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Abstract: Convolutional neural networks (CNNs) have gained prominence in the research literature
on image classification over the last decade. One shortcoming of CNNs, however, is their lack of
generalizability and tendency to overfit when presented with small training sets. Augmentation
directly confronts this problem by generating new data points providing additional information.
In this paper, we investigate the performance of more than ten different sets of data augmentation
methods, with two novel approaches proposed here: one based on the discrete wavelet transform
and the other on the constant-Q Gabor transform. Pretrained ResNet50 networks are finetuned on
each augmentation method. Combinations of these networks are evaluated and compared across
four benchmark data sets of images representing diverse problems and collected by instruments
that capture information at different scales: a virus data set, a bark data set, a portrait dataset, and a
LIGO glitches data set. Experiments demonstrate the superiority of this approach. The best ensemble
proposed in this work achieves state-of-the-art (or comparable) performance across all four data
sets. This result shows that varying data augmentation is a feasible way for building an ensemble of
classifiers for image classification.

Keywords: data augmentation; deep learning; convolutional neural networks; ensemble

1. Introduction

Convolutional neural networks (CNNs) have revolutionized image classification. The
power of these networks lies in their ability to preserve the spatial properties of images
due to their highly parameterized and sparsely connected kernels. With these networks,
the spatial resolution of an image is systematically downsampled, while the depth of the
feature maps is simultaneously expanded. The result is a network that learns relatively
low-dimensional yet powerful representations of images that, in general, greatly surpass
the effectiveness of handcrafted features. The success of CNNs has led to its predominance
in contemporary literature. Nearly every task domain benefiting from computer vision
publishes new research reporting previously unattainable classification results using CNN
as a significant component in novel systems.

With this power comes a significant disadvantage, however. The problem is that CNNs
are prone to overfit on small data sets because of their massive numbers of parameters.
Overfitting occurs when the network perfectly models the training set but cannot generalize
its learning to predict the class of unseen data accurately. The overfitting problem has
generated a need and an expectation for large data sets and is one of the pressures escalating
data size growth. As noted in [1], data size is currently associated with research quality:
small sample sizes are often dismissed as lacking sufficient relevancy. Unfortunately, not
all domains can keep up with the new data size requirements and expectations. The
availability of large data sets, for example, is problematic in medical image analysis
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and bioinformatics. Collecting images in these areas is well-known to be costly and
labor-intensive.

Some workarounds for handling the problem of CNN overfitting include (1) transfer
learning, where the network is pretrained on a massive data set (such as ImageNet [2]
with its 14+ million images divided into over 1000 classes) and then finetuned for a
specific problem, and (2) data augmentation, where new samples are generated that are
representative of the different classes. Some other methods that reduce overfitting include
dropout [3], batch normalization [3], and zero-shot/one-shot learning [4,5].

According to Shorten, et al. [6], image augmentation, the focus of this study, strikes
at the heart of the problem of overfitting and aids generalizability by extracting more
information from the generation of more data points, a process that fosters continuous
learning. Consequently, augmentation has become a vital technology in many fields [6–8].

In [6], the authors divide image data augmentation into two major categories: basic
image manipulations (such as flipping, transposing, and color space manipulations) and
deep learning approaches (based, for example, on GANs). For reviews on the deep learning
approach in data augmentation, see [9,10]; and, for some recent GAN methods specifically,
see [11,12]. The aim of this study is to compare combinations of the best image manipula-
tion methods for generating new samples that the literature has shown works well with
deep learners. In Section 2, we review some of these methods. In addition, two novel
image-based data augmentation algorithms are proposed: one using the Discrete Wavelet
Transform (DWT) and the other the Constant-Q Gabor (CQT) transform [13]. As described
in Section 3, a separate pretrained ResNet50 network is finetuned on the original training
set and the new images generated by each of the augmentation algorithms. Ensembles are
built from combinations of these networks and evaluated across four benchmarks: a virus
data set (VIR) [14], a portrait dataset (POR) [15], a tree bark image data set (BARK) [16], and
a LIGO glitches data set (GRAV) [17]. As reported in Section 4, the best ensemble proposed
in this work achieves state-of-the-art (or comparable) performance across all three.

