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Abstract: Advances in computing and AI technology have promoted the development of connected
health systems, indirectly influencing approaches to cataract treatment. In addition, thanks to the
development of methods for cataract detection and grading using different imaging modalities,
ophthalmologists can make diagnoses with significant objectivity. This paper aims to review the
development and limitations of published methods for cataract detection and grading using different
imaging modalities. Over the years, the proposed methods have shown significant improvement
and reasonable effort towards automated cataract detection and grading systems that utilise various
imaging modalities, such as optical coherence tomography (OCT), fundus, and slit-lamp images.
However, more robust and fully automated cataract detection and grading systems are still needed. In
addition, imaging modalities such as fundus, slit-lamps, and OCT images require medical equipment
that is expensive and not portable. Therefore, the use of digital images from a smartphone as the
future of cataract screening tools could be a practical and helpful solution for ophthalmologists,
especially in rural areas with limited healthcare facilities.

Keywords: cataract; image processing; imaging modalities; artificial intelligence (AI)

1. Introduction

Ocular diseases affecting the anterior segment of the eye are the leading cause of
ocular morbidity. These include dry eye conditions, infections, traumas of various types, in-
flammatory reactions, hereditary disorders, and cataracts. Individuals with these disorders
may experience continual progression and deterioration of symptoms, which can result
in varying degrees of vision loss with or without pain [1]. Cataracts are anterior segment
ocular illnesses characterized by a decrease in lens transparency owing to lens opacification,
which can result in vision impairment or blindness. According to the systematic review
and meta-analysis by Flaxman et al. [2], cataracts are one of the leading causes of moderate
or severe vision impairment in the global population, with a total of 52.6 million people
affected in 2015. They are also one of the leading causes of blindness affecting a total of
12.6 million people in 2015. Furthermore, by 2020, it is projected that the number of people
affected by cataract-related vision impairment and blindness will rise. WHO stated that
near or far vision impairment affects at least 2.2 billion people globally. However, vision
impairment could have been prevented or addressed in at least 1 billion—or nearly half—of
these cases. 94 million people out of those billion people had moderate or severe distance
vision impairment or blindness due to cataract [3]. In addition, cataracts were also one of
the most common causes of low vision in Malaysia under the ‘various types of crystalline
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lens disease’ category [4]. Globally, cataracts are the prominent cause of blindness among
low- and middle-income countries, e.g., Malaysia, China, and Pakistan. A shortage of
ophthalmologists is an urgent problem, especially in rural areas [5–7].

Cataracts are classified into three types: age-related cataracts, paediatric cataracts,
and cataracts secondary to other causes. Age-related cataracts are the most common type
in adults, typically developing between the ages of 45 and 50 [8]. Age-related cataracts
are classified into three types according to the location of the opacification within the
lens: nuclear cataract, cortical cataract, and posterior subcapsular cataract (PSC) (refer to
Figure 1 [9]). A nuclear cataract is a clouding of the lens located in the lens’s centre and
it is also the most common type of cataract associated with advanced age [10]. A cortical
cataract is typically wedge-shaped, beginning at the cortex and extending to the centre of
the lens. A plaque-like opacity develops in the axial posterior cortical layer in posterior
subcapsular cataracts. In most cases, an individual will be diagnosed with more than one
type of cataract.

Figure 1. (a) Nuclear Cataract, (b) Cortical Cataract, (c) Posterior Capsular Cataract [9].

Currently, computer-aided diagnostics (CAD), a concept that combines the skills of
physicians and computers, has established itself as a prominent area of research in medi-
cal imaging and diagnostic radiology. Automated computer analysis, a well-established
research topic in medical imaging, is an approach that is entirely reliant on computer
algorithms. The automated detection technique usually consists of image pre-processing,
feature extraction, feature selection, segmentation, and classification [11]. Significant ad-
vances in computing and artificial intelligence (AI) technology, such as machine learning
(ML) and deep learning (DL), as well as big data analytics, enable radiologists and ophthal-
mologists to gain a level of clinical decision support that significantly reduces diagnostic
errors. Other than being the most widely used artificial intelligence (AI) method for a
variety of tasks including medical imaging, DL has also been shown to be successful at
detecting clinically significant features for the diagnosis and prognostic prediction of ocular
diseases [12,13]. One could argue that computer-assisted diagnostics shorten diagnostic
time, expedite disease examination, and aid in locating affected areas [14].

Imaging modalities play a critical role in routine ophthalmologic practice. It is nearly
impossible to conduct ophthalmic examination without employing appropriate imaging
modalities [15]. Ophthalmic imaging modalities, including slit-lamp images, fundus
images, and OCT images have been widely used for cataract detection and grading. The
slit-lamp camera is high-intensity light source equipment that consists of two components:
a corneal microscope and a slit-lamp. The slit-lamp image is captured with a slit-lamp
camera, which is typically used to inspect the anterior and posterior segments of the human
eye. In a typical clinical setting, an ophthalmologist would grade cataracts based on slit-
lamp images by comparing them with standard grading protocols, such as LOCS III or
Wisconsin. The fundus images are captured with the fundus camera, which is a specialized
low-power microscope with a connected camera that can view the internal surface of the
retina, blood vessels, posterior pole, optic disc (OD), and macula [16]. Ophthalmologists
will use the images to diagnose and treat eye diseases such as diabetic retinopathy (DR),
glaucoma, cataracts, age-related macular degeneration, and retinal detachment. OCT is a
type of imaging modality that generates two- and three-dimensional cross-sectional images
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of tissue by combining numerous axial scans into a composite B-scan. Previously, the
anterior segment (AS) was evaluated mostly with ultrasound biomicroscopy. However,
ultrasound biomicroscopy acquires images at a significantly slower rate than AS-OCT,
at eight frames per second versus 4000 frames per second for the latter [17]. With the
development of AS-OCT, it is now possible to perform a more thorough examination of the
anterior chamber.

