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Abstract: The recent spread of Deep Learning (DL) in medical imaging is pushing researchers to
explore its suitability for lesion segmentation in Dynamic Contrast-Enhanced Magnetic-Resonance
Imaging (DCE-MRI), a complementary imaging procedure increasingly used in breast-cancer analysis.
Despite some promising proposed solutions, we argue that a “naive” use of DL may have limited
effectiveness as the presence of a contrast agent results in the acquisition of multimodal 4D images
requiring thorough processing before training a DL model. We thus propose a pipelined approach
where each stage is intended to deal with or to leverage a peculiar characteristic of breast DCE-
MRI data: the use of a breast-masking pre-processing to remove non-breast tissues; the use of
Three-Time-Points (3TP) slices to effectively highlight contrast agent time course; the application
of a motion-correction technique to deal with patient involuntary movements; the leverage of a
modified U-Net architecture tailored on the problem; and the introduction of a new “Eras/Epochs”
training strategy to handle the unbalanced dataset while performing a strong data augmentation. We
compared our pipelined solution against some literature works. The results show that our approach
outperforms the competitors by a large margin (+9.13% over our previous solution) while also
showing a higher generalization ability.

Keywords: breast; DCE-MRI; eras/epochs; lesion segmentation; UNet; 3TP

1. Introduction

World Cancer Research Fund reports [1] indicate breast cancer as the most common
among women, with about 25% of all cancer occurrences. Still today, early diagnosis
represents a key factor for reducing death rates since breast cancer usually develops
and spreads unhindered, showing symptoms only in advanced stages [2]. The World
Health Organization (WHO) recommends mammography as breast cancer’s main screen-
ing methodology [3], thanks to its high resolution and detection ability. Nonetheless, in the
last years, researchers are focusing on the use of other imaging techniques, mostly because
of (i) mammography’s non-suitability for under-forty women, since density may lead to
over-diagnosis, and (ii) because of the use of ionising radiations. Among all medical imag-
ing techniques, Dynamic Contrast-Enhanced Magnetic-Resonance Imaging (DCE-MRI) is
showing promising results for the early detection of different types of tumours [4], proving
particularly suitable for breast-cancer detection in women with extremely dense breast
tissue [5]. DCE-MRI leverages a contrast agent (CA) to highlight the tissues’ vasculari-
sation physiological and morphological characteristics [6]. In particular, since the CA is
a (super)paramagnetic liquid characterised by specific absorption and release times, its
spread at different speeds highlights lesions over healthy tissues.

A typical DCE-MRI study requires the scan of multiple (at least two) 3D volumes,
before (pre-contrast) and after (post-contrast) the CA intravenous injection. Therefore,
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a DCE-MRI scan can be considered as a 4D multimodal volume (Figure 1a) having three
(x, y, z) spatial and a single (t) temporal dimensions. As a result, each DCE-MRI voxel (an
over-time 3D pixel) is associated with a time intensity curve (TIC—Figure 1b) reflecting the
absorption and the release dynamic of the CA, as a function of the tissue-vascularisation
characteristics [6].

t 0
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tT

X

Y

Z

(a) (b)

Figure 1. A breast DCE-MRI study and an illustrative time intensity curve. On the left (a), the 4D
multimodal volume, with the signal intensity variations reflecting the contrast agent flow over time.
On the right (b), the corresponding (illustrative) time intensity curve for a single voxel. The vertical
line separates the pre-contrast (early) from post-contrast injection instants.

If, on the one hand, the DCE-MR imaging procedure is proving to be effective in
tumour diagnosis, the flip side of the coin is in the huge amount of produced data and
in its long acquisition times. While the former might only impact the processing time,
the latter is more problematic since it can introduce motion artefacts due to inevitable
patient movements. These drawbacks can make the DCE-MRI data tough to analyse
without the support of a computer-aided detection (CAD) system aimed at supporting the
physician in the inspection of biomedical images. CAD systems consist of several modules,
each intended to perform a given task. In the case of breast DCE-MRI, one of the hardest
tasks is the lesion segmentation, namely, the pixel-wise identification of a suspected region
of interest (ROI) [7]. Indeed, with the spread of high-precision tasks, such as MRI-guided
robotic surgery [8], neoadjuvant chemoradiation [9], etc., the coarse lesion detection is no
longer sufficient (see Section 2).

