar system and an
optical location system. The implemented method can improve the information content, quality, and
reliability of the finally established fused image of the land surface.

Keywords: image segmentation; pixel clustering; fused image; small-sized on-board systems; contour
points; location information; unmanned aerial vehicle; spatially distributed systems

1. Introduction

Nowadays, there is a growing interest in the research and development of two-position
location-based on-board systems for land surface monitoring, especially for hard-to-reach
places, prompt notification of natural and man-made emergencies, and other environmental
disasters. These systems are based on small unmanned aerial vehicles (UAVs). The use of
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such systems makes it possible to achieve higher tactical and technical characteristics in
comparison with single-position systems [1–4].

A review of single-position radar modes has shown the significant complexity of
practical application of the known methods of terrain scanning [5,6]. In particular, use
the entire list of conditions presents itself to be problematic when designing operational
monitoring systems in a single-position version. The following functioning conditions of
such systems should be highlighted:

• the possibility of search time minimization when observing zones, with the subsequent
escort of the detected above-ground and ground objects on them, including people
in trouble;

• increasing the resolution both in the “range” coordinate and in the azimuth coordinate
in the quasi-real-time mode;

• provision of a low fixed false alarm probability when detecting physical objects
of interest.

The third requirement, in turn, imposes the condition for the separation of signal,
re-reflected from the land surface, against the background of noise and interference. In this
case, the signal/background noise ratio should be as high as possible [7–9]. The conditions
outlined above form the task of improving the existing modes of radar monitoring of the
land surface.

In turn, application of a two-position version of the on-board monitoring system
enables to reduce the review time, which is the main requirement in solving problems of
operational monitoring of the land surface [5,6,10]. To meet the first and third requirements,
actually it is advised to use the forward view to search for objects along the course of
movement of spatially distributed airborne radars, as described in [5,6,9]. The forward view
approach minimizes the time spent searching for areas and objects, crucial in operational
search and rescue operations.

When implementing a forward observation along the course of on-board radar systems
of a two-position system, it is important to consider, that its trajectory can be corrected
upon approach before the observed area will be treated as an emergency zone or an
environmental disaster zone. This aspect allows for time-savings when approaching
the area under observation, compared to the mapping methods in the side-view mode,
which would require a turn action, which would require additional time for exploration.
In addition, with the implementation of such an observation mode of a two-position
system and with the possibility of correcting the UAV’s movement when approaching the
emergency area, the distance to it decreases. As a result of a decrease in the range, the
signal/background ratio increases, hence, the third condition is satisfied.

The condition to increase the resolution in the azimuthal coordinate in real-time
mode, obtained through the implementation of a two-positional version of the land surface
observation in the forward viewing zone along the direction of movement of UAVs, is also
the main performance characteristic when performing operational monitoring tasks. A
similar requirement for the “range” coordinate got through the compression characteristics
of the frequency or phase-modulated radar echo signal [2,7,8]. Thus, the advantage of
small-sized spatially distributed airborne radar systems in terms of the implementation of
operational monitoring systems of the terrain is determined.

However, the radar data received from the UAV aircraft does not always reflect the
whole location setting in the observed area of the terrain. It is hard to solve the problems of
zone classification, object recognition, boundary detection of small objects, through radar
means [10]. In this regard, tasks of improvement of quality, accuracy, and information
content of displaying relevant information about the land surface are especially important.
One of the options for a qualitative increase in the information content of the land surface
is to use additional location sources of other physical nature [10–13] in combination with
radar facilities.



J. Imaging 2021, 7, 251 3 of 20

For these reasons, the development of multi-sensor and multi-position onboard loca-
tion systems, as well as operational monitoring methods on their basis becomes especially
urgent today.

Currently, there are several frequently used sources of location information using
multiple kinds of natural reflections. At the same time, none of these sources is unique and
suitable for displaying of the entire spectrum of the required integral picture of the location
situation behind the observed area.

In journals [14,15], presented to compare the main characteristics of sources of het-
erogeneous location information, namely radar, optical, laser, and ultrasonic. Among the
main characteristics of sources of location information are the following ones:

• distance to the object;
• the ability to detect objects in the near and far zones;
• the viewing angle;
• the ability to determine the radial and tangential speed;
• the ability to classify objects of interest;
• the influence of illumination and weather conditions on the quality of the information

received, as well as
• the ability to highlight the boundaries of objects of interest.