In brief, the main contributions of this study are the following:

• An evaluation across four benchmarks of some of the best augmentation methods
based on image manipulations;

• The introduction of two new augmentation methods utilizing the DWT and CQT trans-
forms (DWT achieves a top performance of 98.41% accuracy on the GRAV data set);

• An experimentally derived ensemble that achieves state-of-the-art performance on
the VIR (90.00%), BARK (91.27%), POR (89.21%), and GRAV (98.33%) benchmarks.
This result shows that varying data augmentation is a feasible way for building an
ensemble of classifiers for image classification.

• Access to all the MATLAB source code for the experiments reported in this work
(available at https://github.com/LorisNanni, accessed on 24 November 2021).

2. Related Works

In [6], basic image manipulations are broken down into the categories of kernel filters,
color space transforms, geometric transformations, random erasing/cutting, and mixing
images. These image manipulations are relatively easy to implement, but caution must be
taken to preserve labels when using these transformations (flipping, for example, would
change class “six” images in a written number data set to class “nine” and vice versa).
Indeed, one of the most popular geometric transforms for data augmentation is flipping,
especially horizontal flipping [6]. Other geometric transforms include translating and
rotating an image to create new samples [18–20]. For augmentation purposes, rotation is
best performed on the right or left axis in the range [1◦, 359◦] [6]. Translating by shifting up,
down, left, and right focuses on different areas in the image and effectively averts positional
bias in a set of images. Translation, however, often adds noise [21]. Similar in effect to
translation is random cropping, which randomly samples a section of the original sample.
Cropping has the additional advantage of reducing the size of the generated images if
desired. Noise injection creates new images by inserting random values into them, an

https://github.com/LorisNanni


J. Imaging 2021, 7, 254 3 of 13

augmentation technique that has been explored extensively in [22]. For a comparison
of geometric augmentations on AlexNet tested on ImageNet and CIFAR10 [23], see [19];
the authors in this comparison study show that rotations perform better than the other
geometrical transforms discussed above.

Color often contains valuable information as witnessed by the many databases dedi-
cated to exploring color texture: Outex [24], VisTex [25], USPtex [26], Stex [27], NewBark-
tex [28], KTH-TIPS 2b [29], Parquet [30] and more recently T1K+ [31]). Through color
space transformations, biases in images based on illumination can be obviated [6]. For
example, the pixels in the color channels of an RGB image can be put into a histogram
and manipulated by applying filters to change the color space characteristics, a process
that generates new samples. Color spaces can also be converted into one another for
augmentation purposes, but care should be taken when transforming an RGB image into
a grayscale version since this transformation has been shown to reduce performance by
as much as 3%, according to [32]. Color distributions can also be jittered, and brightness,
contrast, and saturation can be adjusted to make new images [18,19]. One disadvantage
of using color space transformations is the risk of losing information. For a comparison
between geometric and color space augmentations, see [33].

Kernel filters blur and sharpen images by sliding an n× n window across the image
with a Gaussian blur or some other type of filter. A novel kernel filter called PatchShuf-
fle that randomly swaps the matrix values in the window has also been applied with
success [34].

Mixing images is another basic manipulation method that either averages pixel values
between images [35] or transforms images and mixes them together in chains [36], masks, or
in some other way. In [35], random images were cropped and randomly flipped horizontally.
The pixel RGB channel values were then averaged to produce a new image. In [37],
nonlinear methods were introduced to combine new samples. Finally, in [38], GANs were
used to mix images.

Similar to random cropping, random erasing [39] and cutting [40] helps with gener-
alizability by occluding images, beneficial since objects rarely appear in full form in the
world. In [39], the authors proposed randomly erasing patches of arbitrary size in an image.
This augmentation technique was evaluated on several ResNet architectures trained on
CIFAR10, CIFAR100, and Fashion-MNIST, and results showed consistent performance
improvements. For a survey of the literature on image mixing and data erasing, see [7].

Finally, it should be noted that some data augmentation techniques are performed
considering the entire training set. Principal component analysis (PCA) jittering, for in-
stance, multiplies the principal components of an image by a small number [18,19,33,41,42].
In [33], for instance, the first PCA component was multiplied by a random number from a
uniform distribution. In [41], new samples were generated by projecting an original image
onto a PCA or discrete cosine transform (DCT) subspace, adding noise to the components,
and then reconstructing the altered images back into the original space.

3. Materials and Methods
3.1. Proposed Approach

Consulting Figure 1, our proposed approach can be described in the following way.
A given image in a training set is augmented using n augmentation methods, where
n ∈ (0, 1, . . . 11). The eleven augmentation methods are outlined in Section 3.2, and several
combinations of these methods are experimentally investigated as described in Section 4.
The original images, along with the new images generated by each augmentation method,
are finetuned on separate pretrained ResNet50 [43] networks, with various combinations
fused by sum rule. ResNet50 was chosen because of its low computation time to train.
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data augmentation methods, with networks fused by sum rule.