Some of the medical equipment needed for cataract detection or screening by an
experienced ophthalmologist is costly, and current manual methods are time-consuming,
subjective, and dependent on ophthalmologists’ experience. The ophthalmoscope and other
imaging equipment used in the diagnosis of eye problems require highly skilled and trained
doctors. In Malaysia, the current optometrist-to-patient ratio is believed to be approximately
1 to 22,000. This is concerning, as the World Council of Optometry (WCO) recommends
a ratio of one to ten thousand [18]. This figure also demonstrates that we continue to
have a shortage of practicing optometrists, particularly in rural areas. To address this
issue, researchers have developed several methodologies that enable automated cataract
identification and grading employing a variety of ophthalmologic imaging modalities,
including fundus images, slit-lamp images, optical coherence tomography (OCT) images,
and digital images. The advancement of methods and techniques for cataract detection and
grading has resulted in the development of CAD or automated computer analysis, which
has aided ophthalmologists significantly, particularly in rural areas with limited access to
quality healthcare facilities. The purpose of this article is to provide an overview of the
approaches and techniques developed over the last few years for cataract identification and
grading. This article will first review the traditional clinical cataract assessment in Section 2.
In Section 3, the discussion will expand on past works on methodologies and strategies
for automated cataract diagnosis and grading using different approaches, including image
processing, machine learning, deep learning, and other available tools for cataract grading.
Next, Section 4 will discuss the modern trends in cataract screening and Section 5 will
discuss the challenges and future direction. Lastly, Section 6 will be the conclusion.

2. Traditional Clinical Cataract Assessment

Objective qualitative and quantitative evaluation of the lens is critical for any epidemi-
ological or therapeutic investigation of cataracts, as well as for understanding the natural
history of different cataract forms. Typically, several methods are used to evaluate the status
of cataracts since no single available method is adequate for cataract evaluation. Previously,
the available methods for cataract evaluation included clinical cataract classification and
grading, resolution test target projection ophthalmoscopy, photography and other forms of
image capture, ultrasound, light-scattering analysis, and fluometry [19].

2.1. Manual Methods for Cataract Assessment

Currently, cataract detection and diagnosis are conducted through a series of tests,
including visual acuity testing, dilated eye examinations, retinal examinations, and slit-
lamp examinations. Visual acuity tests are performed with the aid of a chart that measures
how well a person sees at various distances. This is the most commonly used method
for calculating the impact of cataracts [20]. A dilated eye exam is a common diagnostic
procedure used by optometrists and ophthalmologists to better examine the interior of
the eye. It expands the field of view, allowing the doctor to see more of the inside of the
eye. A special device called an ophthalmoscope is used in a retinal exam to examine the
back of the person’s eyes (retina) for signs of cataract. Under magnification, a slit-lamp
examination allows the ophthalmologist to see the structures at the front of the person’s eye.
The slit-lamp is a bright line of light (a slit) that illuminates the cornea, the iris, the lens, and
the space between the iris and the cornea. In addition, the patient should be evaluated for
best-corrected visual acuity, refraction, and contrast sensitivity; intraocular pressure; and
examination of the patient’s other anterior segment structures, including the iris and the
cornea, for possible retinal lesions that could impair final visual acuity following surgery.
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Following these tests, ophthalmologists usually perform cataract grading, which
involves assessing the degree of opacification to determine the severity of the cataracts.
Clinical grading, such as Lens Opacities Classification [21], is commonly performed by
comparing the patient’s images observed through the camera with a set of reference
photographs. Several classification systems, including the Oxford Clinical Cataract Classi-
fication and Grading System and the Lens Opacities Classification System III (LOCS III),
are particularly advantageous for epidemiologic investigations, anti-cataract medication
trials, and clinical trials in which cataract hardness is an important factor. The Lens Opac-
ities Classification System III (LOCS III) and the Wisconsin Grading System (WGS) are
the conventional grading systems most extensively used by ophthalmologists to classify
cataracts [22]. The LOCS III system [23] uses six slit-lamp images for grading nuclear
colour and nuclear opalescence and five retro illumination images for evaluating cortical
cataract and posterior subcapsular cataract, as illustrated in Figure 2. It evolved from
LOCS II, which had the following shortcomings: (1) the nuclear colour scale was small
and coarse, (2) the early stages of nuclear cataracts and posterior subcapsular cataracts
were underrepresented, (3) the scaling intervals for all types of cataracts were unequal,
and (4) integer grading of features was not sensitive enough to detect small changes in
cataracts [19]. The standard images used in this system depict the borders of the scaling
intervals, with higher scores indicating more advanced opacity. Clinical grading systems
are subjective, resulting in inconsistencies over time and between observers.

Figure 2. LOCS III Grading Standard [23].

2.2. The Importance of An Early Cataract Detection

The removal of cataracts might be necessary under several circumstances. They
include facilitating ocular fundus visualization (for glaucoma monitoring or in preparation
for photocoagulation therapy in diabetic retinopathy), removing a foreign body embedded
in the lens, preparing for vitrectomy and surgical repair of retinal detachment, and a
variety of pathologic conditions in which the lens is threatening the eye’s viability. The
need for surgical intervention is determined by the patient’s needs, his or her desired
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level of activity and recreation, the symmetry of the disease process, the condition of
other ocular structures, the patient’s general health, and appropriate informed consent
with reasonable expectations [24]. In the developed world, surgery is usually considered
when the anticipated improvement in vision relative to current conditions justifies the
risk of major, sight-threatening complications. Previously, cataracts were not treated by
surgery until they were well advanced due to relatively rudimentary surgical procedures
and inadequate visual rehabilitation (no lens implants). Surgery is now performed at
a much earlier stage since procedures have become more sophisticated and safer with
improved visual results. If cataracts have progressed to an advanced degree, the chances
of significant complications will increase. In contrast, cataract blindness is a considerably
larger problem in the developing world because most people do not seek help until their
cataract has progressed or lens-induced glaucoma has caused a painful loss of vision in
one eye. Causes for this delay include a lack of awareness about cataract treatment, sex
bias, low socioeconomic conditions, and the absence of government-sponsored welfare
programs for seniors. Many countries lack enough clinicians to meet demand, and most
existing doctors prefer to work in larger cities due to poor infrastructure, education, and
civic amenities in rural areas. As a result, there is a huge discrepancy in how eye care is
distributed [25].