The result of studies [12,15] show that to fully satisfy the requirements for sources of
location information, the most effective approach is the combined use of different sources.
In this case the disadvantages of some sources are mitigated by the advantages of others.
It follows from data, presented in [10,12,14,15], that an effective integration option is to
combine information from radar and optical sources in a single entity. Such integration
enriches the information content when displaying the location settings in the observed areas
and relevant objects from the UAV boards, which includes the selection of detected objects,
determination of their coordinates, selection of motions of physical objects, including
people, as well as the implementation of high-precision mapping of the land surface with
the ability of classification of both observed areas and objects on them.

In addition, new solutions have recently been developed [16,17] that allow optical
images to get rid of their limitations, such as haze, fog, rain and snow droplets and other
particles floating in the air and getting into the visibility range of the optical location system.
These solutions mitigate the deterioration of visibility caused by bad weather conditions in
real time. Thus, it once again emphasizes that it is advisable to choose the fusion of optical
and radar images as the main sources of information.

Thus, it is noted that the mutual complementarity between radar and optical images
carries significant potential for applications of remote sensing of the terrain.

There exist some methods of forming fused images of the terrain [18,19], upon analysis
of which it should be concluded, that combining optical and radar images is more difficult,
than simply combining two optical images, since the values of pixel brightness in grayscale
on radar images do not adequately map to the values of pixel brightness on similar optical
images. The fusion of remote images is carried out because of the fusion of measuring
radar information (range, angle). The optical image does not contain this information, so
a different approach is required. Fusion of optical and radar images is a more difficult
process than a regular fusion of two optical or two radar images, since the values of pixel
brightness in grayscale in radar images do not correlate with the values of pixel brightness
in similar optical images. This is the significant difference in fusion of homogeneous and
heterogeneous images.

Methods and strategies for the formation of fused images can be conditionally divided
into three types [20]:

• aggregation at the pixel level;
• integration at the level of features;
• integration at the decision-making level.
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The peculiarity of aggregation at the pixel level is the possibility of using data from
a type of source of location information, which outweighs the disadvantages of the high
computational complexity of an integrated system.

The second type of integration requires the construction of a system for the isolation of
independent features, retrieved from each separate heterogeneous channel of information.
The implementation of this type of integration requires less computational overheads
compared to the first type, because the complex analysis of data from various sources of
location information is not required.

The third type of integration is implemented for each of the heterogeneous channels
on the basis of solutions determined separately according to information from the corre-
sponding heterogeneous sources. Since useful information and decisions are determined
independently in heterogeneous channels, this approach is less demanding on the data
co-registration quality.

Integration at the decision-making level is based on decisions made separately accord-
ing to data, acquired from each of the heterogeneous channels. Since data and decisions
are made in each channel independently, this method is less sensitive to the quality of
data co-registration. However, to ensure a higher quality of stacked complex images, the
accuracy of data processing in each channel must improve. This level was characterized by
the least computational complexity.

The ability to combine different types of data from heterogeneous sources of location
information, independence from errors at the stage of registration of this data, and accurate
methods of data combining can be mentioned as advantages of performing this task at
the decision-making level, rather than at other levels. There is a large body of research on
approaches to merging solutions for merging radar and optical data [21–24].

Fusion of radar and optical data from the relevant sources of location information
with their inherent differences requires the development of new methods and strategies for
the formation of complex images of this kind.

When fusing multi-angle images with a fixed number of reference points, the quality
of final fused image is unpredictable in advance, and further improvement is not feasible
even if the result is unsatisfactory. Therefore, in present research, a new fusion method
is proposed, which, in comparison with the other existing ones, allows establishing a
fused image of the terrain based on multi-angle heterogeneous images, using an adaptive
(iterative) mechanism. This mechanism improves the quality of synthesis and increases
the accuracy of integration, as well as the information content and reliability of the final
fused image by using the pixel-clustering algorithm, which generates many partitions
into clusters.