As with many other computer vision tasks, several CAD systems make use of machine
learning to provide automatic breast lesion segmentation. Moreover, with the spread of
Deep Learning (DL), new studies have recently been conducted to explore its applicability
to this task, intending to exploit their effectiveness of autonomously learning a suitable set
of features for the task under analysis. Despite some works showing promising results [10],
we argue that solutions based on a “naive” use of DL might have limited effectiveness
as the presence of a contrast agent results in the acquisition of multimodal 4D images
requiring thorough processing before training a DL model. Indeed, we strongly believe
that the intrinsic physiological characteristics of DCE-MRI data should be considered to
design a method able to properly exploit all the available information. With this aim in
mind, we thus propose a pipelined approach designed to:

• leverage the Three-Time-Points (3TP) [11] method to take into account for the contrast
agent course without imposing hard constraints on the total number of acquired
post-contrast series;

• make use of a motion-correction Technique tMCT) to deal with patient involun-
tary movements;
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• exploit an innovative training schema, introduced for the first time in this study, which
was conceived to perform data augmentation and class balancing in the contest of
medical data while acting as training regularization;

• perform the lesion-segmentation task by means of a modified U-shaped CNN [12].

With respect to our previous work [13], where we first introduced the idea of 3TP slices
for lesion segmentation in breast DCE-MRI, here we present a more-complete solution
that also takes into account motion artefacts, data balancing, and augmentation. The re-
sulting pipeline, as described in Section 4, allows us to increase both the segmentation
effectiveness and the generalization ability, outperforming all the considered competitors
by a large margin. The article continues as follows: Section 2 concisely explores the lesion-
segmentation literature; Section 3 describes the proposed 3TP U-Net approach; Section 4
reports the obtained results, comparing them against some state-of-the-art competitors;
finally, Section 5 discusses the obtained findings and provides some conclusions.

2. Related Works

With the aim of better framing our work, we briefly provide a summary of the
most-cited DCE-MRI automatic breast lesion-segmentation approaches so far proposed.
The lesion-segmentation task consists in classifying each voxel as belonging or not to a
lesion, generating a binary mask whose function is to precisely identify the lesion. The re-
sult is a region of interest (ROI) delimiting a tumour lesion (i.e., a portion of tissue) that
should be further investigated to determine its aggressiveness. Lesion segmentation is thus
different from lesion detection, whose aim is to simply identify the rough portion of tissues
(e.g., with a bounding box) potentially affected by a lesion. Over the years, researchers are
more and more focusing on the segmentation task (Figure 2), mostly as a result of the need
for precise lesion localization as input to automatic lesion-ablation procedures.

Figure 2. Number of studies published between 2001 and the first ten months of 2021 on Google
Scholar filtered by “Breast Lesion Segmentation” as topic keyword.

Literature approaches can be grouped according to different characteristics. With the
rise of deep learning, one of the most intuitive is to separate non-deep- from deep0based
approaches: the former rely on features “hand-crafted” by domain experts to describe
the ROI characteristics, while the latter rely on the ability of deep neural networks to
autonomously learn the set of features that better suit the task under analysis. Focusing on
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non-deep approaches, these can be further grouped into three sets (Table 1) based on the
characteristics of the lesion they look for.

Table 1. Common breast DCE-MRI hand-crafted features for lesion segmentation, grouped by the
leveraged characteristics.

Feature Class Acronym Characterization

Dynamics DYN
Features quantifying the dynamic (i.e., kinetic)
of the contrast agent, measured on the time
intensity curve (TIC).

Textural Features TXT Features designed to measure the global/local
perceived texture of the input image.

Geometrical GEO Features describing the shape and the surface
of a lesion.

In all cases, once the lesion has been described using one or more sets of features,
the actual lesion segmentation is performed by means of a pattern-recognition method.
Three are the most-used strategies: a filtering-based (FILT) method, making use of a simple
threshold to separate healthy from lesioned tissues; a morphological-based (MORPH)
method, using geometric iterative algorithms such as Region Growing, Graph-Cut, or
Active Contour; and a model-based (MODEL) method, exploiting machine-learning tech-
niques. Table 2 summarizes some among the most-cited (over the last 10 years) non-deep
literature proposals, reporting for each: the year of publication, whether it uses a motion-
correction technique (MCT) to deal with motion artefacts, the used feature set, the approach
category, and the obtained performance as reported by the authors.

Table 2. Short list of some non-deep approaches for breast lesion segmentation. For each entry,
the table reports the publication year, whether it uses a MCT, the used set of features, the approach
category, and the obtained results, as reported by the authors (ACC: voxel-based accuracy; AUC:
area under the ROC curve; DR: detection rate; DSC: Dice similarity coefficient; HD: voxel-based
Hausdorff distance; OR: overlap ratio; SEN: voxel-based sensitivity).