3. Automated Cataract Detection and Grading

Ophthalmic imaging has advanced from simple photographic documentation of the
condition to a robust and more progressive investigation method. This allows the ophthal-
mologist to make objective measurements and assessments of the detailed ocular structures
that were previously unavailable in a traditional clinical examination using ophthalmoscopy.
Advances in imaging techniques have resulted in a more complete understanding of the
eye in health and disease. They also help identify previously undiagnosed conditions,
provide a more detailed description of disease phenotypes, and serve as an objective tool
for evaluating treatment efficacy and safety [26]. Traditionally, cataract was diagnosed with
several tests, including visual acuity testing, dilated eye examinations, retinal examinations,
and slit-lamp examinations. Cataract grading involves comparing slit-lamp images to a
set of standard photographs determined by a grading protocol such as LOCS III or WGS.
Recent advancements in CAD techniques, which are defined as the subset of artificial
intelligence (AI), are becoming more apparent in ophthalmology [27]. These advances have
prompted other researchers to investigate alternative imaging modalities, including OCT
and fundus images, for use in cataract grading. This resulted in the development of new
cataract grading techniques or methods that utilise image processing, machine learning,
and deep learning and incorporate a variety of imaging modalities, including OCT images,
fundus images, and slit-lamp images, which will ultimately enable automated cataract
detection and grading.

In general, cataract diagnosis typically starts with a slit-lamp examination and is
followed by physician analysis based on the slit-lamp image. The classification will be
done based on the doctor’s evaluation of the turbid area of the pupil [28]. The presence
and severity of the cataract will be graded by comparing its appearance in slit-lamp images
in contrast with a set of standard reference photographs. The reference is normally based
on grading protocols such as LOCS III and Wisconsin Grading System (WGS) which
usually results in a subjective interpretation. Fundus images utilise a fundus camera
to capture colored pictures of the inside of the eye to record the event of scatters and
monitor their changes after some time. A retinal fundus camera is a specialized low
power microscope camera connected to snap the interior part of the eye including the optic
disc (OD), fovea, macula, retina, retinal veins, and back post. These retinal images are
used by ophthalmologists to help identify, diagnose, and treat eye infections including
DR, glaucoma, cataract, age-related macular degeneration, and retinal detachment. OCT
imaging uses near-infrared light to measure the optical reflectivity profile of the tissue. This
is a painless, non-invasive imaging modality that creates three-dimensional images of the
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retina in a matter of seconds [26]. There are several applications that utilise OCT before and
after the cataract surgery including anterior lens capsule and lens epithelium evaluation in
senile cataract and Fuchs’ heterochromic cyclitis using spectral-domain anterior segment
OCT (SD-OCT), investigation of clear corneal incision in manual phacoemulsification
and femtosecond laser-assisted cataract surgery using SD-OCT, capsular block syndrome
evaluation before and after treatment using SD-OCT, and IOL power calculation (true net
power measurement) in post-myopic excimer laser eyes using SD-OCT [29]. For further
knowledge of the cataract diagnosis based on digital imaging, the interested researchers
are recommended to refer to [30–32].

3.1. Cataract Detection with Machine Learning and Image Processing

Currently, machine learning and image processing are widely used by researchers in
their studies to develop cataract detection methods. Several imaging modalities, including
OCT images, fundus images, slit-lamp images, and digital images, are employed; among
these, fundus and slit-lamp images are the most frequently used for cataract detection and
grading. For example, Yang et al. [33] proposed a neural network classifier to automatically
classify cataracts using fundus images. The proposed method divides cataract severity into
four categories based on the degree of clarity of the fundus image (normal, mild, medium,
or severe). As part of pre-processing, they used an improved version of the top-bottom
hat transformation, which allows them to see the blood vessels in the fundus image more
clearly. As a classifier, they used a 2-layer backpropagation (BP) neural network. They were
able to achieve true positive rates of 82.1% and 82.9% in training and test, respectively, a
promising result for early work on the automated cataract classification method. However,
the pre-processing step takes longer for a single image. This is something that needs to be
improved in the future. In a different approach, Behera et al. [34] proposed an automated
model for cataract detection using image processing and machine learning techniques.
The pre-processing step involves image processing techniques, including resizing, and
smoothing, histogram equalization (CLAHE), and masking. They employed SVM as the
classifier using three different types of kernels: linear kernel, polynomial kernel, and radial
basis function (RBF). Based on the results of the performance comparison, the RBF appears
to perform best among the three kernels, with an accuracy of 95.2%, specificity of 90.5%,
and sensitivity of 99.8%.

In another approach, Song et al. [35] proposed an improved semi-supervised learning
method for extracting additional information from unlabelled cataract fundus images to
improve the accuracy of the basic model trained exclusively on marker images. Semi-
supervised learning can improve performance by training the classifier with both labelled
and unlabelled data. In addition, it can be used to improve supervised classifiers by utilising
additional unlabelled data that are typically easier to obtain. The authors previously used
the tri-train method, which is also a supervised method, to classify and grade cataracts [36].
The extracted wavelet and texture features were used to train two fundamental models: a
Bayesian network and a decision tree. Subsequently, the histogram equalization method
was applied to enhance the fundus image during pre-processing. The authors then extracted
three features from the enhanced fundus images: texture, wavelet, and sketches, which
they used to train a semi-supervised model. They concentrated on methods for updating
instance weights and combining multiple binary classifiers into a single powerful multi-
classifier, and finally chose logistic regression (LR) and support vector machine (SVM) as
baseline models for comparison. Their work achieved an accuracy of 88.6% on the SVM
model for the four-category experiment. This was significantly better than their previous
work, which only achieved 86% accuracy.

