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Abstract: Single-object visual tracking aims at locating a target in each video frame by predicting the
bounding box of the object. Recent approaches have adopted iterative procedures to gradually refine
the bounding box and locate the target in the image. In such approaches, the deep model takes as
input the image patch corresponding to the currently estimated target bounding box, and provides
as output the probability associated with each of the possible bounding box refinements, generally
defined as a discrete set of linear transformations of the bounding box center and size. At each
iteration, only one transformation is applied, and supervised training of the model may introduce
an inherent ambiguity by giving importance priority to some transformations over the others. This
paper proposes a novel formulation of the problem of selecting the bounding box refinement. It
introduces the concept of non-conflicting transformations and allows applying multiple refinements
to the target bounding box at each iteration without introducing ambiguities during learning of the
model parameters. Empirical results demonstrate that the proposed approach improves the iterative
single refinement in terms of accuracy and precision of the tracking results.

Keywords: visual tracking; deep tracking; iterative bounding box refinement

1. Introduction

Visual object tracking aims to automatically locate a target in subsequent frames,
generally by estimating the bounding box that encloses the target on the image plane [1].
In contrast to the object detection problem, where instances of predefined object classes
are located on an image, in object tracking the target is often located in a class-agnostic
way by considering only the information provided in an initial frame (for instance, the
frame where the target first appears). Although it has been widely studied, visual tracking
remains a challenging problem in real-world scenarios due to target occlusions, pose and
appearance changes, and illumination variations [2].

Nowadays, the best performance in visual tracking is achieved by employing deep
learning [2,3]. MDNet, proposed by the authors of [4], is a tracking-by-detection and
regression algorithm that classifies into target/background a set of bounding boxes sampled
every frame around the last known target location. The bounding box with the highest
classification confidence score is later adjusted through regression. The deep classification
model is trained in a multi-domain way. Despite the fact that MDNet is not the most recent
tracker, it still achieves state-of-the-art performance on the famous OTB benchmark [5].
MDNet has two main limitations: One is related to the sampling and classification at each
frame of several bounding boxes to select the optimal one; the other limitation is related to
the use of a regression model to refine the selected bounding box.

Recent works have tried to improve MDNet by formulating the search of the optimal
bounding box either as an iterative process where a discrete sequence of bounding box re-
finements is predicted to locate the target, as done in [6–10], or as the problem of regressing
the bounding box coordinates at each frame as in [11].
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In [6,12,13], at each frame, the bounding box is iteratively refined by applying shift
(move right/left/up/down on the image plane) and scale (reduce/enlarge the bounding
box size) refinements. The identity transformation is also included to account for the cases
in which the bounding box must be accepted as it is. To implement such a strategy, the
deep model takes as input the image patch corresponding to the currently estimated target
bounding box, and provides as output the probability associated with each of the possible
bounding box refinements. The one with the highest probability value is applied to the
bounding box, and the process is iterated until a maximal number of iterations or the null
transformation is selected. Figure 1A summarizes the process.

Figure 1. (A) In iterative single refinement, starting from an initial bounding box, a sequence of
transformations to the bounding box is predicted and applied to locate the target. (B) With multiple
refinements, a sequence of multiple non-conflicting transformations is predicted and applied.

This paper focuses on these kinds of approaches. We note that the above iterative
process has several drawbacks. First, only one transformation can be applied at each
iteration, thus leading to a higher computational cost to find the optimal bounding box.
Second, the strategy introduces an ambiguity during the learning of the model parame-
ters. Indeed, supervised training of the model is performed by providing the target patch
and the type of bounding box refinement that should be applied to improve the tracking
result. As shown in Figure 2, the effect of applying a transformation can be measured by
estimating the intersection-over-union (IoU) value of the resulting bounding box and the
ground-truth. Very often, more than a transformation would result in improved target
localization (in Figure 2 the transformations “move up”, “move left”, and “enlarge”), but
this is generally ignored by the supervised training procedure in [6,7,13]. Indeed, when
using the 1-hot encoding schema to select the refinement, it has been given priority impor-
tance to a bounding box refinement over another by considering the first transformation
with the highest IoU. One of the main contributions of this work is to allow the selection of
multiple transformations. During training, multiple 1-hot encoding is used to indicate the
transformations that might be applied to improve the bounding box.