Study Year MCT Features Approach Performance

Agner et al. [14] 2009 DYN MODEL, MORPH HD 11.57
Bhooshan et al. [15] 2010 DYN MODEL AUC 0.83
Cai et al. [16] 2014 DYN MODEL, MORPH AUC 0.93
Dalmis et al. [17] 2016 DYN MORPH AUC 0.85
Fusco et al. [18] 2012 DYN, GEO MODEL ACC 0.91
Hassanien et al. [19] 2012 TEX MODEL ACC 0.98
Jayender et al. [20] 2014 DYN MODEL DSC 0.77
Lee et al. [21] 2010 X DYN MODEL AUC 0.88
Marrone et al. [22] 2013 DYN MODEL ACC 0.98
McClymont et al. [23] 2014 X DYN MODEL, MORPH DSC 0.76
Moftah et al. [24] 2014 DYN MODEL ACC 0.89
Nagarajan et al. [25] 2013 DYN MODEL AUC 0.82
Vignati et al. [26] 2009 X DYN FILT SEN 0.93
Vignati et al. [27] 2011 X DYN FILT DR 0.89
Wang et al. [28] 2013 X DYN MODEL OR 0.93
Wang et al. [29] 2014 DYN MORPH ACC 0.91
Zheng et al. [30] 2009 DYN MORPH ACC 0.97

Moving to deep-based approaches, it is worth noting that the wider part of the
literature focuses on lesion detection, mostly as a result of the success of deep learning in
object-detection tasks. However, more recently some authors started proposing approaches
for the DCE-MRI breast lesion segmentation:
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• In [31], the authors proposed a solution based on the stacking of three parallel ConvL-
STM [32] networks to extract temporal and 3D features, followed by a four-layer fully
convolutional U-Net;

• In [33], noting that the lesion-segmentation task can be treated as a classical se-
mantic segmentation (i.e., dividing the input image into regions of interest), the au-
thors explored the suitability of the well-known U-Net and SegNet deep-semantic-
segmentation networks;

• finally, in [34], the authors conducted a task-based assessment on the effectiveness of
convolutional neural networks (CNNs) in emulating segmentation made by experi-
enced radiologists.

Despite some works showing interesting solutions (such as the use of ConvLSTM
layers), none of them either leverages the contrast agent course in terms of seconds after its
injection or takes into account motion artefacts, data augmentation, and class balancing.
This results in approaches that are harder to reproduce on datasets different from those
the procedure has been designed for. It is also likely that these approaches will tend to
generalize worse on other datasets.

3. Proposed Approach

As described in the previous sections, lesion segmentation is a major task that needs
to take into account several aspects to result in effective and reproducible outcomes. To this
aim, in in this work, we introduce a multi-staged DL-based methodology consisting of a
series of steps each intended to address a particular aspect (Figure 3):

1. The first stage is Breast Masking (Section 3.1), in which the extraneous tissues (mus-
cles, bones, air background, etc.) are removed from the acquired volume;

2. Once the volume contains only breast voxels, the successive step is to perform Motion
Correction (Section 3.2) to reduce the noise (i.e., misalignment between the same slice
across different temporal acquisitions) introduced by involuntary patient movements;

3. The third stage is the 3TP Slice Extraction (Section 3.3), a procedure intended to
standardise the input data number of channels regardless of the number of acquired
pre and post-contrast series [13]. To do so, each over-time slice (i.e., the set of all the
same slices extracted from the acquired series) is transformed into a three-channel
image by stacking the three instances acquired at very specific time points (expressed
in seconds after the CA injection) as suggested in [11], making the approach suitable
for different DCE-MRI acquisition protocols;

4. The final stage is the Lesion Segmentation (Section 3.4), in which each lesion is seg-
mented and the corresponding binary mask generated. Among all DL approaches,
we focused on a U-Shaped Convolutional Neural Network (U-Net) [12] for its char-
acteristic to autonomously learn the best mapping between the image input and the
segmentation-mask output.

Besides the pipelined approach, the other key aspect of this work is the proposed
“Eras/Epochs” Training Schema (Section 3.5), a novel data-feeding procedure explicitly de-
signed to perform a suitable data augmentation while supporting class balancing and training
regularization.
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Figure 3. The proposed pipelined segmentation schema: in the first stage, all the extraneous tissues
and background air are removed; in the second stage, a motion-correction technique is used to
register each post-contrast 3D-volume to the pre-contrast one; in the third stage, for each slice,
the corresponding 3TP slice (a three-channel image) is generated by concatenating homologous slices
identified by the three-time points defined in [11]; finally, in the fourth stage, each lesion is segmented
by using a modified U-Net to produce the final lesion binary mask.