The original multi-angle images, taken by the onboard equipment of multi-positional
location systems are docked into a single composite image and, using the pixel clustering
algorithm, are reduced to several grayscale levels while retaining the characteristic bound-
aries. A particularity of the applied pixel clustering algorithm is the generation of a series of
image partitions into clusters because of a variable number of clusters. This feature allows
selecting the appropriate partition of pair of docked images from the generated series.

The search for reference points on isolated contours is performed on a pair of left and
right parts of the docked image from the selected partition. For these reference points,
a functional transformation is determined. Having applied it to the original multi-angle
heterogeneous images, the degree of correlation of the fused image is assessed. Both the
position of the reference points of the contour and the target functional transformation
itself are refined until the quality assessment of the fusion becomes acceptable. The type of
functional transformation is selected based on clustered images and then it is applied to the
original multi-angle heterogeneous images. This process is repeated for clustered images
with greater granularity in case if quality assessment of the fusion is considered to be poor.

The problem under consideration consists in the development of a new method for
fusion and processing of heterogeneous data received from sources of location information
based on different physical principles, that is, two-position radar systems using small-
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sized airborne radars and from optical-location systems based on controlled UAVs, to
improve the alignment accuracy, information content, and reliability of representation of
the location situation of the land surface. The method was developed to prove the concept
of an effective and reliable display of the location situation formed by a two-position system
in the forward viewing zones of the airborne radar and optical location system (OLS) while
preserving all the important qualities of the original images that complement each other.

2. Approach to Fusion Multi-Angle Optical and Radar Images

As discussed above, it is difficult to use the optical and radar systems separately for
the implementation from onboard systems for operational monitoring on the land surface.
In this regard, it becomes necessary to integrate optical radar information received from
multiple kinds of devices from the units of a spatially distributed UAV system.

Figure 1 structurally depicts two UAVs, each of which is equipped with sources of
location information included in a multi-position system. These sources are an airborne
radar system (ARS), which performs mapping by synthesizing an antenna aperture, and an
optical location system (OLS). The output of the operation of these heterogeneous location
systems is high-resolution location images.

Figure 1. Block diagram of the radio-optical complex.

In the flowchart in Figure 1, the following components are the main blocks for the
successful performance of the image fusion process in a radio-optical two-position complex
are shown. These are a high-speed information exchange channel between the UAV
equipment and the center for integrated processing and flight control (CIP&FC), systems
for radar image fusion, and optical image fusion.

In this block diagram, great importance is attached to a high-speed communication
channel, through which the images formed by the equipment of the on-board radar and
the OLS are exchanged both among themselves and are transmitted to the CIP&FC of the
UAV, since this data batch contains a fairly large amount of information. In addition, the
development of a wireless channel for a high-speed multi-position information exchange
system must include implementation of masking, compression, and coding algorithms
generated by the UAV equipment of images [25–29].

The functional essence of the fused image formation in a two-position UAV system is
as follows. Heterogeneous image of the observed area of the land surface are transmitted
via a wireless communication channel from each location system from the equipment
of the corresponding two-position location systems RLS1, RLS2, and OLS1, OLS2 of two
UAV crafts to the CIP&FC UAV. The preliminary preparation of the incoming images is
performed in CIP&FC. Next, a complex image has formed.
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Let us extensively consider the image fusion method. Its highlight is the use of an
algorithm for high-speed clustering of image pixels formed by the equipment of the location
devices of a multi-position UAV system. Figure 2 shows a flowchart of the implementation
of the method for the fusion of multi-angle and heterogeneous images. The essence of each
block is clear from its corresponding name.

Figure 2. Scheme of implementation of the method for fused image formation.

Next, let us consider in detail the image segmentation algorithms that underpin the
method for fusion of multi-angle and heterogeneous images of the land surface.

3. Image Segmentation and Border Isolation Methods

Segmentation involves image division into many different regions (clusters of pix-
els or image segments) in reference to standard features, for example, brightness, color,
gradient value, pixel location. The segmentation task refers to the preliminary stage of
image processing. In the chain of technological workflow, the next steps of isolation, object
recognition, scene analysis, and situation prediction depend on the segmentation results.
Segmentation is applied in many practical areas, such as healthcare, security systems,
remote sensing of the Earth’s surface, and other applications such as area search, 3D model-
ing, visualization, and navigation. In general, segmentation techniques provide a compact
representation of the data, such that all subsequent processing is performed at the region
(cluster or segment) level rather than at the pixel level, thereby minimizing computation.