In addition to these, several approaches have been developed for automated cataract
detection using slit-lamp images. Since nuclear cataracts affect the nucleus of the ocular lens,
automatic cataract detection and grading are performed by extracting features from the
nucleus region [22]. H. Li et al. [37], for example, investigated an algorithm for the automatic
diagnosis of nuclear cataracts. The anatomical structure of the lens was determined from the
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captured images using a modified active shape model (ASM), with local features extracted
in accordance with the clinical grading protocol. The grades were predicted using support
vector machine regression. For the first time, the nucleus region was detected automatically
from slit-lamp images, which is critical for assessing nuclear cataracts. Moreover, the
proposed improvements to the modified ASM to fit the shape model more robustly to
a new image. They achieved a 95% success rate for structure detection and an average
grading difference of 0.36 on a 5.0 scale, indicating a promising start towards improving
grading objectivity and potentially reducing the workload of ophthalmologists.

In another instance, Huang et al. [38] developed a novel computer-aided diagnosis
method based on ranking to facilitate nuclear cataract grading in accordance with estab-
lished clinical decision-making processes. They predicted the grade of nuclear cataracts
from slit-lamp images by comparing them to neighbouring labelled images in a ranked
image list generated by a learned ranking function. They viewed the nuclear cataract
grading task in their study as a ranking process guided by intuition, and ranking can
produce a better fit for the task. In addition, they proposed a new method for “learning to
rank” based on the listwise approach, which entails direct optimization for learning ranking
functions within their “grading by ranking” scheme. They achieved a 95% grading accuracy
with their proposed method, which is higher than the other two existing nuclear cataract
grading methods, “grading via classification” [39] and “grading via regression” [40], which
achieved 76.8% and 87.3% accuracy, respectively.

In a separate report, Jagadale & Jadhav [41] proposed a simpler automatic system for
nuclear cataract classification based on a pupil detection region algorithm that takes advan-
tage of regional properties. They observed a difference in the intensity values of the pupil
and the iris in their study, with the pupil in the eye without cataracts registering a darker
shade and the iris registering a lighter shade. The shades are reversed for both the pupil
and the iris in a cataract-affected eye. As a result, they separated the pupil and the iris using
an intensity gradient. They demonstrated a method for cataract detection by extracting the
best features from the pupil detection method using the circular Hough Transform (CHT)
and correlating them to regional properties. A.B. Jagadale, Sonavane, & Jadav [42] also
proposed a computer-aided system for the early detection of nuclear cataracts using CHT
in another example. The proposed steps include lens localization using CHT, segmentation
of the lens, feature extraction (i.e., mean, correlation, energy, homogeneity, and contrast),
and categorization using a multidimensional SVM. Their proposed system detected nuclear
cataracts with an accuracy of 90.25%. The results demonstrated a commendable effort
to minimize intra- and intergradation variation in comparison to the subjective method
currently used by ophthalmologists.

Table 1 summarizes the proposed methods for cataract detection and grading using
machine learning and image processing. It can be observed from the Table that most of
the proposed methods achieved high accuracy for cataract detection and grading using
fundus and slit-lamp images as image modalities. Some of the methods still require human
intervention [37,41,42], and most of the research has focused on the detection and grading
of nuclear cataracts. There are still limited works on other types of cataracts, such as cortical
and posterior subcapsular cataracts. Furthermore, the methods are either semiautomated
or not fully automated. In the future, it is anticipated that more robust and fully automated
methods will be developed for cataract detection and grading.
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Table 1. Summary of Previous Methods Using Machine Learning and Image Processing.

Authors Methods Image
Modality Achievement Limitation Database

Yang et al. [33]

Automatic cataract
classification with an
improved version of
top-bottom hat
transformation as part of
their pre-processing and
2-layer backpropagation
(BP) neural network as
classifier

Fundus

Achieve true
positive rate of
82.1% (training)
and 82.9% (test)

Pre-processing
takes longer for a

single image

Beijing
TONGREN

Hospital (504
fundus images)

Behera et al. [34]
Nuclear cataract detection
based on image processing
and machine learning

Fundus Achieve overall
accuracy of 95.2%

Focused only on
nuclear cataract

Kaggle and
GitHub repository

(800 fundus
images)

Song et al. [35]

Proposed an improved
semi-supervised learning
method to acquire some
additional information from
unlabelled cataract fundus
images to improve the
accuracy of the basic model
to train only the marker
images

Fundus
Achieve accuracy

of 88.6% using
SVM model

Semiautomated
method

Require labelled
data

7851 fundus
images

H. Li et al. [37]

The anatomical structure of
the lens images is detected
using a modified active
shape model (ASM) where
the local features are
extracted according to the
clinical grading protocol
and utilises a support vector
machine regression for the
grade prediction

Slit-lamp

Achieve a 95%
success rate for

structure detection
and an average

grading difference
of 0.36 on a 5.0

scale

User intervention
was provided for
the images with
inaccurate focus,
small pupil, or

dropping eyelid

Singapore Malay
eye study (SiMES)

(5850 slit-lamp
images)

Huang et al. [38]

Novel computer-aided
diagnosis method by
ranking to facilitate nuclear
cataract grading that
followed conventional
clinical decision-making
process.

Slit-lamp

Achieve a 95%
grading accuracy

compared to other
methods “grading
via classification”

(76.8%) and
“grading via

regression” (87.3%)

Focused only on
nuclear cataract

Singapore Malay
Eye Study (SiMES)

(1000 slit-lamp
images)

Amol B. Jagadale
& Jadhav [41]

Simpler automatic systems
for nuclear cataract
classification from the
development of pupil
detection region algorithm
using region properties

Slit-lamp

Proposed best
features from pupil
detection method

using circular
Hough Transform

(CHT)

Need human
intervention

A simple method
to classify only
nuclear cataract

cases

Cottage Hospital,
Pandharpur and

Lions eye Hospital,
Miraj

A.B. Jagadale
et al. [42]

Proposed an early detection
of nuclear cataract Slit-lamp

Achieved 90.25%
accuracy in

detecting nuclear
cataract

Need human
intervention

The proposed
method showed a
low performance

for specificity with
only 63.4%

Government
hospital

Pandharpur (2650
slit-lamp images)
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3.2. Exploitation of Deep Learning Approaches for Cataract Detection