Finally, we note that bounding box transformations may cancel each other. We call
such refinements “conflicting transformations” (i.e., shifting the bounding box to the
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left and to the right). As reported in [13], refinements canceling each other may induce
cycling behaviors.

In this paper, we deal with all the above issues by proposing a novel formulation of
the problem of selecting the bounding box refinement (see Figure 1B). The contributions of
this work can be summarized as follows:

• We introduce the novel concept of conflicting refinements and train the model to deal
with them;

• We formulate the problem in such a way that multiple non-conflicting transformations
can be applied at each iteration, leading to a speed up of the tracking process. As a
consequence, a higher number of composite transformations can be handled by the
model without any increases in its complexity;

• We limit the ambiguity during the training procedure by avoiding giving importance
priority to some refinements over the others (see Figure 2).

To demonstrate our ideas empirically, we implemented our own tracking algorithm
by adopting simple models and approaches common to several state-of-the-art tracking
algorithms. We will make our tracker implementation publicly available to the scientific
community. Our goal is not to achieve the highest accuracy and precision values in tracking.
Instead, we aim to study the effect of formulating the problem of selecting the best target
bounding box refinements in a different way.

In Section 2, we summarize the main characteristics of deep tracking approaches. In
Section 3, we present our novel formulation of the problem. In Section 4, we provide details
about the implementation we used to demonstrate our ideas. Finally, in Section 5, we
discuss our contribution and contrast it with the state-of-the-art on the OTB benchmark.
We also report the performance of our tracker implementation on the VOT benchmarks for
completeness of results. Finally, in Section 6, we present conclusions and future work.

Figure 2. Image (A) shows the IoU values calculated after each of the possible refinements. Im-
age (B) shows how 1-hot-encoding is used to annotate the data in single and multiple bounding
box refinements.

2. Related Work

Given a sequence of T images {F1; F2; . . . FT}, visual tracking is the problem of detect-
ing the location bt on the image plane of a target moving in the environment over time or,
more formally, estimating bt = (xt; yt) with t ∈ [1; T] indexing the image frames. Often, bt
also includes the width wt and height ht of the bounding box enclosing the target on the
image. Many methods have been proposed in literature for tracking by using traditional
approaches like linear dynamical systems, Kalman Filter [14,15], re-identification and data
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association [16,17], and correlation filter [18] together with hand-crafted features [2,19].
Recently, deep learning has proven to be particularly effective in extracting features for
the recognition and detection of objects [20,21], and has been used to solve visual tracking
problems [2]. In the following, we first briefly describe the different neural architectures
and strategies commonly adopted in visual tracking. Then, we discuss methods that refine
iteratively the target bounding box.

2.1. Network Architectures and Output

In general, it is possible to identify two categories of networks used in visual tracking:
template-based and template-free neural networks. The former, such as the one proposed
in [22], are composed of two or more branches that usually process the target template
and the search area, and generally run in real-time without online parameter adaptation.
These methods aim at locating the target depicted in the template image within the search
area image. To account for target appearance changes, the template is in general updated
online. The latter, such as the one proposed in [4], are composed of one branch. These
methods do not need any templates but require online model adaptation to account for the
target’s appearance changes. As online parameter adaptation is computationally costly,
these models are generally slower but more accurate.

Regardless of the adopted neural architecture, three main strategies are used: tracking-
by-detection, tracking-by-regression, and tracking-by-detection and regression. Tracking-
by-detection approaches [23,24] are classification methods, which aim to discriminate
between target and background. A large number of candidate target bounding boxes are
drawn around the last known target location. The one yielding to the highest classification
score is selected. As a result, performance is closely linked to the sampling strategy.