3.1. Breast Masking

DCE-MRI scanners acquire data not only from the tissues under analysis (e.g., the
breast) but also from surrounding ones (e.g., pectoral muscle) as well as from the back-
ground (i.e., the air). This results in a huge amount of data that impacts the required
computational effort and threatens to introduce information that is not actually useful
for the lesion segmentation. Breast masking (BM) is thus the stage aimed in facing these
problems, by generating a binary mask that includes only the breast parenchyma, while
removing all the extraneous tissues (pectoral muscle, chest, etc.) and background air.
The result of this stage is a 4D volume in which all the voxels not referring to breast tis-
sues are set to a signal intensity value of 0. In this work, we rely on our fully automated
breast-mask-extraction algorithm [35] based on a multi-planar 2D U-net. The core idea is
to leverage three different U-Nets to extract the breast mask along each anatomical plane
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and then obtain a single breast mask by using a weighted voxel-level combining strategy.
The result is a very general solution able to work on different datasets with a high median
segmentation accuracy (>98%) and a neoplastic lesion coverage of 100%.

3.2. Motion Correction

Although DCE-MRI has been demonstrating great effectiveness in the screening of tu-
mours, one of its drawbacks is in the long acquisition time (usually tens of minutes), which
requires the patient to remain as steady as possible. For this reason, even physiological
movements (e.g., breathing) may introduce motion artefacts that could negatively affect
the automatic analysis of DCE-MRI data.

As a consequence, motion-correction techniques (MCT) have attracted a great deal of
attention in the breast, as well as in other organs, DCE-MRI [36,37]. The goal of an MCT is
to re-align (register) each voxel in the post-contrast series to the corresponding one in the
pre-contrast image. MCTs can be grouped based on the type of transformation used to re-align
two images. Several approaches have been so far proposed [38,39], and, although most of
them were designed for natural images, more recently, some have been modified to be used
with biomedical images [40,41]. The main reason why we consider a motion-correction stage is
because, in previous work, we showed that even deep neural networks can benefit from it [42].
Unfortunately, choosing the most-appropriate MCT is not straightforward since we proved
that there is not a single motion-correction technique always performing better than the others
when applied to distinct patients or to distinct DCE-MRI protocols [43]. Nonetheless, and even
though the proposed approach can be used with any MCT, in this work, we make use of a
3D non-rigid intensity-based registration provided by Elastix [41], an open-source software
collecting image-registration techniques for medical images, as it showed to be among the most
effective [7].

3.3. 3TP Slice Extraction

As introduced in Section 1, a DCE-MRI study involves the acquisition of several 3D
volumes over time, resulting in a 4D structure having three spatial (x, y and z) and one
temporal (t) dimension. The number of acquired 3D volumes depends on the number
of temporal acquisitions t (pre/post-contrast series). This is a crucial aspect since the
number of acquired post-contrast series determines the number of post-contrast replicas
for each pre-contrast slice. Since across the different acquired volumes, slices in the same
position refer to the same portion of the patient’s body, each slice can be interpreted as a
multi-channel image, where the number of channels is equal to the number of acquired
volumes (both pre and post-contrast). This multi-channel image represents the temporal
evolution of the tissues comprised within the slice boundaries, during the contrast agent
flowing. Despite this making DCE-MRI slices extremely rich in information, the design of
machine-learning algorithms able to exploit this temporal structure is not straightforward.
Indeed, not only the number of acquired post-contrast series but also the time interval
between different series can strongly vary across the acquisition protocols of different
medical centres. This is a crucial aspect to address when designing a method intended to
leverage the temporal characteristics of DCE-MRI.

To make the proposed approach more general, in a previous work [13], we proposed
to not directly use those multi-channel images. Instead, we proposed to leverage the
3TP method [11] to identify the most-meaningful temporal acquisitions from which the
slices to be used could be extracted to generate the multi-channel image that will be fed
to the deep-learning model. In particular, in [11], the authors showed that breast-lesion
analysis can be successfully performed by only focusing on three temporal acquisitions
(here named 3TP) uniquely identified in terms of seconds after the CA injection: pre-contrast (t0);
2 min after (t1); 6 min after (t2). Leveraging the 3TP idea, for all the slices, we generated
the corresponding 3TP image whose three channels consist of the same slice extracted
from the volumes acquired at the time instances nearest to t0, t1, and t2 (third block in
Figure 3). The selection of these specific three time points makes the proposed approach
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more general, allowing to always feed the network with a three-channel image (regardless
of the number of acquired post-contrast series) able to effectively synthesise the contrast
agent course while reducing the required computational effort. It is worth noting that
DCE-MRI voxels usually show a high anisotropy. Therefore, to maximise the informative
content, this process is executed considering slices extracted over the projection having the
higher spatial resolution (i.e., one among [x, y], [x, z], or [y, z]).

3.4. Lesion Segmentation

To perform the lesion segmentation, we propose to use a U-Shaped CNN [12] trained
on the 3TP images. The network is a multi-level architecture, having an encoder (capturing
the context) and a decoder (realising the precise segmentation) side. Compared to the
original architecture, intended for microscopic images, we introduced [13] some changes:

1. We set the output feature-map to a single channel (and not one for each class as in the
standard U-Net), with the aim of both helping the training convergence and to obtain
a single probability prediction associated with each voxel. This comes at the cost of
the need for a thresholding operation to obtain the desired binary segmentation map
from the probabilistic output;

2. Since breast DCE-MRI images do not have breast tissues on the borders, we preferred
to preserve the output shape by using a zero-padding with a size-preserving strategy;

3. We introduced a batch-normalization [44] stage after each rectified linear unit (ReLU)
activation function block, to take into account the wide inter/intra patient variability.