There are also various approaches that make use of deep learning techniques. For in-
stance, Zhang et al. [43] proposed an automatic cataract detection and classification method
by visualizing several feature maps at the pool5 layer with their high-order empirical
semantic meaning, which provides an explanation for the feature representation extracted
by a deep convolutional neural network (DCNN). They eliminate uneven illumination
during pre-processing by converting RGB colour images to green channel images. They
used DCNN with eight layers for classification and grading, with the first five being convo-
lutional layers and the remaining three being fully connected layers. The output of the final
fully connected layer is fed into a four-way SoftMax, which generates a distribution over
the four class labels. They conducted two experiments to determine the effects of G-filters
on eliminating uneven illumination in fundus images and the effect of database scalability
on DCNN classification accuracy. The first experiment demonstrated that the accuracy of
the database containing G channel images is significantly higher than that of the database
containing RGB colour images, which is 93.52% and 89.92%, respectively. A more stable
result for classification accuracies can be obtained by increasing the amount of data. This
implies that as the amount of data increases, the classification accuracy of DCNN increases.

In another instance, Zhou, Li, and Li [44] proposed a novel method for automatic
cataract classification using fundus images and a deep neural network with discrete state
transition (DST). They proposed DST and exponential DST (EDST) as techniques for avoid-
ing overfitting and minimizing storage memory requirements during network training and
implementation. This contribution advances the state of the art in cataract grading accuracy.
They use a multilayer perceptron (MLP) with exponential discrete parameters, weights, and
activations in the input, hidden, and output layers that are constrained in an exponential
or uniform discrete space for the classifier. As a result, they achieved a detection accuracy
of 94% for DST-ResNet and a grading accuracy of 78.57%, which is the highest among
published works using ResNet. Moreover, they were able to avoid overfitting and reduce
the memory requirements of their hardware by implementing DST and EDST on a small
training set. In a separate example, cataract detection using the CNN with the VGG-19
model was proposed by Mahmud Khan et al. [45]. The pre-processing step involves image
cropping to a size of 224 × 224 pixels for all fundus images. Despite using fundus images
with unfiltered and unassessed image quality, they managed to achieve an accuracy of
97.47% for the training.

In another work, Xiong et al. [46] proposed a method to classify cataracts by extracting
high-level features from a pre-trained residual network (ResNet) adapted from the residual
learning framework [47]. To expand the dimension, the high-level features will be fused
with texture features extracted from the Gray-level Co-occurrence Matrices (GLCM). The
fused feature vectors will then be used to train and verify the 6-class cataract classification
using a support vector machine (SVM). The addition of texture features enables the retention
of a large amount of information in the original image, allowing for the highest possible
accuracy in feature fusion validation. After obtaining the optimal hyperplane through
parameter adjustment, they achieved an accuracy of 91.5% with the proposed method,
compared to 90.2% with the Softmax classifier.

Li et al. [48] proposed a novel concept of interpretable learning to explain the results of
CNN-generated cataract detection. Their contributions include reorganizing AlexNet and
GoogLeNet into AlexNet-CAM and GoogLeNet-CAM, respectively, by substituting a global
average pooling layer with two fully connected layers. Additionally, they employed Grad-
CAM, an enhanced technology based on CAM (class activation mapping), which, combined
with visualization, generates a heatmap highlighting significant pathological features.
They achieved high accuracies of 93.28% and 94.93% for AlexNet-CAM and GoogLeNet-
CAM, respectively. AlexNet-CAM outperforms AlexNet by 1.2%, while GoogLeNet-CAM
outperforms GoogLeNet by 0.45%. Nonetheless, all four models are highly accurate at
classifying cataracts, and the restructuring of both methods using CAM demonstrates that
high accuracy can be maintained. Furthermore, the heatmap generated by Grad-CAM can
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show the entire lens with numerous large and small vessels highlighted, which can assist
ophthalmologists in interpreting the results following cataract detection.

Imran et al. [49] worked towards an automated identification of cataract severity
by proposing a hybrid model that integrates a deep learning model and SVM for 4-class
cataract classification. They employed transfer learning-based models, which are AlexNet,
ResNet, and VGGNet, for automatic feature extraction and SVM, which performs as a
recogniser. They managed to achieve 95.65% accuracy with their proposed methods. In
another example, Imran et al. [50] also proposed a hybrid convolutional and recurrent
neural network (CRNN) for cataract classification. They adopted transfer learning mod-
els (AlexNet, GoogLeNet, ResNet, and VGGNet) for multilevel feature representation
extraction and analysed the performances of the models on cataract classification. They
managed to achieve a high accuracy of 97.39% for the 4-class cataract classification with
their proposed method.

The report by Gao, Lin, & Wong [51] serves as an example of studies that utilise deep
learning of slit-lamp images. The authors proposed an automated system for grading
the severity of nuclear cataracts using slit-lamp images. Nuclear cataracts are typically
identified by a uniform increase in the opacification and colouration of the lens nucleus,
which can be seen clearly in slit-lamp cross-sectional views of the lens. In their paper, they
used unsupervised convolutional-recursive neural networks (CRNNs) for feature learning.
They first detected the lens structure and segmented the anatomical sections of the lens.
They applied the CRNN to each section to learn a representation for that part of the lens,
and for the final step, they applied support vector regression (SVR) to the concatenated
features to estimate the cataract grade. Their proposed system achieved an exact agreement
ratio of 70.7% when compared to clinical integral grading, an error rate of 88.4% for decimal
grading, and a mean absolute error of 0.304.

In a separate study, Qian, Patton, Swaney, Xing, & Zeng [52] classified different areas
of cataracts in the lens using supervised training of convolutional neural networks. The
proposed steps include image pre-processing, data balancing, data expansion, and the
construction of a training model. For the training model, they applied transfer learning and
SqueezeNet in their model to save time on training and changing the model. Squeezenet
is one type of CNN model that requires fewer parameters than AlexNet but achieves the
same level of accuracy. They have managed to achieve a validation accuracy of 96.1% for
their proposed method.