In [30], a classification scheme for segmentation algorithms is given, based on parti-
tions number to an output of the algorithm. Here the segmentation algorithms are divided
into categories that return either a single partition or a series of partitions to the output.
Algorithms generating a set of partitions are of interest since one or several suitable parti-
tions can always be selected from a series. For example, [31,32] methods allow bypassing
the problems of under-segmentation and over-segmentation due to the variable number of
clusters being considered.

The clustering of color images is not implemented due to the high computational
complexity, which increases quadratically with the increase in the number of pixels within
the scope of this research. The clustering of grayscale images is applied. The latter approach
is implemented through multi-threshold processing [31], which sequentially enlarges the
adjacent groups of pixels in the brightness histogram.

There is no single generally accepted segmentation algorithm. For a specific task, either
a custom segmentation algorithm is developed, or several existing methods are selected. In
the present work, two image segmentation algorithms are applied, each of which fulfills
a specific task in the application of the image fusion method. For example, using the
multi-threshold processing algorithm [31], a series of piecewise-constant partitions of
varying degrees of detail into characteristic regions are generated. Each partition in the
series enables the granularity of the captured scene to varying degrees. To get a series,
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one or several suitable partitions are selected, on which the corresponding operation is
performed using the Canny edge detector [33]. This set of segmentation algorithms avoids
the previously mentioned over-segmentation and under-segmentation problems [34].

3.1. Multi-Threshold Processing

The idea of the multi-threshold method [31] used in this research is to sequentially
combine pairs of adjacent clusters on the brightness histogram. Initially, one column of the
brightness histogram corresponds to one cluster. All adjacent pairs of clusters are inspected
in one pass along the brightness histogram. The distance function is calculated for each
pair of clusters. At the end of each pass along the brightness histogram, a pair of adjacent
clusters with the minimum value of the distance function is combined. Each cluster is
characterized by the number of pixels in it and by the average brightness value.

In the original multi-threshold processing method [31], the function of the distances
between pairs of adjacent clusters calculated through the product of the intraclass and
interclass variances. The brightness histogram is considered as a function of the probability
density, which involves massive cumbersome calculations. In a modified version of the
multi-threshold processing method, a function of the distance between adjacent pairs of
clusters is the increment in the total squared error ∆E:

∆E =
n1n2

n1 + n2
|I1 − I2|, (1)

where n1 and n2—number of pixels in clusters 1 and 2, I1 and I2—average brightness of
pixel clusters 1 and 2. ∆E takes a minimum value of 0 when parameters I1 and I2 are equal
for any area of clusters 1 and 2. ∆E takes on a maximum value of 127.5 when the brightness
of clusters 1 and 2 take opposite values of 0 and 255 and, at the same time, the areas of
clusters 1 and 2 are unit ones: n1 = 1, n2 = 1.

Replacement of the distance function is reasonable for several reasons. First, the use
of the increment in the total squared error ∆E (1) halves the volume of accompanying
operations. Second, quality indicator of the current piecewise constant partitioning of the
image into clusters is the accumulated value of the total squared error E, which is calculated
through the value of the indicator of the previous partition:

Estep i = Estep i−1 + ∆Estep i, Estep 0 = 0. (2)

Thirdly, the application of the increment of the total squared error ∆E (1) entails a
change in the order of the sequence of combining clusters and, hence, the calculation of
other average values for the clusters. It is established, that the new sequence values of the
total square error, characterizing the quality of the partitioning into clusters, form a convex
curve throughout.

The total squared error E is related to the standard deviation σ by the equality:

σ =
√

E/M, (3)

where M—total number of pixels in image. Both values unambiguously characterize
the quality of the partition. However, the first one (Equation (2)) is convenient to use in
calculations, and the second one (Equation (3)) is convenient to display the results.

The original method [31] and its modification are applicable only for grayscale images.
In the general case, all partitions into clusters are generated within 256 passes over the
brightness histogram. In the particular case, when the number of non-empty gray levels is
equal to K < 256 and it is required to find a partition into t < K gray levels, (K−t) passes
over the brightness histogram are required.