Tracking-by-regression approaches [22,25] use regression to locate the bounding box
in subsequent frames by minimizing an objective function such as least-squared error.

Tracking-by-detection and regression methods [4,6,26–28] are hybrid approaches
whose goal is detecting the most similar region to the target, and then refining the re-
gion through regression.

Recent approaches [29–32] might be included in the class of tracking-by-segmentation.
These methods aim at tracking objects while producing a mask of the target object for each
frame of the processed video. The work in [33], which focuses on the transformation of
appearance features into motion-attentive representations, is also related.

Our work focuses on tracking-by-detection and regression. The method refines the
bounding box by discrete transformations as in [6,7]. As one refinement of the bounding
box cannot be enough to detect the target, refinements are made in an iterative way on
the same frame. At each iteration, the tracking model not only predicts the refinement to
apply, but also classifies the bounding box image into target/background and returns a
confidence score as in tracking-by-detection strategies. This score is used to detect drifting
of the tracker and decide whether to adopt a re-detection method purely based on tracking-
by-detection strategies. In this sense, at each iteration, the model has to decide whether to
regress the bounding box (by applying discrete transformations) or re-detect the target (by
classification of multiple candidate bounding boxes).

2.2. Iterative Bounding Box Refinements

When iterative bounding box refinements are used, at each iteration the candidate
target bounding box is transformed such that the target object is progressively more and
more at the center of the image patch [12,13]. Numerous works in tracking used this
formulation to find the bounding box of the tracked object [6–10]. The problem can be
formulated as a Markov Decision Process and, while reinforcement learning is often used,
these models generally require a supervised training procedure.

Often, the set of possible refinements are treated as categories and the model predicts
the probabilities associated with each of them. When preparing the training set, given a
target bounding box and its perturbed version, it is necessary to associate the transformation
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that the network has to predict when the perturbed bounding box is given in input. Among
all transformations, the one maximizing the IoU of the transformed bounding box and the
ground-truth is chosen.

In [13], the method for object detection in [12] is adapted to perform visual tracking.
Given an initial detection of the target, a pre-trained deep network (derived from the
VGG-16 model in [34]) is used to extract features from the bounding box. The deep model
is trained to shift and scale the bounding box to recenter the target. It has been noted that
the model may sometimes start to select pairs of bounding box transformations that cancel
each other. To overcome this issue, the bounding box is randomly perturbed whenever
cycling behavior is detected.

In the work proposed in [6], an action-decision network (ADNet) is used to predict
a probability distribution over the possible bounding box transformations. The network
takes as input the cropped target image and the history of the last 10 selected bounding box
transformations represented by a one-hot encoding schema. The network is pre-trained in a
supervised way and also estimates a confidence score to decide when the tracking process
must be re-initialized. At test time, a supervised adaptation of the latest fully connected
layers is performed to make the model more robust to appearance changes. ADNet was
later improved in IADNet [35]. During training, a multi-domain learning strategy [4] is
used. An online adaptive update strategy based on meta-learning is used to estimate the
most appropriate model parameters such that the parameters are closer to the optimal ones.

The work proposed in [7], RDNet, adopts two Siamese network-based models receiv-
ing as input the crop of the image corresponding to the currently estimated bounding box
and a search region image both obtained from the current frame. The first model chooses
among different shifting transformations; the second one selects a scaling transformation.
Similarly to RDNet, we also treat shifting and scaling transformations separately, but we
adopt one multi-branch network and formulate the problem as one selecting multiple
non-conflicting transformations.

The model TSAS proposed in [36] uses a cascade of two networks to predict how to
shift the target bounding box. The first network, trained in a supervised way, predicts the
best bounding box transformation to locate the target; the second network assesses the
quality of the predicted transformation. Finally, a regressor is used to refine the resulting
bounding box. In our model, one branch provides the confidence of the model on the
current tracking result and no postprocessing of the bounding-box is used to improve
the results.