ResNet50 is a residual learning network that has 48 Convolutional layers along with
1 MaxPool and 1 Average Pool layer for a total of 50 (see Figure 2). This network can train
many layers because of the addition of skip connections. In this work, each ResNet50 was
pretrained on ImageNet and finetuned with a batch size of 30 and a learning rate of 0.001.
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Figure 2. Schematic of ResNet50.

3.2. Data Augmentation Methods

We increased the number of images in our data sets using eleven data augmentation
protocols (App1–11), as detailed below. Images of some of the more traditional augmenta-
tion methods on the BARK data set are provided in Figure 3. Examples specific to App5
and the proposed methods are available in Figures 4–6 using the GRAV data set.

App1. The original image is first randomly reflected in the left-right and the top-
bottom directions. Subsequently, it is linearly scaled along both axes by two different
factors randomly extracted from the uniform distribution [1,2].
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App2. This method combines App1 with (a) image rotation, (b) translation, and
(c) shear. The rotation angle is randomly extracted from [−10, 10] degrees. The translation
shifts along both axes with the value randomly sampled from the interval [0, 5] pixels. The
vertical and horizontal shear angles are randomly sampled from the interval [0, 30] degrees.

App3. This augmentation method is the same as App2 but without shear.
App4. This method uses PCA and is the method described in [41]. The PCA space is

built on the training data only. Three perturbation methods are applied to alter the PCA
coefficients representing the original image vector; these perturbations generate a new



J. Imaging 2021, 7, 254 6 of 13

feature vector and consequently a new image after the perturbed vector is reconstructed.
The first perturbation method consists of randomly setting to zero (with a probability 0.5)
each element of the feature vector. In the second perturbation method, noise is added using
the following MATLAB code, where PrImg is the PCA projected image:

noise = std(PrImg)/2;
K = img;
K = K + (rand(size(K))-0.5).*noise;
For the third perturbation method, five images are randomly extracted from the

same class as the original image. All six images are PCA-transformed, and some of
the components of the original image are exchanged with some of the corresponding
components taken from the five other feature vectors. Each element of the five images
replaces the original element with a probability of 0.05.

Since we have three channels for each color image, these perturbations are applied to
each channel independently. In this way, App4 produces three augmented images from
each original image.

App5. This augmentation method uses the same perturbation method as those de-
scribed in App4, but the DCT is applied instead of PCA. The DC coefficient is never
changed. Example images produced by using DCT are provided in Figure 4.

App6. This method uses contrast augmentation, sharpness augmentation, and color
shifting. The contrast augmentation linearly scales the original image between two values,
a and b (with a < b) provided as inputs. These two values represent the lowest and the
largest intensity values in the augmented image. Every pixel in the original image with
intensity less than a (or greater than b) is mapped to 0 (or 255). The sharpness augmentation
first blurs the original image by a Gaussian filter with variance equal to one, and then it
subtracts the blurred image from the original one. The color shifting method simply takes
three integer numbers (shifts) from three RGB filters. Each shift is added to one of the three
channels in the original image.

App7. This method produces seven augmented images from an original image.
The first four augmented images are made by altering the pixel colors in the original
image using the MATLAB function jitterColorHSV with randomly selected values for
hue (in the range [0.05, 0.15]), saturation (in the range [−0.4, −0.1]), brightness (in the
range [−0.3, −0.1]), and contrast (in the range [1.2, 1.4]). The fifth augmented image is
simply a gaussian-filtered version of the original one generated with the MATLAB function
imgaussfilt. The Gaussian filter has standard deviation randomly ranging in the range
[1, 6]. The sixth augmented image is produced by the MATLAB function imsharpen with
the radius of the Gaussian lowpass filter equal to one and the strength of the sharpening
equal to two. A further augmented image is produced by the color shifting described
in App6.

App8. This method produces two augmented images starting from the original image
and a second image (the target image) randomly extracted from the same class of the
original one. The two augmented images are generated using two methods based on the
nonlinear mapping of the original image on the target: RGB Histogram Specification and
Stain Normalization using Reinhard Method [44].