The resulting network (Figure 4) has two multi-level sides, both consisting in the repeated
sequence of some functional blocks: the encoding side uses 2D convolution (3 × 3 kernel,
zero-padding, stride 1 × 1) followed by ReLU activation, batch normalization, and max-
pooling (stride 2 × 2); the decoding side uses 2D up-convolution (2 × 2 kernel, zero-padding,
stride 1 × 1) concatenated with the cropped feature map from the corresponding level on
the encoding side, followed by 2D convolution (3 × 3 kernel, zero-padding, stride 1 × 1),
ReLU activation, and batch normalization. In the deeper level, a 2D convolution (1× 1 kernel,
zero-padding, stride 1 × 1) is used to map each of the 64 component feature vectors to the
network output. Finally, a probabilistic output is obtained by using the sigmoid activation
function. The U-Net model was trained by using a segmentation-specific loss

Loss = 1−DSC(ynet, ygt), DSC = 2×
n(ygt ∩ ynet)

n(ygt) + n(ynet)
(1)

where ynet and ygt are the predicted and the ground-truth segmentation mask, respectively,
while DSC is the Dice similarity coefficient calculated considering the number of voxels n(·)
in each volume. It is worth noting that the network expects a square-sized input. For this
reason, it was used to analyse each breast separately. If, as usually happens, the dataset
is bilateral (i.e., includes both breasts), a simple pre-processing is required before feeding
the data to the input. More in detail, let X be the size of the x dimension according to
the coordinate system introduced in Figure 3. The cutting plane x = X/2 is used to split
the 3D volume in two, obtaining a separate 3D volume for each breast. These two sub-
volumes are analysed separately by the network, and only the prediction will be merged to
restore the original shape before providing it to the physician. A useful side-effect of this
pre-processing is the doubling of training data.
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Figure 4. The considered 3TP U-Net architecture. On the left, the encoding side gradually decreases
the spatial resolution while increasing the feature size. On the right, the decoding side gradually
increases the spatial resolution from the inner embedding to the final output mask. Dotted lines and
capital L highlight the network levels, with L5 being the deeper one. Big grey arrows illustrate the
sharing of the cropped feature map, within the same layer, from the encoding to the decoding side,
happening during the up-sampling. Compared to the classical U-Net architecture, the considered
model varies for the use of batch normalization after each ReLU activation (in both encoding and
decoding sides), for the use of zero padding, and for the use of a single output map.

3.5. The “Eras/Epochs” Training Schema

When performing lesion segmentation, one critical issue is the great imbalance be-
tween voxels belonging to lesioned tissue and the others. In particular, since the lesion
segmentation is performed for all the slices, the data consists of healthy slices (with no voxels
belonging to a lesion) and of lesion slices (in which at least one voxel belongs to a lesion).
Since a lesion is usually a small portion of the whole breast, the number of healthy is higher
than the number of lesion slices.

Data balancing aims to ensure that during the training phase the input of the network
is a balanced dataset. In more detail, for each training step we want the network to
process the same number of healthy and lesion slices. Moreover, despite the number
of the network’s parameters being not particularly high (∼7.7 M for an input size of
128 × 128 pixels 3TP slices), a data-augmentation strategy and training regularization are
needed to increase the network robustness.

To address these needs, in this work, we introduce a new training schema designed
to make the model train on images coming from the minority class more often than on
those coming from the majority one. In practice, the “Eras/Epochs” training schema
modifies the “definition” of an epoch from “the network having seen all the training samples”
to “the network having seen all the minority class training samples and an equivalent number of
randomly chosen samples from the majority class”. We then introduce two new terms: “chunk”,
representing the portion of the training dataset seen during a given epoch, and “era”,
referring to the network having seen all the samples from the majority class. From this
moment, the training algorithm proceeds as a standard training schema, with the sole
difference that (i) the batches (if applicable) are extracted within a chunk and (ii) that the
procedure has to cycle over eras instead of over epochs (Figure 5). Summing up, the number
of chunks strongly depends on the imbalance between the slices, since new chunks are
created until all the healthy slices have been assigned to at least one chunk. As a consequence,
after having processed one chunk, the network has processed all the lesion slices (i.e., a epoch
has occurred), while after having processed all the chunks, the network has seen all the
slices (i.e., an era has occurred). The result is a training schema that enforces class balancing
and that supports training regularization while performing data augmentation without
using fake or modified training samples (that could lead to overestimated performance).
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Figure 5. Eras/epochs training schema: there are as many eras i as needed by the network to
converge; there are as many epochs n as the number of chunks; finally, within each epoch n, k batches
are built by using the samples from the corresponding chunk cn.