3. Multi-Refinements of the Bounding Box

At time t, the candidate target bounding box is defined as a 4-dimensional vector
bt = [xt, yt, wt, ht], where (xt, yt) is the center coordinates and wt, ht represent the width
and height of the bounding box, respectively. Given an image frame Ft, the image patch
pt is obtained by cropping Ft based on the bounding box bt through the selection patch
function fb(·). The function can also include pre-processing steps to adapt the resulting
image patch to the network input:

pt = fb(bt, Ft). (1)

Let V be the number of basic linear transformations that can be used to refine the
bounding box b. These transformations define the space Φ of allowed discrete bounding
box transformations. Let ϕ be a subset of k transformations ϕ = {φ1, φ2, . . . , φk} ⊆ Φ. A
transformation θ(·) ∈ Φ is conflicting with the transformations in ϕ if

b = γi(θ(b)) (2)

where γi indicates any sequence of transformations in ϕ. In other words, bounding box
changes operated through the refinement θ are canceled out by some of the refinements
in ϕ.
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If instead, for any sequences γi

b 6= γi(θ(b)), (3)

then θ(.) is non-conflicting with the transformations in ϕ.
Keeping in mind the above definitions, we propose to split the bounding box refine-

ments into N groups such that each transformation in one group is not in conflict with
the transformations in all the other ones. We include within each of these groups a “null
transformation”, namely, the identity transformation. In the following, the obtained groups
are named non-conflicting groups.

As an example, let us consider the following discrete bounding box transformations:
Φ = {Left(∆), Right(∆), Up(∆), Down(∆)}, where the name of the transformation indicates
the shifting direction of the bounding box, while ∆ represents the number of pixels. A
possible partition into two non-conflicting groups, Gh and Gv, is Gh = {Le f t(∆), Right(∆)}
and Gv = {Up(∆), Down(∆)}.

Output Layer for Non-Conflicting Refinements

To deal with multiple non-conflicting refinements of the bounding box, we need to
properly design the output layer of the deep model used within the tracking strategy.
Figure 3 shows, on the top, the typical deep model used for iterative bounding box refine-
ments [6,12,13]. At each iteration, the model takes as input an image patch and provides
the probabilities of each of the V transformations φi ∈ Φ. Only the transformation with the
highest probability is applied.

Figure 3. On the top, the model estimates the probability distribution over all the transformations. On
the bottom, the model estimates N probability distributions, one for each group of transformations.
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On the bottom, Figure 3 shows how the model needs be adapted to deal with N
non-conflicting transformation groups. The network will provide N probability distribu-
tions over the ki transformations belonging to each group, with i varying in [1, N]. The
distributions are computed independently from each other, and N different non-conflicting
transformations are applied, one from each group.

4. Tracking by Iterative Multi-Refinements

To demonstrate our idea, we implemented our own tracker. Our tracking architecture
is template-free, and requires online fine-tuning of the parameters to adapt the model to the
target appearance changes over time. As shown in Figure 4, our tracker takes advantage of
one network with multiple output branches sharing the convolutional layers and the first
dense layer. The first N output branches, namely, the subnet Transformation-Net, estimate
N probability distributions over the refinements within the N non-conflicting groups of
transformations. In the figure, N = 3. The last output branch network, namely, the subnet
Confidence-Net, provides a confidence score of the classification of the image patch into
background/target.

Figure 4. Architecture of our model. On the left, the arrow indicates the flow of frames. At time t,
starting from the bounding box estimated at time t − 1, the method iterates a sequence of multiple
transformations highlighted in red on the right side. The transformations are applied to the bounding
box, which is used to get a new image patch to feed the model.

At time t, starting from the target bounding box estimated at time t− 1, our method
uses the networks to estimate a sequence of linear transformations of the bounding box
to locate the target in the image frame. The process ends when, for each non-conflicting
transformation group, the null transformation is selected or a maximum number of
iterations is reached.