In another example, a novel deep learning method was proposed by Zhang et al. [53]
to classify nuclear cataracts based on anterior segment OCT images using a convolutional
neural network (CNN) model named GraNet. They used a grading block for high-level
feature learning that was based on the pointwise convolutional method. They also used
a simple cross-training method to further improve the classification performance. The
results reported an accuracy of less than 60% for all CNN models, including the proposed
model. This was explained by the fact that CNN models use the entire lens structure as
input, which also contains the crystalline lens opacities of other types of cataracts and
can make it difficult for CNN models to accurately distinguish between different levels of
nuclear cataracts.

Table 2 shows the summary of the proposed methods that applied deep learning to
various image modalities. From the table, it can be concluded that most of the researchers
achieved high accuracy with their proposed methods that applied deep learning in cataract
detection and grading. However, for deep learning models, a large dataset is needed for
training to achieve better classification or grading [43,49,50]. In addition, the proposed
methods still lack a fully automated cataract detection and grading system. Some of the
methods could be applied to only one type of cataract. The grading systems of mixed types
of cataracts must be developed in the future.
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Table 2. Summary of Cataract Detection Using Deep Learning Approaches.

Authors Methods Image
Modalities Achievement Limitation Database

Zhang et al. [43]

Visualize some of the
feature maps at pool5 layer

with their high-order
empirical semantic meaning
that provides an explanation
to the feature representation

extracted by deep
convolutional neural

network (DCNN)

Fundus

Achieve accuracy
of 93.52%

(detection) and
86.69% (grading)

Accuracy can be
increased by

increasing the
amount of data,

therefore, big data
is needed

Beijing Tongren
Eye Center of

Beijing Tongren
Hospital (5620
fundus images)

Zhou, Li, and Li
[44]

Deep neural network with
discrete state transition

(DST)
Fundus

Achieve 78.57% for
cataract grading

(with prior
knowledge)

Lower accuracy
compared to

previous
DST-ResNet for
cataract grading
(without prior

knowledge)
Automated

method and does
not need prior

knowledge

Beijing Tongren
hospital (1355

fundus images)

Mahmud Khan
et al. [45]

Cataract detection using the
CNN with VGG-19 model Fundus Achieve high

accuracy of 97.47%

Use unfiltered and
quality unassessed

fundus images

Shanggong
Medical

Technology Co.,
Ltd. (800 fundus

images)

Xiong et al. [46]

Grade cataracts using a
pre-trained residual

network (ResNet) which is
adapted from residual

learning framework [47] to
extract high-level features

Fundus
Achieve 91.5%

accuracy for 6 class
classification

Good results in
classifications 0

and 5 but does not
effectively
distinguish

between 2 and the
adjacent

classifications

1352 fundus
images

Li et al. [48]

Restructured AlexNet and
GoogleNet into

AlexNet-CAM and
GoogleNet-CAM,

respectively and use
Grad-CAM which is an

improved technology on
basis of Class Activation

Mapping (CAM)

Fundus

Achieve accuracy
of 93.28%

(AlexNet-CAM)
and 94.93%

(GoogLeNet-
CAM)

Automated
method

Require labelled
data

Beijing Tongren
Eye

Center of Beijing
Tongren hospital

(5620 fundus
images)

Imran et al. [49]

Hybrid model that
integrates deep learning

model and SVM for 4-class
cataract classification

Fundus Achieve 95.65%
accuracy

Limited fundus
images for

moderate and
severe cataract

categories

Tongren Hospital,
China (8030

fundus images)

Imran et al. [50]

Hybrid convolutional and
recurrent neural network
(CRNN) for the cataract

classification

Fundus

Achieve accuracy
of 97.39% for

4-class cataract
classification

Limited fundus
images for

moderate and
severe cataract

categories

Tongren Hospital,
China (8030

fundus images)
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Table 2. Cont.

Authors Methods Image
Modalities Achievement Limitation Database

Gao, Lin, &
Wong [51]

Automatically learn features
for grading the severity of

nuclear cataracts from
slit-lamp images using

unsupervised
convolutional-recursive

neural networks (CRNN)
method

Slit-lamp

Achieve 70.7%
exact agreement

ratio against
clinical integral
grading, 88.4%

decimal grading
error ≤ 0.5, 99.0%
integral grading
error ≤ 1.0 and
MAE of 0.304

The results might
be affected by the

error in the
human-labelled

ground truth

ACHIKO-NC
Dataset (5378

images)

Qian, Patton,
Swaney, Xing, &

Zeng [52]

Utilise supervised training
of convolutional neural

network to classify different
areas of cataracts in lens

Slit-lamp Achieve validation
accuracy of 96.1%

Need human
intervention

High value of
validation loss

No. 2 Hospital,
Changshu, Jiangsu,

China (420
slit-lamp images)

Zhang et al. [53]

Nuclear cataract
classification based on the

anterior segment OCT
images using Convolutional

Neural Network (CNN)
model named GraNet

OCT
Achieve accuracy

of less than 60% for
all CNN models

Imbalanced
dataset

2D AS-OCT
images might not
contain enough

pathology
information of

cataract

Dataset acquired
by CASIA2 device

of Tomey
Corporation, Japan

(38,225 OCT
images)

3.3. Available Tools for Cataract Grading

OCT is a non-invasive ocular imaging modality that utilises near-infrared light to
generate high-resolution images of the flesh microstructure [14]. Anterior segment OCT has
been used to grade cataracts by assessing a variety of different features. For example, Kim,
Park, and Tchah [54] used AS-OCT with a liquid optics interface to perform a quantitative
analysis of whole lens and nuclear lens densities. Additionally, they compared their results
to the LOCS III lens grading and corrected distance visual acuity (BCVA). They discovered
that nuclear density had a stronger positive correlation with LOCS III than whole lens
density. This indicated that the nuclear opalescence of the LOCS III grading system can be
classified as the colour of the cataract nucleus. However, the higher correlation between
lens nuclear density and LOCS III score compared to whole lens density could be caused
by the difficulty identifying the margins encompassing the entire lens capsule because the
posterior shadowing of pupils concealed the margin of the lens cortex when pupils were
fully dilated. Apart from that, this evaluation is limited to age-related cataracts, excluding
all other types. The small number of cases also serves as a constraint on the study’s ability
to verify repeatability and reproducibility.