4. Experimental Results

To support the results’ reproducibility and repeatability on similar datasets, we detail
all the choices made, including the used dataset and the training settings. The threshold
to obtain the mask from the probability output (Section 3.4) was set to 0.5. The proposed
approach was implemented by using Keras (Python 3.6) with TensorFlow 2.0 as the back-
end. The experiments were run on a physical server equipped with 2× Intel(R) Xeon(R)
CPUs (four cores each, running at 2.13 GHz), 32 GB of DDR4 RAM, and an Nvidia Titan
XP GPU (Pascal family) having 12 GB DDR5 RAM, hosted in our HPC center (SCoPE).
Volume registration, breast masking, and 3TP slice extraction steps were performed in
MATLAB R2018a.

One of the greatest limitations when developing a new approach for breast-cancer
analysis is the lack of publicly available datasets having the full ground truths for lesions
segmentation, classification, etc. This is a common problem, often resulting in the use of
private datasets (as for all the deep approaches considered in Section 2). This is the case also
for this study, where we used data from a private repository of women bilateral breast DCE-
MRI provided by “Istituto Nazionale Tumori, Fondazione G. Pascale” of Naples consisting
of 33 patients (with ages spanning in a range from 16 to 69 and an average age of 40). All the
patients underwent imaging with a 1.5 T scanner (Magnetom Symphony, Siemens Medical
System, Erlangen, Germany) equipped with breast coils. DCE FLASH 3D T1-weighted
coronal images were acquired (TR: 9.8 ms, TE: 4.76 ms; FA: 25◦; FoV 370 × 185 mm2; image:
256 × 128 pixels; thickness: 2 mm; Gap: 0; acquisition time: 56 s; 80 slices spanning entire
breast volume). One series (t0) was acquired before the intravenous injection of the CA
and nine series (t1–t9) after. In particular, 0.1 mmol/kg of a positive paramagnetic contrast
agent (gadolinium-diethylene-triamine penta-acetic acid, Gd-DOTA, Dotarem, Guerbet,
Roissy CdG Cedex, France) was injected using an automatic system (Spectris Solaris EP
MR, MEDRAD, Inc., Indianola, PA), with an injection flow rate of 2 mL/s, followed by a
flush of 10 mL of saline solution at the same rate. An experienced radiologist generated
the ground truth by segmenting, at a sub-pixel level, all the histopathologically proven
lesions. This task was performed by exploiting the original and subtractive image series
(where ts = t1 − t0) and by analysing the whole contrast-agent dynamic evolution.

All the experiments were performed using a 10-fold cross-validation (CV) to better
assess the approach’s generalisation ability. In more detail, we want to highlight that it
is of crucial importance to execute cross-validation in a patient-wise fashion to reliably
compare the performance of different models, avoiding the use of slices form the same
patient both in the training and in the evaluation phase. For this reason, for each CV
repetition, eight folds were used as the training set, one as the validation set, and one as the
test set. Considering the number of 3TP slices for each patient (80) and the fact that each
breast is analysed separately (thus doubling the number of slices), this results in 5280 slices
(406 lesions and 4874 healthy slices) divided into 4320, 480, and 480 for train, test, and
validation, respectively. By using the introduced “Eras/Epochs” training schema, during each
training era, the U-Net sees a total number of 8076 slices (equally distributed in healthy and lesion).
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To help to deal with the inter/intra patient variability, for each cross-validation fold,
we performed a z-score normalization. In particular, we determined the used mean and
standard deviation only on the training fold then applied them to both validation and test
folds. For each cross-validation repetition, the network’s weights had been drawn from
a random normal distribution N (0,

√
2/(fani + fano)) [45], where f ani and f ano are the

input and output size of the convolution layer, respectively; the bias had been set to the
constant value of 0.1. ADAM had been used as the optimiser, with β1 = 0.9, β2 = 0.999;
the learning rate had been fixed to 10−4. The number of training eras had been fixed to 20.

To assess the performance of the proposed approach, in Table 3 we compare our results
with those obtained by using some literature proposals in terms of the Dice similarity
coefficient (DSC). In particular, among all the works introduced in Section 2, we compare
against all deep ones and against our previous non-deep solution [22]. As a baseline, we
also compare against our 3TP U-Net, in the settings and setup described in [13], and thus
not as part of the pipelined approach introduced in this work. Since none of the other
competitors has a publicly available implementation, we re-implemented all the approaches
to the best of our understanding, following (where available) all the settings and choices
made. In this regard, it is worth noting that one of the approaches [31] listed in Section 2
was not reported. The reason is that, despite our best efforts, we were not able to fully
reproduce the authors’ approach, resulting in very poor results (probably also due to the
strong differences in the used dataset). We want also to highlight that, in [34], the authors
used a two-channel (pre-contrast and first post-contrast series) input U-Net architecture
without explicitly identifying these series in terms of seconds. Considering the differences
between the acquisition time in their and in our dataset, the fairer situation is to consider
our pre-contrast and second post-contrast series as input to their network.