The final confidence score is used to assess if the tracking failed, and in this case, a
re-detection procedure based on particle filter is used. The entire tracking procedure is
presented in Algorithm 1. In the following, we present details about the various steps
performed by our tracker.
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Algorithm 1 Online tracking algorithm.
Input: Pre-trained CNN (w1,. . . ,w5)

Initial target b∗0
Sequence of V frames {F0; F1; . . . ; Ft; . . . , FV}

Output: Estimated sequence of target bounding-boxes {b∗t }V
t=1

1: Randomly initialize parameters w6-w9
2: Draw training samples X0 around b∗0 , MS.push(X0), ML.push(X0)
3: Update parameters w4-w9
4: for t = 1, . . . , V do
5: b0

t ← b∗t−1
6: for k = 1, . . . , max_iter do
7: pk

t = fb(bk−1
t , Ft)

8: Select N refinements ϕi based on Transformation-Net(pk
t )

9: Apply ϕi with i ∈ [1, N] to the bounding-box to estimate bk
t

10: end for
11: Evaluate confidence score q∗ = Confidence-Net( fb(bk

t , Ft)))
12: if q∗ > 0.5 then
13: b∗t ← bk

t
14: Draw sample Xt around b∗t
15: Update MS and ML by adding Xt and limiting their size
16: end if
17: if q∗ <= 0.5 then (failure!) apply Re-detection to find b∗t
18: Evaluate confidence score q∗ = Confidence-Net( fb(b∗t , Ft))
19: end if
20: if q∗ <= 0.5 then Update w4 − w9 by using MS
21: else if t mod 10 = 0 then Update w4 − w9 by using ML
22: end if
23: end for

4.1. Designing Non-Conflicting Refinements

In our implementation, each basic transformation depends on parameters calculated
from the size of the current bounding box, similarly to what has been done in [6]. In
particular, at the k-th iteration, we consider the values ∆wk

t = σ · wk−1
t and ∆hk

t = σ · hk−1
t ,

where σ is a constant value equals to 0.03. These parameters represent, in pixels, the
adjustments to the center coordinates or the width/height of the bounding box. Based on
our experiment, considering the structure of the adopted CNN (a VGG-M), σ equals to
0.03 is the minimum value for the network to notice the effect of the transformations to the
bounding box.

We also consider N = 3 non-conflicting groups of refinements, each including two
basic transformations. The first group, Gh = {Le f t(∆wk

t ), Right(∆wk
t )}, shifts the bounding

box to the left or to the right by adding/subtracting the value ∆wk
t to the coordinate xk−1

t .
The second group, Gv = {Up(∆hk

t ), Down(∆hk
t )}, shifts the bounding box up or down

by adding/subtracting the value ∆hk
t to the coordinate yk−1

t .
Finally, Gs = {Enlarge(∆wk

t , ∆hk
t ), Reduce(∆wk

t , ∆hk
t )}, re-scales the bounding box to

decrease or increase its size by adding/subtracting the value ∆wk
t and ∆hk

t to the bounding
box width and height, respectively. Each of the above groups is augmented to also include
the null transformation. These groups were created starting from the transformations used
in ADNet [6], separating them into non-conflicting groups and excluding double shifts.
The introduction of double shifts, namely, shifting transformations with a doubled value of
σ, did not produce significant improvements in our experiments.

4.2. Deep Model

The structure of our network is described in Figure 4. Similarly to former approaches [4,6],
the first four convolutional layers (conv1–conv4), with weights (w1 − w4), are taken from
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the VGG-M network [37]. The input layer is adapted to our input dimension and subse-
quent features maps; we used the same input size as in [4]. The fully-connected layer fc5,
with weights w5, is shared by both the Confidence- and Transformation-Net. Layers fc6–fc8,
with weights (w6−w8), provide the probability distributions for each of the transformation
groups we defined and apply softmax activation functions. Layer fc9, with weights w9,
belongs to the Confidence-Net; with 2 units, it applies a softmax activation function.