App9. This method generates six augmented images using two different methods
of elastic deformation: one in-house method and an RGB adaptation of ElasticTransform
from the computer vision tool Albumentations (available at https://albumentations.ai/
(accessed 15 October 2021). Both methods augment the original image by applying a
displacement field to its pixels. The in-house method consists in defining, for each pixel
in the original image, the displacement field ∆x(x, y) = αrand(−1,+1) and ∆y(x, y) =
αrand(−1,+1), where α is a scaling factor that depends on the size of the original image
(here 7000, 1000, and 13,000) and rand(−1,+1) represents a random value extracted from
the standard uniform distribution in [−1, 1]. In the case of non-integer α values, bilinear
interpolation is applied. Because of the randomness of the displacement of each pixel,
this method introduces distortions in the augmented image. The second method addi-

https://albumentations.ai/
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tionally uses the displacement field ∆x(x, y) = rand(−1,+1) and ∆y(x, y) = rand(−1,+1)
defined for each of the pixels in the original image. The horizontal ∆x and the vertical
∆y displacement fields are then filtered by means of one of the following three low pass
filters: (1) circular averaging filter, (2) rotationally symmetric Gaussian lowpass filter, and
(3) rotationally symmetric Laplacian of Gaussian filter. Finally, each of the two filtered
displacement matrices is multiplied by the standard α = 3000 and applied to the original
image, as in the previous method (α was not optimized because it worked well with the
required size of images, which is 224 × 224 for RenNet50)

App10 (NEW). To our knowledge, this augmentation approach is proposed here for
the first time. It is based on DWT [45] with the Daubechies wavelet db1 with one vanishing
moment. DWT produces four 114× 114 matrices from the original image, containing the
approximation coefficients (cA) and the horizontal, vertical, and diagonal coefficients (cH,
cV and cD, respectively). Three perturbation methods are applied to the coefficient matrices.
In the first method, a random number of matrix elements is set to zero for each matrix (each
element with a probability of 50% is set to zero). The second method computes an additive
constant as the standard deviation of the original image and a random number in the range
[−0.5, 0.5]. This constant is then added to all the elements in the coefficient matrices. The
third method selects five additional images from the same class as the original image and
applies DWT. This process produces four coefficient matrices for each additional image.
Next, each element of the original cA, cH, cV, and cD matrix is replaced (with probability
0.05) with elements from the additional image coefficient matrices. Finally, the inverse
DWT is applied, generating three augmented images from the original one. Example
images produced by applying this novel augmentation approach are provided in Figure 5.

App11 (NEW). To our knowledge, this augmentation method is proposed here for
the first time. It is based (CQT) [13], which returns a 116× 12× 227 tridimensional CQT
array. Like App10, three different perturbations are applied to the CQT array. The first
one sets to zero a random number of elements in the CQT vector as in App10. The second
perturbation computes an additive constant as the sum of the original image standard
deviation and a random number in the range [−0.5, 0.5]. This constant is then added to
each of the 227 bidimensional 166× 12 matrices that constitute the CQT vector. Finally,
the third perturbation computes the CQT of five additional images from the same class as
the original image and replaces (with probability 0.05) each value in the CQT vector of the
original image with CQT vector elements from the additional CQT-transformed images.
Finally, the inverse CQT transform is applied, thereby producing three augmented images
from the original one. Example images produced by applying this novel augmentation
method are provided in Figure 6.

In Table 1, we report the number of artificial images added to each image in the
original training set using the eleven approaches described above.

Table 1. Number of artificial images created by each data augmentation method.

Data Augmentation Method Number of Generated Images

App1 3
App2 6
App3 4
App4 3
App5 3
App6 3
App7 7
App8 2
App9 6
App10 3
App11 3

Note: The number of generated images is per image in the training set. As an example, if a training set has
1000 images, then App1 would build an additional 3 × 1000 images. Thus, the final training set would be 1000
(the original number in the training set) plus the 3000 images generated by App1.
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3.3. Data Sets

Benchmark data sets were selected for testing the different augmentation approaches.
These data sets were chosen for the following reasons: (1) the data sets represent very
different image classification problems, (2) images were collected with instruments that
capture information at significantly different scales, and (3) they are publicly available and
easy to access. The performance indicator for all data sets is accuracy.

In the descriptions of the data sets that follow, the names in boldface are the abbrevia-
tions used in the experimental section. These abbreviations are intended to be descriptive
and reduce clutter in the tables reporting results.