Table 3. Comparison of the proposed approach against some literature competitors in terms of
median DSC values over a 10-fold CV. For the sake of fairness, we also report the performance of each
competitor algorithm as reported by the authors (ACC: accuracy; DSC: Dice similarity coefficient;
IoU: intersection over union).

Method Approach DSC [%] Performance

Our solution Pipelined U-Net 70.37% –
Piantadosi et al. [13] 3TP U-Net 61.24% DSC 61.24%
El Adoui et al. [33] U-Net 58.84% IoU 76.14%
El Adoui et al. [33] SegNet 31.60% IoU 68.88%
Spuhler et al. [34] U-Net 30.92% DSC 71.00%
Marrone et al. [22] SVM 19.07% ACC 98.70%

The reported results show that our approach outperformed the competitors by a large
margin, with +9.13% over the runner-up. This is even more interesting considering that
the second-ranked is our previous proposal [13] and that the first real competitor ranked
only third, with a margin of +11.53%. To frame these numbers, it is very important to
highlight that, in the respective studies, some works [31,34] measure performance by only
considering the predictions made on slices actually containing a lesion. This is, in our
humble opinion, not realistic (since in a clinical scenario we want the approach to analyse
the whole breast looking for lesions) and unfair (as it does not take into account for false
positives, if any, on slices different from those selected by the radiologist), resulting in
performance overestimation. To sustain this claim, we evaluated the performance obtained
by our model and by the one proposed in [34] considering only slices with lesions, obtaining
72.23% and 38.82% DSC values, respectively. As expected, the competitor [34] strongly
benefits from this new setting (+7.90 w.r.t. Table 3), while our proposal is more resilient
(+1.86 w.r.t. Table 3), highlighting a higher robustness and generalization ability. To further
analyse this aspect, Figure 6 reports the violin plots for the patient-wise (dots in the image)
segmentation performance of all the considered deep approaches. For a fair estimate on
the real population, all the violins were generated by setting the kernel density bandwidth
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to 10. For each violin, dots on the same line represent different patients (for the considered
dataset) having close DSC values.

Figure 6. Violin plots for patient-wise (dots in the image) segmentation performance for all the
deep-learning-based approaches considered in this work. For a fair comparison, all the plots were
generated by setting the kernel density bandwidth to 10.

The figure is rich in information, showing not only the superior performance of the
proposed approach (the median values are identified by the red lines) but also its higher
generalization ability. This is represented by the fact that our solution presents a single
bulge in the upper part of the plot, where the biggest portion of patients (dots) are gathered,
with a slimmer silhouette in the lower part. The same information, but seen from a different
point of view, is reported in Table 4 where, for each technique, the corresponding DSC
“ranking” is reported in terms of how often it is the 1st, the 2nd, etc. The table shows
that the proposed solution is always in the top three (0% for both 4th and 5th positions),
resulting to be the best solution for more than 50% of the patients (which is, in turn, more
than twice the runner-up) and in the top two for ∼85% of times.

Table 4. Analysed deep approaches DSC performance ranking in terms of how often a given solution
(on the rows) resulted to be the best (the first), the runner-up (the second), and so on (on the columns).

Method 1st 2nd 3rd 4th 5th

Proposed approach 51.52% 33.33% 15.15% 0% 0%
3TP U-Net [13] 24.24% 24.24% 33.33% 18.19% 0%
U-Net [33] 21.21% 30.30% 18.18 % 12.12% 18.19%
SegNet [33] 0% 12.13 % 21.21 % 42.42% 24.24%
U-Net [34] 3.03 % 0 % 12.13% 27.27% 57.57%

One of the key aspects of this study is the use of different stages, each intended
to deal with a specific problem. We argue that all these steps contribute to the final
outcome. Therefore, given that the proposed approach consists of the following five
main characteristics:

• Breast-mask application for removing extraneous voxels.
• Motion correction.
• The use of 3TP slices.
• Data balancing/augmentation by using the introduced eras/epochs training schema.
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• The use of a modified U-Net architecture.

we evaluated the performance of some variants (Table 5) resulting from the mod-
ification and/or deletion of some of the corresponding stages: with and without the
breast-masking step (BM); with and without motion correction (MC); with and without
the 3TP method, considering for the latter all the series acquired (10TP) and the use of
only the pre-contrast series (1TP); with and without the use of our “eras/epochs” (EE)
training schema, considering for the latter a typical data-augmentation schema consisting
in random rotations; using our modified U-Net or the basic U-Net architecture [12]. Finally,
we evaluated the performance by using U-Net++ [46], another variant of the standard
U-Net that showed excellent results in the biomedical domain.