4.3. Supervised Training of the Model

Offline training: An offline training procedure is used to learn the parameters (w1 − w5).
This procedure is based on multi-domain learning [4] where layers (conv1-fc5) dealing
with domain-independent information (such as motion blur, illuminations changes, and
scale variations) and domain-specific layers (fc6–fc9) are treated differently. In particular,
while the former are shared among all videos, the latter are initialized and trained for each
video. The number of domains is equal to the number of videos contained in the training
dataset. At each training iteration we use X = [Xc, Xb], where Xc indicates the data used to
train the Confidence-Net, and Xb indicates the data used to train the Transformation-Net.
The entire model is trained by alternating the training of the Transformation-Net (while
freezing the Confidence-Net) and the training of the Confidence-Net (while freezing the
Transformation-Net).

Online training: At test time, parameters (w6 − w9) are randomly initialized for each
video sequence to be adapted online to the target appearance changes, and parameters
(w1 − w3) are fixed and not trained online to speed up the online training, and to limit
overfitting of the network. Online parameter adaptation is done every s frames (s = 10)
and, whenever a tracking failure has been detected, a re-detection step is performed. A
failure is detected whenever the model predicts a confidence score lower than 0.5. Inspired
by the works in [4,6], we update the parameters by using a long-term memory ML every s
frames. This memory stores random samples from the last memL = 1000 frames. In case of
tracking failures, to speed up the model adaptation to the current target appearance, we
update the parameters by using a short-term memory MS. This memory stores random
samples from the last memS = 20 frames.

4.4. Sample Generation

Considering N groups of k transformations (including the identity one), there are
overall kN composite transformations. In our implementation, kN = 33 = 27. To train
the Transformation-Net, we used balanced mini-batches of 81 samples where the 27 com-
posite transformations were equally represented. A grid sampling approach over the
4-dimensional space with a discrete uniformly distributed random step has been used.

To generate balanced mini-batches of 64 samples for training the Confidence-Net, we
referred mainly to the technique used by [4]. We used the sampling methods reported in
the public code, which slightly differs from the one described in the paper. The sampling
is based on normal distributions whose mean and variance depend on the bounding box
estimated at the previous iteration. If the sample comes from the first frame, it is considered
positive if it yields to IoU > 0.7. Otherwise, it is considered positive if the predicted
confidence value is >0.5. Furthermore, we used hard negative sampling, meaning that we
randomly selected a large number of negative samples from the short memory MS and
select 32 samples with the highest positive classification score. This procedure improves
the discriminative abilities of the Confidence-Net.

4.5. Implementation Details

Whenever a failure occurs, similarly to the works in [4,6], we sample 256 candidate
target bounding boxes with the same schema adopted to generate mini-batches for training
the Confidence-Net. The confidence score of these bounding boxes is evaluated, and the
candidate with the highest score is selected as the predicted target bounding box.
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As loss function, we adopted the categorical cross-entropy. The learning rate is fixed
to 0.001 and the network is trained with SGD with a momentum of 0.9 and weight decay
parameter of 0.0005. During offline training of the model, we used 287 domains, that is,
287 videos from the ALOV300 dataset [38]. In particular, for a number of 3 iterations, we
sampled 5 frames from each video. For each frame we trained the model for 5 iterations.
Training has been done alternating the domains.

At the first frame, layers (conv4-fc9) are trained for 30 iterations on samples generated
based on the known target. The Transformation-Net is initialized by sampling 6 times all
the possible composite transformations, for a total of 162 samples for each iteration. Online
adaptation of the parameters was done for 10 iterations. During tracking, at each frame,
15 negative samples and all transformed bounding boxes with a confidence score > 0.5
were stored in the long and short memories.

5. Experimental Results

Our goal, in this paper, is to demonstrate that iterative approaches to refine the
bounding box have several drawbacks that can be overcome by allowing multiple non-
conflicting refinements to the bounding box at each iteration. Therefore, we run two kinds
of experiments: one to show the usefulness of our proposed approach, the other to compare
our tracking strategy to state-of-the-art approaches on publicly available benchmarks. All
experiments were conducted on a machine equipped with: 32 GB RAM, GPU RTX 2070
8GB RAM. Our prototype has been implemented in Python by using Tensorflow and runs
at 5 fps on the GPU.

