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Abstract: In this paper, we propose a pipeline that reproduces human skin mockups using a UV
printer by obtaining the spatial concentration map of pigments from an RGB image of human skin.
The pigment concentration distributions were obtained by a separating method of skin pigment
components with independent component analysis from the skin image. This method can extract the
concentration of melanin and hemoglobin components, which are the main pigments that make up
skin tone. Based on this concentration, we developed a procedure to reproduce a skin mockup with a
multi-layered structure that is determined by mapping the absorbance of melanin and hemoglobin to
CMYK (Cyan, Magenta, Yellow, Black) subtractive color mixing. In our proposed method, the multi-
layered structure with different pigments in each layer contributes greatly to the accurate reproduction
of skin tones. We use a UV printer because the printer is capable of layered fabrication by using
UV-curable inks. As the result, subjective evaluation showed that the artificial skin reproduced by
our method has a more skin-like appearance than that produced using conventional printing.

Keywords: 3D printing; human skin; skin pigments; image processing; machine learning

1. Introduction

In recent years, the usage of 3D printers has increased in a wide range of fields, such
as medicine and dentistry [1,2], for prototyping of automobile parts [3], and for manufac-
turing of consumer products; they are also now used in general households. In particular,
modeling of character figures for general consumers and the reproduction of historical
artworks are highly demanded applications in 3D printing. These applications require
accurate reproduction of not only shape but also appearance, including color, surface
and material properties. Accurate reproduction of appearance in 3D printing is difficult
in conventional 3D printing machines that use a limited number of materials; however,
since the development of multi-material 3D printers, various studies were conducted on
appearance reproduction recently [4].

Several studies on appearance reproduction in 3D printing are described below. In
color reproduction, some studies applied error-diffusion halftoning—a technique that en-
ables smooth tonal representation in 2D printing and 3D printing [5,6]. This method enables
a detailed representation of tone in 3D printing, which is limited to 3D materials and inks.
However, the method using halftone dots causes artifacts that arise out of the manifestation
of each ink dot, so there is research on color 3D printing using contoning, a method of
layering various inks [7]. Furthermore, a study reproduced not only color reproduction but
also spectral reflectance by using multilayer inks that combine halftoning and contoning [8].
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There are studies that reproduced gloss as a material appearance [9,10]. These methods
involve adjusting the printing parameters of the 3D printer or applying varnish in high
resolution on the surface. In addition, many studies have focused on material appearance,
particularly the control of translucency. For example, one study proposed a method to
reproduce complex scattering properties [11], whereby the scattering properties of several
materials are measured and radial reflection and scattering profiles are generated. This
allows for the proper arrangement of the material in the depth direction and reproduces
complex scattering properties well. In another study, complex light scattering was repro-
duced using a bidirectional scattering-surface reflectance distribution function (BSSRDF),
which is a function that represents surface-subsurface scattering [12]. In this study, ma-
terials with different scattering effects were stacked with varying spatial thicknesses to
represent inhomogeneous scattering. However, in modeling with translucent materials,
there is a problem of the loss of detailed surface texture information due to subsurface scat-
tering. This problem was overcome using an inverse Monte Carlo simulation-based method
to optimize the material arrangement under the surface problem [13]. An alternative ap-
proach to fabricate translucent objects is to use mixtures of translucent materials [14]. In
this approach, the concentration of the mixture of several translucent materials is estimated
such that it reproduces the desired appearance and scattering properties. Furthermore, a
method to perform full-color modeling with spatially varying translucency was recently
proposed [15] using RGBA (Red, Green, Blue, Alpha) signals instead of BSSRDF, which has
high measurement and processing costs (the “A” in RGBA is the signal for translucency).
The accuracy of this method was subsequently enhanced [16] by optimizing the signal to
link to both optical material properties and human perceptual uniformity, independent
of hardware and software. On the other hand, another study has reproduced arbitrary
modulation transfer functions on the object by combining translucent materials such as
erasers or wax with UV ink [17].