3.2. Canny Edge Detector

Boundaries of previously isolated areas can be detected using several filters. The
simplest are convolution filters, for example, Sobel, Prewett, Roberts, Sharr, etc. There is
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no fundamental technological difference in the implementation of convolution filters. The
changes are applied to the convolution kernel only. Convolution filters have the advantage
of being easy to implement. However, highlighting a false border is a significant drawback.

The disadvantages of convolution filters are overcome by the Canny edge detector [33],
whose algorithm consists of five stages: smoothing, gradient detection, suppression of
“non-maximum” double threshold filtering, and boundary refinement. The first two stages
are generic. Smoothing can be performed not only with a Gaussian filter but also, with
a median filter. The situation is similar to the gradient search stage, which used various
convolution operators.

3.2.1. Smoothing Stage

Smoothing is performed by a Gaussian filter size of (2k + 1) × (2k + 1), where k is
the parameter of the side length of the filter kernel. Smoothing is necessary to avoid
false edges.

Тhe standard deviation σ must be specified to create a Gaussian filter kernel. The
larger is the σ value, the smoother is the target image. Elements h(i, j) of the Gaussian filter
kernel with coordinates (i, j) are determined by the formula:

h(i,j) =
1

2πσ2 exp
(
− (i − (k + 1))2 + (j − (k + 1))2

2σ2

)
,

(i, j) ∈ [1; 2k + 1].
(4)

The size of the Gaussian filter kernel affects the performance of the Canny edge
detector. The larger it is, the lower is the sensitivity of the Canny edge detector to noise.
But at the same time, with an increase in the kernel size, the error in the localization of the
edges increases insignificantly. Practice shows that kernel size of 5 × 5 (k = 2) is sufficient
for most cases.

3.2.2. Gradient Search Stage

The search for the gradient is carried out using the convolution of the original image
A with integer Sobel filters in the vertical and horizontal directions. Boundaries are marked
where the gradient of the image is at its maximum value.

The horizontal Gx and vertical Gy gradients are found as follows:

Gx =

 1 0 −1
2 0 −2
1 0 −1

× A, Gy =

 1 2 1
0 0 0
−1 −2 −1

× A. (5)

The modulus of the gradient vector is determined through the components of the
gradient (Gx, Gy) as follows:

|∇G| =
√

G2
x + G2

y . (6)

The direction of the gradient vector is defined as follows:

α(x, y) = arctg
(

Gy

Gx

)
, (7)

where α(x, y) is the angle between the direction at the point (x, y) and the Ox axis. The tilt
angle is rounded to the nearest 0, 45, 90, or 135 degrees.

3.2.3. Stage of “Non-Maximum” Suppression

In [34], the concept of “non-maximum” is introduced. The image pixels, in which the
maximum value of the local gradient in the direction reached, are called “maximums”. All
other pixels, in the local maximum of the gradient in which the direction is not reached, are
recognized as “non-maximum”. Pixels—“maximum” form boundaries preserved. “Non-
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maximum” values are suppressed. Since there are four directions of gradient change, each
case has its condition for recognizing a pixel as a “maximum”:

(a) When the angle α of the direction of the gradient is 0◦ or 180◦, a pixel is considered to
be a boundary-forming “maximum” if its intensity is greater than that of pixels located
above or below the considered one: ∇G(x− 1, y) < ∇G(x, y) > ∇G(x + 1, y);

(b) When the angle α of the direction of the gradient is 90◦ or 270◦, a pixel is considered to
be a boundary-forming “maximum” if its intensity is greater than that of pixels located
to the left or to the right of the considered one: ∇G(x, y− 1) < ∇G(x, y) > ∇G(x, y + 1);

(c) When the angle α of the direction of the gradient is 45◦ or 225◦, a pixel is consid-
ered a boundary-forming “maximum” if its intensity is greater than that of pix-
els located in the upper right and lower left corners of the considered one:
∇G(x− 1, y + 1) < ∇G(x, y) > ∇G(x + 1, y− 1);

(d) When the angle α of the direction of the gradient is 45◦ or 225◦, a pixel is considered
to be a boundary-forming “maximum” if its intensity is greater than that of pixels
located in the upper left and lower right corners relative to the considered one:
∇G(x + 1, y + 1) < ∇G(x, y) > ∇G(x− 1, y− 1).