5.1. Single vs. Multiple Transformation Groups

We performed experiments by keeping the tracking strategy fixed and by varying the
output layer of the deep model (single vs multiple transformation groups). As training of
the model is important, we also test our approach by varying the model. To this purpose,
we used the pre-trained parameters of the ADNet model [6], modified the last layer and
compared single vs. multiple transformation groups. Finally, we tested how different
training strategies of our model can affect the results. Experiments have been run on the
OTB 100 benchmark [5].

All results are reported in Figure 5. Configurations with “NOT” directly use the initial
parameters of VGG-M for the layers (conv1–4), while the fully connected layers (fc5–fc9) are
initialized by random noises. Configurations with “ADNet” load the ADNet parameters.

For the above configurations, no offline training is performed and only online learning
at test time is done.

Configurations with “MT” use multiple bounding box refinements, in contrast to “ST”
where a single transformation is applied at each iteration. Finally, “MD” indicates that
multi-domain learning is adopted to pre-train the model (offline learning), “SD” indicates
a more classical training procedure where all videos are used to train all model layers.

As shown in Figure 5, models adopting the multiple bounding box refinements achieve
higher performance than the corresponding ones with single refinements. However, the
training strategy largely affects the performance of the method. Offline multi-domain
learning allows achieving higher results. The method that yields to the highest performance
uses ADNet parameters and the proposed refinement approach. We note that in terms of
precision and success, we achieve higher results than the one published in [6] (0.88 and
0.646, respectively). On the other side, results with single refinements are almost identical,
meaning that different implementation choices in the online tracking strategy may have
little impact on performance.

Our offline-trained model differs from the ADNet especially because ADNet uses a
reinforcement learning approach after the supervised training of the model.
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Figure 5. Success and Precision plots on OTB-100 (One-Pass Evaluation (OPE)). Overlap threshold
and location error threshold indicate the threshold values used to compute the ROC curves. For the
precision plot, the scores in the legend indicate the mean precisions when the location error threshold
is 20 pixels. For the success plot, the scores indicate the area under curve (AUC).

5.2. Comparison on OTB and VOT

Table 1 shows the results achieved by our tracker in terms of precision (P), success
(AUC), and frame rate (FPS). We used Got10K-toolkit [39] to run all the experiments.
Compared to approaches using iterative bounding box refinements (in column Iter), such
as TSAS [36] and ADNet, our model (Ours_MT_MD) achieves better/comparable results.
Our ADNet-based tracker (ADNet_MT) achieves better/comparable results than those
in [7,35,40], which also use iterative refinements.
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Table 1. Comparison on OTB-100. Iter indicates approaches using iterative refinements. P(20px)
indicates the mean precisions when the location error threshold is 20 pixels. AUC of IoU is the area
under the curve of the success plot computed by considering the IoU values.

Algorithm P(20px) AUC of IoU FPS Iter

Retina-MAML [26] 0.926 0.712 40
VITAL [24] 0.918 0.682 2

SiamRPN++ [41] 0.915 0.696 35
ECO [42] 0.910 0.691 8

MDNet [4] 0.909 0.678 1
RDNet [7] 0.903 0.673 4 x

ADNet_MT (ours) 0.895 0.660 5 x
Hier. T. [40] 0.894 0.651 23 x

IADNET [35] 0.894 0.651 3 x
ADNet [6] 0.88 0.646 2 x
ATOM [28] 0.879 0.667 30

Ours_MT_MD 0.879 0.626 5 x
TSAS [36] 0.861 0.651 20 x
ACT [11] 0.855 0.622 30
TD3T [43] 0.821 0.616 23

A3CTD [44] 0.717 0.535 50
GOTURN [22] 0.565 0.425 125

Figure 6 shows some samples from three videos belonging to OTB. In the images at
the first row, both our method and ADNet are unable to adapt to the actual target shape.
This is because rescaling of height and width is done jointly and not separately. However,
our method (red bounding-boxes) seems to center better the target. In the second row, both
ADNet and our method are sensitive to large and abrupt camera motion. In the third row,
where the target is among several instances of the same class (several players), ADNet
drifts while our tracker is able to follow the target.