Panthier et al. [55] proposed an objective method for cataract grading based on the
quantification of average lens density using SS-OCT scans. They discovered that, by
setting the cut-off value for the average lens densitometry (ALD) index to 73.8-pixel units,
their method achieved 96.2% sensitivity and 91.3% specificity in detecting cataracts. They
previously used an ALD cut-off threshold of 82.9 pixel units [56] but achieved only 73.9%
sensitivity and 91.2% specificity (96.2% sensitivity and 91.3% specificity). They increased
sensitivity significantly by analysing multiple B-scans passing through different axes for a
global 3-dimensional lens analysis, resulting in reliable and reproducible results.

In another work, Chen et al. [57] conducted a lens nuclear opacity quantification study
using long-range SS-OCT and evaluated the correlation of their method with the LOCS III
and Scheimpflug imaging-based grading systems (Pentacam Nuclear Stage function; PNS).
They concentrated on the cataractous nucleus-induced backscatter intensity generated by
the long-range SS-OCT images, which were then processed and analysed using ImageJ
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software to determine the feasibility and advantage of this technique for characterizing
the degree of nuclear opacity. They were able to establish strong correlations between the
SS-OCT nuclear density and the LOCS III and PNS functions.

The available tools for cataract grading are summarized in Table 3. These methods
used AS-OCT and SS-OCT images to evaluate lens density and opacity, and they showed
a good correlation with the current traditional grading system LOCS III. However, all
the methods are only semiautomated, and some of them only focus on nuclear cataracts.
Therefore, a fully automated cataract grading system that also works with other types of
cataracts and correlates well with LOCS III or Wisconsin is still needed.

Table 3. Available Tools for Cataract Grading.

Authors Methods and Tools Achievement Limitation Database

Kim et al. [54]

Evaluated correlation
of LOCS III lens

grading with nuclear
lens density and whole

lens density using
AS-OCT with liquid

optics interface

Nuclear density
showed a higher

positive correlation
with LOCS III

compared to the whole
density

Need human
intervention

Limited number of
datasets

Only studied the dense
nuclear cataracts

Asan Medical
Center

Panthier et al. [55]

Cataract grading
method based on

average lens density
quantification with

SS-OCT scans

Achieve d96.2%
(sensitivity) and 91.3%

(specificity)

A single-centre study
that delineated the

anterior and posterior
cortex

Do reproduce for
reliable score for

subgroup analysis

Rothschild Foundation,
Paris, France

Chen et al. [57]

Evaluated the
correlation of lens

nuclear opacity
quantitation by

long-range SS-OCT
method with LOCS III

and Scheimpflug
imaging-based grading

system

Obtained a good
correlation between

SS-OCT nuclear density
and LOCS III and
Pentacam nuclear

density

Semiautomatic and
time-consuming

Only studied nuclear
cataracts

Uses 120 images

4. Modern Trends in Cataract Screening

Today, digital images from digital cameras and smartphones are more widely used for
the development of health-related apps in the healthcare sector. Globally, most individuals
own a smartphone with easy access to a camera that provides good image quality. Other
imaging modalities, such as slit-lamp and fundus images, usually require equipment that
is not portable, and the operations usually require skilled professionals. The advance of
digital imaging in medical science has greatly helped artificial intelligence (AI) in pattern
recognition using CAD systems. CAD systems are intended to assist physicians by automat-
ically interpreting images, which results in decreases in human dependency, boosts the rate
of diagnosis, and lowers total treatment costs by reducing false-positive and false-negative
(FN) predictions [58]. In addition, anterior segment photographed images that focus on
the anterior part of the eyes have also been used for ocular disease detection [59,60]. For
that reason, some researchers have started to explore the use of digital camera images from
smartphones for early cataract detection and screening.

For example, Fuadah, Setiawan, Mengko, & Budiman, [61] investigated the optimal
combination of statistical texture features in digital images that provides the highest level
of accuracy for cataract detection. They used K-nearest neighbour (k-NN) classification as
the classification method, which will be implemented on the Android smartphone interface.
They classified statistical texture analysis into two types for feature extraction: first-order
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and second-order statistical texture methods. They distinguished between cataract and
normal images using the Gray Level Co-occurrence Matrix (GLCM). Then, they calculated
the candidate texture measurements for the acquired co-occurrence matrix, such as contrast,
dissimilarity, uniformity, correlation, and homogeneity. They discovered that texture
feature correlation and homogeneity had no effect on accuracy, implying that the only
relevant features are uniformity, contrast, and dissimilarity. They achieved the highest
accuracy of 97.5% with a k-value of one for the classification result.

Agarwal, Gupta, Vashisht, Sharma, & Sharma [62] also proposed smartphone-based
Android applications that were developed using the proposed methodology and can
be used for cataract detection. They utilised the combination of machine learning and
image processing techniques in their study to develop the proposed mobile applications.
They used k-NN for the classification to reduce the computation time while the mobile
applications were under development. They also compared their proposed model with
other models, such as SVM and naïve Bayes. According to their results, the proposed
model showed higher scores in accuracy (83.07%), F-score (82.97%), recall (82.7%), and
precision (83.18%) than the other two models.

Apart from the k-NN model, Sigit, Triyana, & Rochmad [63] proposed a smartphone
application for cataract detection that used a single layer perceptron method to distinguish
between normal eyes, immature cataract eyes, and mature cataract eyes. They segmented
the ocular pupil region using Canny Edge Detection and the Hough Circle Transform and
extracted features such as the mean intensity value and uniformity value in the pupil. They
achieved a classification accuracy of 100% for normal eyes, 85.7% for eyes with immature
cataracts, and 60% for eyes with mature cataracts.