3.2.4. Stage of Double Threshold Filtering

The Canny edge detector uses double threshold filtering to keep the “strong” data,
discard the “false” data, and check for “weak” boundaries in the next stage. The “strong”
are those boundaries, whose pixel brightness values are above the upper set filtering
threshold. Pixel brightness values of “false” boundaries are below the lower set threshold.
If the pixel brightness falls within the range between the upper and lower set thresholds,
such a pixel belongs to the “weak” border.

Depending on the set values of the threshold levels, the images of the boundaries at
the output of the Canny detector differ. At low thresholds, most of the boundaries will be
preserved, but the resulting image may be overly segmented. Conversely, at high threshold
values, pixels referred to as “weak” boundaries are lowered, and the boundary portrait
may be fragmented.

3.2.5. Stage of Boundary Refinement

The final stage corrects the double threshold filtering stage by revising the pixels
referred to as “weak” boundaries. The pixels of the “weak” borders are assigned to the
pixels of the “strong” ones when they touch in one of the eight directions with the pixels of
the “strong” border. Otherwise, pixels of “weak” edges are suppressed.

4. Experiments on Fusion of Multi-Angle Images

The source location images of the land surface, formed by the onboard equipment of
multi-position location systems, are multi-angle and heterogeneous ones (Figure 3a,b). The
fusion method includes the operation from joint pre-processing of a pair of original images
docked into a single composite image. The pixel clustering algorithm [31] enabled to reduce
several gray levels in the image, allowed the selection of some areas while preserving their
boundaries. Furthermore, the isolation of borders on the clustered image is done by an
appropriate filter.

The method of fusion multi-angle images, considered in this research, is based on
pairs of contour points and pairs of clusterized images. The workflow for joint clustering of
pixels implies that two original images are pre-docked (concatenated) into a single image.
The clustering allows for the selection of the same areas under different angles in a similar
way. The clustering procedure used in the present research generates a series of piecewise
constant partitions of the target image, transformed into pixel clusters. From the generated
series of partitions, a suitable partition is selected, which is back-divided into left and right
clustered multi-angle images. Selection of the partition begins from the smallest number of
clusters, progressively increasing the granularity of the selection. At the same time, at the
boundaries of the previously isolated areas on the separated pair of images (left and right
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clustered images), the search for control points is performed. Based on the selected pairs of
control points, a functional transformation is established. Then it is applied to the original
pair of multi-angle images. The search for functional transformation is repeated until
the decent quality of the fusion is achieved. A gradual increase in the pair’s granularity
of clustered images produces new boundaries and causes the definition of new pairs of
reference points on them.

Figure 3. Optical and radar images of the same area.

The first steps of the fusion method (see Figure 2) of multi-angle heterogeneous images
are presented in Figures 4–6. Figure 4 shows part of the results of clustering a composite
image, namely, partitions into 2, 3, 4 clusters from a full set of 256 clusters. Next, Figure 6
shows the results of implementation of Canny edge detector.

Figure 4. Part of a series of partitions of the docked optical and radar images into pixel clusters by means of
multi-threshold processing.
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Figure 5. The dependence of the values of the standard deviations σ on the number of clusters in the partition.

Figure 6. Boundary isolation by Canny edge detector on piecewise-constant partitions.
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4.1. Example of Multilevel Threshold Processing

Figure 4 shows part of the sequence of partitions of the original optical and radar
images into clusters by the multilevel threshold processing method [31]. In order to isolate
similar areas in different images in a similar way, in present research, the technique of
joint processing of two images is used. The original docked image is shown in the upper
left corner. It is obtained from the original optical image of the land surface converted
into grayscale and a color-inverted radar image of the same area. Conversion to grayscale
and color inversion enabled to bring identical objects in dissimilar images to the same
shades of gray. To the right of the original docked image is a part of the sequence of
partitions into clusters. Each partition is labeled with the number of clusters into which all
pixels of the original image are divided and contains the value of the standard deviation
σ characterizing the quality of the partition. The lower is the value of σ for the same
number of clusters, the better is the quality of the partition. It is clearly seen that the
same objects are isolated in a similar way already on docked partition into two clusters
(N = 2). A further increase in the number of clusters details the internal structure of the
caught-on-image objects.