Figure 6. The figure shows some qualitative results of our tracker (red bounding-boxes) vs. ADNet
(green bounding-boxes). Ground-truth is shown in blue.

We also compare our tracker on VOT2016 [45], VOT2018 [46], and VOT2019 [47] by
adopting Expected Average Overlap (EAO), Accuracy, and Robustness as metrics, and by
using the official VOT toolkit. Unfortunately, ADNet was trained on VOT data, and we
could not test our modified ADNet model on this benchmarks. Results are reported in
Tables 2–4, respectively.
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Table 2. Comparison on VOT-2016.

Algorithm EAO Accuracy Robustness

D3S [31] 0.493 0.66 0.131
UpdateNet [48] 0.481 0.61 0.21

SiamRPN++ [41] 0.464 0.64 0.20
DiMP-50 [49] 0.440 0.597 0.153

SPM [50] 0.434 0.62 0.21
ATOM [28] 0.43 0.61 0.18
ECO [42] 0.374 0.54 0.72

Ours_MT_MD 0.372 0.557 0.53
RDNet [7] 0.364 0.54 0.72
CCOT [51] 0.331 0.54 0.238

Table 3. Comparison on VOT-2018.

Algorithm EAO Accuracy Robustness

D3S [31] 0.489 0.64 0.15
Ocean-off [52] 0.467 0.598 0.169

Retina-MAML [26] 0.452 0.604 0.159
DiMP-50 [49] 0.440 0.597 0.153

SiamRPN++ [41] 0.414 0.600 0.234
ATOM [28] 0.401 0.590 0.204
UPDT [53] 0.378 0.536 0.184

Ours_MT_MD 0.372 0.56 0.44
DRT [54] 0.356 0.519 0.201

Table 4. Comparison on VOT-2019.

Algorithm EAO Accuracy Robustness

Retina-MAML [26] 0.313 0.57 0.366
ATOM [28] 0.292 0.603 0.411

SiamRPN++ [41] 0.292 0.58 0.446
SiamMask [29] 0.287 0.594 0.461
Ours_MT_MD 0.232 0.513 0.72

Among all the approaches using iterative bounding box refinements, only RDNet
reports results on VOT2016. As shown in Table 2, our method shows improvements over
RDNet in all the three metrics.

Overall, the comparison among algorithms adopting iterative bounding box refine-
ments confirms that dealing with conflicting transformations and allowing multiple re-
finements at each iteration helps improve the tracking results. We also note that the
performance of some algorithms such as SiamRPN++, ATOM has decreased from VOT-
2016 to VOT-2018. For instance, accuracy of SiamRPN++ is 0.64 and 0.59 on VOT-2016 and
VOT-2018, respectively. As for ATOM, accuracy is 0.61 and 0.6 on VOT-2016 and VOT-2018,
respectively. The accuracy of the proposed algorithm is 0.557 and 0, 56 on VOT-2016 and
VOT-2018, respectively. Therefore, despite accuracy slightly decreased also for our method,
these results suggest that our method improves in terms of stability.

6. Conclusions and Future Work

This work focused on tracking strategies where the target bounding box is refined
iteratively by applying a sequence of transformations. It proposed a novel formulation
such that, given an image patch based on the currently estimated target bounding box,
the model returns a set of N probability distributions over bounding box transformations.
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The method can apply multiple non-conflicting refinements at each iteration without
introducing ambiguity during learning, i.e., without giving priority to some transformations
over the others.

Experimental results show that the proposed iterative multi-refinement approach
is superior to the single-refinement one, independently of the model/training strategies
adopted. Overall, the proposed approach is competitive with respect to other state-of-the-
art approaches that iteratively refine the target bounding box. In future work, we will
try to improve the offline training procedure, as it largely impacts the tracking results. In
particular, we plan to adopt a meta-learning approach to accelerate the learning of the
model parameters.
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