As described above, various studies were performed to reproduce translucent appear-
ance. In this paper, we focus on a typical translucent material, human skin. Reproduction of
realistic skin appearance provides value-added products for character figures and so on. In
the field of computer graphics, the reproduction of human skin is also important, and many
methods and techniques have been developed, and the representative studies use multi-
layered translucent materials in the simulation [18,19]. Moreover, skin appearance is also
important in the medical and cosmetic fields. In these fields, it is known that human skin
has a layered structure consisting of an epidermal layer containing melanin pigments and a
dermal layer containing hemoglobin pigments [20]. Since these pigments are the elements
that determine skin color, blood volume and oxygen saturation can be estimated from skin
color [21,22]. Furthermore, the relationship between pigment and appearance is also used
in the development of cosmetics [23]. In 3D printing, the reproduction of skin appearance
with pigment information as a real object is very useful in the fields described above. As
already mentioned above, skin is a multilayered structure with different pigments in each
layer, and there are studies that have attempted to reproduce this structure in 3D print-
ing. One study used multilayered skin modeling performed with a neural network-based
method to estimate the optimal layer structure layout for reproducing human skin with
arbitrary skin color and transparency [24]. Furthermore, a study has succeeded in reducing
the fabrication cost by using simulation data [25]. However, these studies assumed that the
skin is a uniform surface, whereas in reality, its color varies spatially. To solve this problem,
it is necessary to reproduce the spatial variation of skin color.

In the present paper, we propose a pipeline for 3D modeling of human skin with
multilayered spatial distribution of pigments, using skin images taken by an RGB (red,
green, blue) camera. The coloring layer consisted of two layers—the epidermal layer with
melanin pigments and the dermal layer with hemoglobin pigment—using a technique
called pigment component separation [26]. Conventionally, light scattering simulation
methods such as the Monte Carlo method are used to simulate the color of objects with
a multi-layered structure [27]. The optimization is expected to be performed by a non-
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linear optimization technique to reproduce appropriate skin tone; however, it requires
huge calculations to obtain the spatial distribution of color on the skin. Therefore, we
used a simple light scattering simulation method based on the modified Lambert–Beer
law, and extracted the spatial distribution of hemoglobin and melanin from the skin color
image [26]. The extracted spatial distribution of hemoglobin and melanin were converted to
CMYK values by a color patch-based method and used in the 3D printer while empirically
inserting the clear layer to reproduce the skin appropriately. The clear layer was made with
a clear ink that is a varnish-like ink that does not contain pigments. We used Mimaki’s
clear ink (SPC-0659CL, Mimaki Engineering, Nagano, Japan) in this study. In contrast to
most research in this area, which is limited to synthetic inputs, we propose an end-to-end
reproduction method for real skin. It is also novel in that it uses pigment concentration to
represent skin tone.

In Section 4, we describe the creation of a color patch to convert pigment concentrations
to CMYK values. In Section 5, we describe the conversion method. In Section 6, we describe
the process of modeling human skin using a 3D printer, and in Section 7, we present the
results of the subjective evaluation experiment.

2. Previous Works
2.1. Skin Pigment Separation

The color of human skin is determined by two main pigments, melanin and
hemoglobin [28,29]. The concentration of each pigment varies between individuals as
well as between parts of the body. Although there are various techniques to measure the
concentration of pigment components in human skin, Tsumura et al. proposed an efficient
method using common RGB images [16]. They used independent component analysis
to separate the RGB signal into melanin and hemoglobin components. This skin model
assumes that the boundaries of each layer of the skin are flat, and that melanin is exclusively
present in the epidermis and hemoglobin is exclusively present in the dermis. Considering
the light incident on this skin model, it can be divided into surface reflected light, which
is reflected on the surface of the skin, and internally reflected light, which is repeatedly
absorbed, scattered, and emitted inside the skin. Only internally reflected light is used as
an observation signal because the light scattered and absorbed by skin pigment expresses
the skin color [28,29].

To separate the RGB signal into melanin and hemoglobin signals, it is necessary to
estimate the melanin and hemoglobin vectors that constitute the plane of skin color distri-
bution. First, the skin color distribution plane consisting of the first and second principal
component vectors is estimated by principal component analysis of the skin image in a
small region that is less affected by changes in illumination intensity. This is based on the
assumption that the observed signal in this region resides on the skin color distribution
plane. Next, the melanin and hemoglobin vectors are estimated using independent compo-
nent analysis. Finally, the pigment concentration is obtained by projecting the observed
signal to each pigment vector.