For the original docked image shown in Figure 4, 256 piecewise-constant partitions
are available. Figure 5 shows the standard deviation σ curve corresponding to the entire
sequence of piecewise-constant partitions generated by the upgraded multi-threshold
processing algorithm.

4.2. Example of Border Isolation with the Canny Edge Detector

Figure 6 demonstrates the border isolation by the Canny edge detector on the original
docked image and on a part of a series of partitions into clusters. The boundaries were
isolated using the R2020b MATLAB software tooling (MathWork, Natick, Apple Hill
Campus, Massachusetts, MA, United States) in automatic mode. The smoothing parameter
σ is equal to

√
2. The lower filtration threshold is 0.01, the upper one is 0.1. Similar

to Figure 4, the original docked image is located in the upper left corner of Figure 6. Low
values of the filter thresholds highlighted the smallest differences in brightness. The
border image turned out to be oversaturated. Partitions, containing 2, 3 and 4 clusters
are located next to it. The boundaries isolated by the Canny edge detector on piecewise-
constant partitions and previously generated by the multi-threshold processing method
are highlighted in turquoise. Notice that the length of the border increases with the greater
granularity of each individual partition.

Preliminary use of pixel clustering generates image partition into clusters, merging
piecewise-constant areas and, accordingly, excluding borders. After that convolution
filters isolate left borders in image partition. There is no principal difference between
the convolutional filters used here. However, Canny edge detector was implemented in
present research. It requires specification of values of several parameters (smoothing, lower
threshold, upper threshold). The smoothing parameter equal to

√
2, lower threshold equal

to 0.01, upper threshold equal to 0.1 were selected empirically.
Further, it is necessary to find pairs of contour points on pairs of clustered images

with a highlighted border executing block 5 of the method presented in Figure 2. Figure 7
shows enlarged fragments of the same section of the observed zone on a partition with a
isolated border after clustering images (Ncl = 2). Pairs of control points similar in relative
position to each other on the contour were found on the isolated boundaries [35].

After the pairs of reference points on the contours are found, a functional transfor-
mation is fitted from them (block 6 of Figure 2), which is applied to the original images
(block 7 of Figure 2).

The eighth block of the method (see Figure 2) evaluates the quality of fusion of multi-
angle heterogeneous images and makes a decision on the acceptability of the quality of
fusion. Figure 8 depict the quality assessment step. The result of Figure 8 can be regarded
as unsatisfactory due to the significant discrepancy between the optical and radar layers
for Ncl = 3. If the result of the quality assessment is unsatisfactory, you should return to
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block 2 (see Figure 2) and choose a partition with a large number of clusters. Figure 8b
shows a satisfactory result. The layers match almost completely.

1 

 

 

Figure 7. Search for pairs of reference points of contour on a clustered pair of multi-angle images.

Figure 8. Cont.
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Figure 8. Assessment of the quality of the results of fusion of the original pairs of images with a
different number of clusters and, the respective reference points in the partition.

To assess the fusion quality, it is necessary to use the similarity function, which allows
assessing the degree of similarity of the contours of the characteristic areas of two different
images when establishing a fused image. For this, the calculation of the two-dimensional
cross-correlation function [36] of the contours of the clustered images is used. An ideal
two-dimensional normalized correlation function is characterized by a single peak of small
width at the origin. And outside this peak its values are equal to zero, which is achieved in
complete matching of the image contours. Obviously, in practice, the complete matching
of the contours of two different images practically cannot satisfy these properties, with
the exception of rare cases of combining simple landscapes of the terrain, due to the effect
of noise and distortions in the operational modes of onboard sources for generating of
location information.

Figure 9 shows a plot of the two-dimensional correlation function of the contours with
Ncl = 3 and Ncl = 9, respectively.

The acceptability of fusion accuracy value when implementing this method of fused
image establishment can be determined by the maximum modulus of the side lobes (MSL)
of the normalized two-dimensional correlation function.