Recently, some works have been utilising smartphones as tools for cataract screening.
Ik et al. [64] introduced a mobile cataract screening using a smartphone that uses a red
reflex method. Their method focuses on the self-screening cataract mobile application
that enables the public to carry out the early detection from the smartphone with camera
and flash. Their initial results showed that they still need to do more research on the
flash timing, the duration needed for the human eye to be in the dark to capture a clear
red reflex, the intensity of the room lighting, and the effects of vertical angle towards
the clarity of the red reflex. In another example, da Cunha et al. [65] have proposed an
embedded teleophthalmology system that uses a smartphone called TriOft for the screening
of cataract. The system is based on image processing and expert systems that consist of
an off-line mobile pre-diagnostic platform for cataract screening in remote areas. Their
proposed system managed to achieve 90% accuracy which is higher than the accuracy ob-
tained by ophthalmologists (62.5%) and slightly lower than the accuracy from the OPTICA
system (95.31%).

Besides, there have also been a few works that utilise smartphones attached with
slit-lamp adapters for cataract screening purposes. For example, Hu et al. [66] proposed a
unified framework for automated nuclear cataract severity classification using smartphone-
based slit-lamp images. Their framework as shown in Figure 3 [66] integrates both deep
learning and traditional feature extraction methods. They employed YOLOv3 to locate
the nuclear region of the ocular lens image. Then, they intercepted the nuclear region of
the original image to obtain a nuclear region dataset and used the ShuffleNet and SVM
classifiers for cataract grading. Comparing their proposed algorithm with the GoogleNet
and ResNet-101 methods, their proposed algorithm managed to produce the higher value
for accuracy (93.48%), sensitivity (89.2%), Youden (0.846), F1 (92.3%), and Kappa (0.954).
In another work, Yazu et al. [67] evaluated nuclear cataract detection using a smartphone-
attachable slit-lamp device called Smart Eye Camera (SEC) and a conventional slit-lamp
microscope. During the evaluation, the pupil of the subjects was dilated and examined
using both approaches. Their results showed that the nuclear cataract grading by both
approaches showed a significant correlation, which suggests that the SEC approach is as
reliable as the conventional slit-lamp microscope approach for evaluating cataracts.
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Figure 3. Unified framework for automated nuclear cataract severity classification [66].

5. Challenges and Future Direction

Cataract detection and grading methods developed in the past few years indicate that
more robust and fully automated cataract detection and grading systems are still needed.
Imaging modalities such as fundus, slit-lamp, and OCT images require medical equipment
that is expensive and not portable. Some of the previously developed methods have
limitations that need to be overcome. For example, although many automated image-based
cataract grading methods have been proposed, they are limited to nuclear cataract and use
the slit-lamp photo only. Such grading methods of subcapsular and cortical cataracts are
still unavailable because the latter cases’ cloud formation is more difficult to determine the
maturity state. Currently, there have been a few studies on portable smartphone-based
slit-lamp images for cataract screening. However, those methods involve pupil dilation,
which is an invasive procedure needed during the evaluation. Since digital images from
smartphones are cheaper, more portable, and adaptable, they can be a practical solution for
automated cataract detection and grading. In addition, it can also help the ophthalmologist
particularly in rural areas with limited access to quality healthcare facilities. For this reason,
cataract screening using mobile devices such as smartphones could be exploited as an
alternative solution.

In recent years, the term connected health has gained popularity to describe the new
technology-enabled model of healthcare delivery. According to Caulfield & Donnelly [68],
connected health can be defined to encompass categories such as wireless, digital, electronic,
mobile, and tele-health. It also refers to the conceptual model for health management,
where devices, services, or interventions are designed based on the patient’s need for the
sharing of health-related data so that the patient can receive care in the most interactive
and efficient way. Moreover, the significant application of information and communica-
tion technology in the health sector to date has led to a substantial improvement in the
healthcare delivery system. Furthermore, smartphones, which are sophisticated devices
that combine traditional mobile phone features with advanced computing capabilities
that allow users to access software programs, have gained immense popularity for health-
related purposes. The smartphone’s technological capability, popularity, availability, and
globally increased ownership have helped encourage the smartphone as an appealing
tool for patient self-management, continuous symptom and vital sign monitoring, and
patient-physician communication [69,70].

In addition, AI has significant applicability in healthcare since it can handle and
utilise very complicated datasets that exist in very complex systems [71]. In addition,
clinical medicine has emerged as an intriguing application area for ML and DL models,
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where these models already outperforming humans in clinical pathology, radiography,
ophthalmology, and dermatology [72]. The rapid growth of both technologies can be
further explored as a potential framework for portable cataract screening tools that can
be used to assist ocular healthcare practitioners, particularly in remote areas with limited
access to quality healthcare facilities. Figure 4 illustrates the framework of a connected
cataract screening system that uses anterior segment photographed images (ASPIs), which
are digital eye images captured with a smartphone camera. The user may capture ASPIs
using the smartphone camera, and the images are uploaded to the cloud data storage.
The images are then analyzed on the cloud computing platform using a suitable machine
learning algorithm to detect and grade cataracts. Finally, the result can be notified to the
user via a unified messaging system.

Figure 4. Framework for a connected cataract screening system using smartphone.

6. Conclusions

Significant progress has been made over the years in developing automated cataract
detection and grading systems that utilise four distinct imaging modalities: OCT im-
ages, fundus images, slit-lamp images, and digital camera images. These efforts have
demonstrated that they can help relieve ophthalmologists’ burdens associated with cataract
diagnosis, as the proposed methods are less time-consuming, and most of the methods
achieve high accuracy. However, some gaps remain to be filled in the future, including the
development of more robust, portable, and fully automated cataract detection and grading
systems. Based on the information presented in this review, a highly promising approach
for portable connected cataract screening using smartphones, along with the application of
machine learning and deep learning, can be further explored in the future. This approach
could be highly beneficial for ocular healthcare practitioners, especially in rural areas where
access to quality healthcare facilities is limited.
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