Tsumura et al. also proposed a method to eliminate the effects of shading due to
the shape of the skin. Assuming that the skin color distribution plane is obtained by the
previously described method, they used the fact that the intensity of the shading changes
in the same direction as the intensity of the illumination. First, the normal vector of the
skin color distribution plane was obtained and the distance from the observed signal
was calculated. Then, the shading was removed by projecting the observed signal along
the illumination intensity vector onto the skin color distribution plane. Figure 1 shows
the results of applying the pigment component separation to the actual skin image. The
melanin and hemoglobin components were extracted, and the shaded areas caused by
unevenness were removed as shaded images.
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Figure 1. Results of pigment component separation for a skin image: (a) original image; (b) melanin
component; (c) hemoglobin component; (d) shading.

2.2. Estimation of the Layered Ink Layout

We referred to the method of Nagasawa et al., which predicts an appropriate multilayer
ink layout for reproducing the texture of human skin by layering translucent ink [24].
They used the line spread function (LSF) measured from the skin created as a measure
of translucency and used a neural network to estimate the layout. This pipeline enables
designers to reproduce human skin with arbitrary skin color and transparency using a 3D
printer. An overview of this method is shown in Figure 2. This method is based on an earlier
study of painting reproduction using multispectral data [8], whereby the neural network
learned by obtaining spectral reflectance from 20,878 multilayer patches. Nagasawa et al.
followed this method to create color patches that approximate the human skin. Their
structure consisted of three different layers, which were created by changing the conditions,
such as the order of the clear layer, skin color layer, and red layer from the top.
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In this method, the information about translucency and skin color is expressed using
the LSF. Therefore, it is necessary to measure the LSF from the created color patch. Na-
gasawa et al. first irradiated the patch with an edge image that illuminated only half of
the patch before taking the image. They calculated the LSF by obtaining the transitions
of pixel values in the captured image. The difference between the calculated LSF and the
layout of each patch was then used to train an encoder–decoder type neural network [30],
in which the LSF was both the input and output, and the layout was obtained as an inter-
mediate output. Finally, a pipeline that outputs the optimal layout for 3D printing was
obtained using the LSF measured from the CG of human skin with arbitrary skin color and
translucency. However, this method does not take into account the spatial distribution of
the pigments. Therefore, in our study, we tried to reproduce human skin with multilayered
spatial distribution of pigments.

3. Overview of the Proposed Method

In this paper, we introduce a workflow for creating realistic human skin with a 3D
printer. This involves reproducing the spatial concentration distribution of pigments
obtained from an image of human skin taken by an RGB camera. It is biologically known
that skin has a layered structure, with an epidermal layer containing melanin pigments and
a dermal layer containing hemoglobin pigments, and this model has been used in the fields
of measurement and simulation [31]. Therefore, we consider that it is possible to reproduce
appearance similar to actual skin by representing each pigment with ink and arranging
them in a layered structure. The method is shown in Figure 3. The spatial concentration
distributions of melanin and hemoglobin pigments were obtained by applying a pigment
component separation method to the target skin image taken by an RGB camera. The
method is robust to changes in illumination intensity because shading is removed at this
time. For printing on an inkjet 3D printer, each pigment concentration was converted to a
CMYK value. We obtained the transformation equation using a method with color patches.
We used three methods: lookup tables, multiple regression analysis and neural networks.
Then, a halftone process was applied to create a skin-like object consisting of a melanin
layer as the epidermis and a hemoglobin layer as the dermis. Clear ink was inserted above
and below these colored layers to improve the appearance. Furthermore, the thickness
of this clear ink was adjusted and the thickness most suitable for the skin texture was
determined by subjective evaluation.
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4. Color Patches for Human Skin
4.1. Condition of Color Patches

To create a human skin color patch with a melanin and hemoglobin layer, we first
determined the specification empirically through preliminary experiments as follows. This
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specification relates to the pigment concentrations and how they are combined. The colors
of melanin and hemoglobin were obtained from their vectors, which were estimated by
pigment component separation. As shown in Figure 4, 30 different concentrations of each
pigment were extracted. The 30 concentrations were empirically determined to be in the
range of Asian skin tones through printing experiments. By combining these concentrations,
it is possible to create patches with 900 different concentration combinations. Since melanin
and hemoglobin are the main factors that determine skin color, the color gamut of skin
color can be covered by varying the concentration of the pigment color obtained by the
method described in the reference [26]. The factor other than melanin that darkens the skin
tone is shading, and since this study only targeted flat surfaces, we ignored these effects.
The melanin and hemoglobin layers were used as the colored layers, and a white layer was
placed at the bottom as a reflective layer. Here, white ink is the equivalent of a paper in
2D printing; it is very scattering and is used as a reflective layer. In addition, a clear layer
was placed at three locations: at the top, between the hemoglobin and melanin layers, and
between the hemoglobin and reflective layers.
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4.2. Modeling of Color Patches