Table 5. Variant analysis results in terms of DSC median values over a 10-fold CV. Text in bold refers
to the best-performing variant. It is worth noting that the result obtained by using only pre-contrast
series (1TP) has not been reported since, despite our best efforts, it did not converge.

BM MC TP EE Model DSC

YES YES 3TP YES Our U-Net 70.37%
NO YES 3TP YES Our U-Net 53.35%
YES NO 3TP YES Our U-Net 59.84%
YES YES 10TP YES Our U-Net 67.26%
YES YES 3TP NO Our U-Net 68.90%
YES YES 3TP YES Basic U-Net 67.17%
YES YES 3TP YES U-Net++ 65.12%

The results in Table 5 confirm that all the considered stages are important since each
variation performed worse than the full-stages solution. It is worth noting that the result
obtained by using only pre-contrast series (1TP) was notreported since, despite our best
efforts, the network did not converge. Interestingly, besides this case, all the variants
converged without showing overfitting in the training curves. This result is particularly
interesting since it confirms the benefits of using post-contrast series in lesion segmentation.

5. Discussions and Conclusions

This work aimed to introduce a new approach for the automatic lesion segmentation
in breast DCE-MRI, explicitly designed to leverage the physiological information associated
with it. To this aim, we proposed a pipelined approach where each stage is intended to
deal with or to leverage a peculiar characteristic of breast DCE-MRI data: the use of breast-
masking pre-processing to remove non-breast tissues; the use of the Three-Time-Points
(3TP) method [11] to effectively highlight the contrast-agent time course by generating 3TP
slices; the application of a motion-correction technique to deal with patient involuntary
movements during the acquisition; the leverage of a modified U-Net architecture to better
fit our proposes; the introduction of a new training strategy (named “Eras/Epochs”) to
handle the unbalanced dataset while performing a strong data augmentation.

To show the effectiveness of the proposed approach, we compared (Table 3) our so-
lution against some literature approaches. The results show not only that our approach
outperformed the competitors by a large margin (+11.53% over the first third-party com-
petitor) but also that it is more stable and reliable. These last claims are sustained both
by the shape of the violin plot (Figure 6) and by the smaller performance improvement
that we obtained when evaluating performance only on slices actually containing a lesion
(thus implying that our approach has a lower level of false positives). One of the claims we
made in this study is that the effectiveness of the proposed approach lays the foundations
in the use of several stages, each properly chosen to deal with a given problem. To prove
this, we performed an ablation analysis (Table 5) clearly showing the impact of each stage,
highlighting, among all, the importance of breast masking and of motion correction.

As described in the previous sections, having several (and often very different between
different protocols) acquisitions, as in DCE-MRI, poses a problem for the use of Deep
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Learning. In this regard, one of the greatest advantages of our approach is that by using
the 3TP method, we uniquely and clearly defined which are the acquisition series to use in
terms of seconds after the CA injection. This has two main consequences: (i) we can use a
network with fewer parameters than those considering all the acquisition times, resulting
in a better convergence when dealing with small datasets; (ii) that our approach can be
applied on all DCE-MRI protocols involving at least three acquisitions (the only constraint
is the need to have acquisitions close to the times suggested in [11]). Since this latter aspect
may represent a turning point towards the development of a protocol-independent Deep-
Learning approach for the analysis of breast DCE-MRI data, future works will analyse how
reliable are the considered time points as some external parameters (e.g., manufacturer,
field strength, etc.) changes. Nonetheless, the reported results further confirms our idea
that combining past learned experience in the radiomics field and Deep Learning is the
right strategy to improve the effectiveness of automatic breast-cancer analysis [47].

Another crucial aspect to be taken into account is the size of the dataset used in this
study. Despite the number of involved patients being relatively small, this did not affect
the training procedure since, as aforementioned, the use of 3TP slices and of a modified
U-Net architecture resulted in an architecture having a reduced number of parameters
(and thus requiring a smaller number of training samples to converge). Moreover, the use
of the introduced “Eras/Epochs” training schema allows for a simple and effective class
balancing, while enforcing a strong data augmentation without the need for generating
fake data (e.g., by means of rotations, scale, etc.). In particular, considering the number
of 3TP slices for each patient (80) and the fact that each breast is analysed separately
(thus doubling the number of slices), the use of the proposed training schema makes the
network train on 8076 slices during each training era. Finally, the use of 10-fold per-patient
cross-validation further sustains the reliability of the reported results.
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