VIR [14] is a popular virus benchmark containing 1500 Transmission Electron Mi-
croscopy (TEM) images (size: 41 × 41) of viruses. This data set is available at https:
//www.cb.uu.se/~gustaf/virustexture/ (accessed on 15 October 2021). The images in
VIR are divided into fifteen classes representing different species of viruses. This virus
collection contains two separate data sets: (1) the object scale data set (VIR) where the
size of every virus in an image is 20 pixels and (2) the fixed scale data set where each
pixel corresponds to 1 nm. Only the object scale data set is publicly available; the other is
proprietary and thus not a benchmark.

BARK [16] is a relatively new data set that has reached benchmark status because
it contains more than 23,000 high-resolution images (~1600 × 3800) of bark taken from
twenty-three Canadian tree species, making it is the largest public data set of bark images.
Bark-101 is available at http://eidolon.univ-lyon2.fr/~remi1/Bark-101/ (accessed on
15 October 2021). Each sample was collected in a region close to Quebec City and annotated
by an expert. Care was taken to collect samples from trees located in different areas of the
region under different illumination conditions and at widely varying scales.

GRAV [17] is another recent data set collected by the Gravity Spy project that is
continuously evolving. The version used in this study is GravitySpyVersion1.0. located at
https://www.zooniverse.org/projects/zooniverse/gravity-spy (accessed on 15 October
2021). The images in GRAV are related to the detection of gravitational waves via ground-
based laser-interferometric detectors that are sensitive to changes smaller than the diameter
of an atomic nucleus. Although these detectors are state of the art, they are still susceptible
to noise, called glitches, that impede the search for gravitational waves. The goal of
the Gravity Spy project is to detect and classify a comprehensive set of these glitches
into morphological families (with such descriptive names as Power Line, Paired Doves,
Scratchy, and Whistle) by combining the judgments of scientists and machine learning
algorithms. GRAV contains 8583 time-frequency images (size: 470 × 570) of LIGO glitches
with metadata organized into twenty-two classes. GRAV has training, validation, and
testing sets to facilitate comparisons between machine learning algorithms. Four different
views at different durations can be extracted from each glitch.

POR [15] is a data set that contains 927 paintings from six different art movements:
(1) High Renaissance, (2) Impressionism, (3) Northern Renaissance, (4) Post-Impressionism,
(5) Rococo, and (6) Ukiyo-e. The authors of this data set report a best accuracy rate of
90.08% using a ten-fold cross-validation protocol and a method that combines both deep
learning and handcrafted features.

4. Experimental Results

In the experiments reported in Table 2, we compare the results of ResNet50 coupled
with different data augmentation approaches. We also report the performance of the
following ensembles:

1. EnsDA_all: this is the fusion by sum rule among all the ResNet50 trained using all
eleven data augmentation approaches; a separate ResNet50 is trained for each of the
data augmentation approaches. The virus data set has gray level images; for this
reason, the three data augmentation methods based on color (App6–8) perform poorly
on VIR, so these methods are not used for VIR.

https://www.cb.uu.se/~gustaf/virustexture/
https://www.cb.uu.se/~gustaf/virustexture/
http://eidolon.univ-lyon2.fr/~remi1/Bark-101/
https://www.zooniverse.org/projects/zooniverse/gravity-spy
https://www.zooniverse.org/projects/zooniverse/gravity-spy
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2. EnsDA_5: this is a fusion where only five ResNet50 networks are trained, a separate
one on the first five data augmentation approaches (App1–5).

3. EnsBase: this is a baseline approach intended to validate the performance of EnsDA_all;
EnsBase is an ensemble (combined by sum rule) of eleven ResNet50 networks each
trained only on App3, selected because it obtains the highest average performance
among all the data augmentation approaches.

4. EnsBase_5: this is another baseline approach intended to validate the performance of
EnsDA_5; it is an ensemble of five ResNet50 with each coupled with App3.

Table 2. Performance (accuracy) of the different configurations for data augmentation.