In this case, for example, for Ncl = 3, the considered MSL turned out to be equal to
0.4439, and the root-mean-square error of contour matching is ±6–7 pixels. With Ncl = 9,
MSL turned out to be equal to 0.2084, and the root-mean-square error was ±3–4 pixels,
which corresponds to an acceptable estimate of the comparison error.

Figure 10 shows the result of the establishment of a fused two-layer image based on
combining the original images (optical and radar) obtained from the on-board location
devices of the multi-position system.
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Figure 9. Plot of two-dimensional correlation function.

Figure 10. The result of the fusion of optical and radar images.

In Figure 10, the original heterogeneous images are fused into a single complex image
by selecting the most important various components from both the original images. The
contours of the characteristic areas are highlighted in turquoise in Figure 10. The obtained
fused image contains two layers and has an optical and a radar layer. In this case, two
heterogeneous layers mutually complement each other and, depending on the goals of
onboard monitoring, each of the layers can be enhanced or weakened. Figure 10 illustrates
the case where the optical layer above the radar is more enhanced.

A similar experiment was performed for a pair of heterogeneous images shown in
Figure 11 (see Figure 12).
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Figure 11. Heterogeneous images of the terrain.

It is sensible to use the first case when clarifying the classification of the observed
areas, as well as ground and above ground objects. The second case is applicable for the
initial detection of objects in difficult weather conditions and seasonal visibility conditions,
as well as in conditions of destructive effects on the radar information channel. At the
same time, with different contrasts of heterogeneous images of the land surface applied,
structural changes in the landscape can be clearly distinguished when the digital map of
the area is updated.

Enhancement of the radar layer over the optical one is shown in the series of images in
Figure 13. In this case (Figure 12) the accuracy of fusion of two different-angle images was
±3–4 pixels when passing to the number of clusters Ncl = 5 and reaching the autocorrelation
lateral lobe level equal to 0.3156.

Thus, in this research, the options for the fusion of images from location sources of
different kinds were identified and implemented. The efficiency of the fusion of optical
and radar images into a complex one is established. Experiments on the formation of
the fused image are presented and the advantages of this approach are described in the
implementation of on-board systems for terrain monitoring.
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Figure 12. Fused image.

Figure 13. Cont.
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Figure 13. A series of fused images with varying degrees of enhancement of the radar or optical layer.

5. Conclusions

In this research, a method for construction of a fused image of the land surface for a
multi-positional location system for operational monitoring was developed.

The actual choice of a multi-position and multi-sensor system for real-time monitor-
ing of the land surface has been explained. The features of various sources of location
information, which are used widely in information integration systems, are considered. It
concluded that the fusion of radar and optical information in a single complex image can
potentially give a more complete and high-quality representation of the observed areas
and objects from the aircraft of the multi-position system.

The workflow of the integration process is given. The main block of this scheme is
related to the fusion radar optical images.

To combine heterogeneous multi-angle images, two segmentation methods are used
within an intermediate image processing procedure. The pixels of the original images
are clustered using the multi-threshold processing method. The execution of the applied
pixel clustering algorithm consists of sequential combination of pairs of adjacent clusters
on the brightness histogram. The applied pixel clustering algorithm generates a series of
partitions, in which the number of clusters gradually reduces from 256 to 1. One or more
appropriate partitions can be selected from the generated series. The corresponding filter
isolates the borders of the captured areas in the clustered images.

Two new ideas are proposed in this paper: (1) to process a combined image by pixel
clustering algorithm to select similar areas in different parts of the two images, that were
combines; (2) to select a functional transformation by the contour points selected in the
processed pair of clustered images, which is applied to the original images to complex
them. The method of complex image formation proposed in this paper can be adapted for
testing the algorithms of pixel clustering and complexing of formed images of the frame
stream recorded during full-scale tests by heterogeneous location data formation devices.

The implemented method allows us to increase information value, quality and relia-
bility of the finally created combined image of the earth surface.
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Experiments on the fusion of optical and radar images of the land surface based on the
search for pairs of points of the contours of clustered images are presented. The proposed
fusion method is applicable for operational monitoring to ensure environmental control,
implementation of search and rescue operations, and other terrain-related aerospace studies.
The results of combining heterogeneous (radar and optical) images presented in this work
are the basis for providing further research on combining of heterogeneous and different-
format information used in modern earth surface monitoring systems.
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