DataAUG VIR BARK GRAV POR

NoDA 85.53 87.48 97.66 86.29
App1 87.00 89.60 97.83 87.05
App2 86.87 90.17 98.08 85.97
App3 87.80 89.45 97.99 87.05
App4 86.33 87.91 97.74 84.90
App5 86.00 87.61 97.83 86.41
App6 – 88.63 98.08 87.37
App7 – 89.28 97.99 88.13
App8 – 87.29 97.74 86.06
App9 85.67 88.86 98.24 86.19
App10 84.20 86.39 98.41 85.10
App11 85.47 89.20 97.91 86.71

[29] 82.93 – – –

[33] 83.07 – – –

EnsDA_all 90.00 91.27 98.33 89.21
EnsDA_5 89.60 91.01 98.08 88.56
EnsBase 89.73 90.67 98.16 87.58

EnsBase_5 89.60 90.66 97.99 87.48

State of the art 89.60 90.40 98.21 80.09/90.08 *
* As noted above, for fair comparison, 80.09 is the best performance using their deep learning approach, but
90.08 was obtained when combining handcrafted with deep learning features. Note: the virus data set has gray
level images; for this reason, the three data augmentation methods based on color (App7–8) perform poorly on
VIR, so these methods are not reported for this data set. Additionally, because of the low performance on VIR,
[29,33] are not tested on BARK, GRAV, and POR. Bold values highlight the best results.

The first row of Table 2 (NoDA), reports performance obtained by a ResNet50 without
data augmentation. The last row of Table 2 (State of the art) reports the best performance
reported in the literature on each of the data sets: VIR [46], BARK [47], GRAV [17], and
POR [15]). In [46], which reports the best performance on VIR, features were extracted from
the deeper layers of three pretrained CNNs (Densenet201, ResNet50, and GoogleNet), trans-
formed into a deep co-occurrence representation [48] and trained on separate SVMs that
were finally fused by sum rule. As the deeper layers of a CNN produce high-dimensional
features, dimensionality reduction was performed using DCT [49]. In [47], which obtains
the best performance on the BARK data set, a method based on 2D spiral Markovian texture
features (2DSCAR) via multivariate Gaussian distribution was trained on a 1-NN with
Jeffery’s divergence as the distance measure. In [47], which provides the best performance
on GRAV, several ensembles were built from extracted views using a set of basic classifiers
that included an SVM and two merge-view models proposed in [50]. The best performing
ensemble in that study was fused by weighted sum rule. In [15], the authors obtain 80.09%
on POR using their deep learning approach (the focus here) and 90.08% when combining
handcrafted with deep learning features. For fair comparison, the 80.09% on the deep
learners should be compared with our method.

Examining Table 2, the following conclusions can be drawn:
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• Data augmentation approaches strongly boost performance, as evident by comparing
the ensembles using augmentation to the low performance of NoDA (well known in
the literature).

• There is no clear winner among the data augmentation approaches; in each data set,
the best method is different.

• The best performance is obtained by EnsDA_all; this ensemble obtains the best perfor-
mance, even when compared with the state of the art, on all the data sets. This result
shows that varying data augmentation is a feasible way for building an ensemble of
classifiers for image classification.

• Refs. [29,33], two previous methods for data augmentation based on PCA, clearly
works poorly compared with our PCA-based approach.

Finally, in Tables 3 and 4, we compare EnsDA_all with the best reported in the
literature for VIR and BARK. As can be observed, our proposed method obtains state-of-
the-art performance.

Table 3. Performance (accuracy) compared with the best in the literature on the VIR data set.

EnsDA_all [46] [51] [52] [53] [54] [14] [53] [55]

90.00 89.60 89.47 89.00 88.00 87.27 87.00 * 86.20 85.70
Note: the method notated with * combines descriptors based on both object scale and fixed scale images (as noted
in Section 3.3, the fixed scale data set is not publicly available); yet, even with this advantage, our proposed
system outperforms [14].

Table 4. Comparison with the literature, BARK data set.

EnsDA_all [56] [57] [47] [16]

91.27 48.90 85.00 90.40 85.00

In [17], the best reported performance by the ensemble proposed in that paper was
98.21%, lower than our 98.33%.

5. Discussion

The goal of this study was to compare combinations of the best image manipula-
tion methods for generating new image data points. Original images and sets of many
augmented images were trained, each on a separate ResNet50 network. In addition, two
new augmentation methods were proposed: one based on the DWT and the other on the
CQT transform. These networks were compared, combined, and evaluated across four
benchmarks representing diverse image recognition tasks. The best ensemble proposed in
this work achieved state-of-the-art performance across all four benchmarks, with the new
data augmentation method based on DWT alone achieving top performance on one of the
data sets.

This study demonstrates the power of combining data augmentation for increasing
CNN performance. The method developed in this paper should perform well on many
image classification problems. However, we recognize that the results reported here use
only a few image manipulation methods for data augmentation and were tested on only
four data sets. Based on the results reported in this study, our plans for the future include
testing more sets of data augmentation approaches, including those based on deep learners,
such as GANS, across many more data sets.
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