Because the color patches were made using an inkjet 3D printer, CMYK values were
required to fabricate the color layer. The 30 pigment concentrations can be expressed
as RGB values. Therefore, we transformed the color space with the ICC profile (Japan
Color 2011, coated). In addition, halftoning was performed for the inkjet printing. The
largest dot size was used to prevent unevenness in the stacking process. An error diffusion
method (Floyd–Steinberg) was used for dithering to reduce the quantization error due
to halftoning. The coefficients of error diffusion were 7/16, 3/16, 5/16 and 1/16 for the
right neighbor, left bottom, true bottom and right bottom, respectively. Through these
processes, 900 color patches with two pigment layers, as shown in Figure 5, were created.
It can be seen that the skin tone changes significantly according to the change in pigment
concentration. These patches cover a wide range of skin tones, from hypopigmented to
hyperpigmented skin tones.
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5. Conversion of Pigment Concentration to CMYK

The color patches were used to correlate pigment concentrations with CMYK values.
Melanin and hemoglobin concentrations were obtained by applying pigment component
separation to images taken of the 900 color patches. Figure 6 shows the experimental
setup for capturing color patches. We used artificial sunlight as illumination in a dark
room environment. A polarizer was placed in front of the camera and lighting when
taking photos in order to remove surface reflections because only the internally scattered
light is affected by pigments. We constructed a transformation method using the pigment
concentration of each patch and the CMYK values calculated as described above. We used
a lookup table (LUT), multiple regression analysis, and neural networks, and compared the
accuracy of the printed results for these methods.
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5.1. Lookup Table

The lookup table (LUT) is the simplest method that we used. The method stores
900 data points obtained from color patches and searches for the desired one. If there is no
data point in the LUT that matches the target data point, the closest one is chosen by RMSE.
The accuracy of the CMYK value prediction was verified by the cross-validation method.
We used leave-one-out cross-validation, in which one data point was extracted from the
dataset, and regression equations were trained with the other data and then verified with
the extracted data [32]. The error was evaluated as the root mean square error (RMSE),
which was 0.033.

5.2. Multiple Regression Analysis

Multiple regression analysis is a method of predicting a single objective variable by
multiple explanatory variables. The objective variables are the CMYK values of the melanin
and hemoglobin layers, which are designated as Di, mel, Di,hem (i = C, M, Y, K), respec-
tively. The explanatory variables are Rmel, Gmel, Bmel, Rhem, Ghem, Bhem, using the RGB
value of the pigment concentration obtained by the separation of the pigment components.
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We used the RGB values for pigment concentration to provide redundancy and improve
estimation accuracy. The regression equation by multiple regression analysis is as follows:

Di,mel = aR log Rmel + aG log Gmel + aB log Bmel + b
i = C, M, Y, K

(1)

Di,hem = aR log Rhem + aG log Ghem + aB log Bhem + b
i = C, M, Y, K

(2)

where aR, aG, aB, b are the partial regression coefficients, which are optimized by learning.
The accuracy of this method was verified by leave-one-out cross-validation, and the RMSE
was 0.031 or 3.1%.

5.3. Neural Network

Here, we present the results of the estimation of CMYK values using the neural
network. The structure of the model is shown in Figure 7. Two models with the same
structure in each of the melanin and hemoglobin layers were constructed. The inputs
were RGB values derived from the pigment concentration, and the outputs were CMYK
values for printing. This was obtained by capturing 900 color patches and extracting the
pigment components, and all 900 data points were used for training. The middle layer
was the fully connected layer, which had 20, 30, and 20 neurons from the input side to the
output side. ReLU (rectified linear unit) was used for the activation function and Adam
was used for the optimization algorithm. As shown in the reference [33], it is common in
the field of neural networks to use ReLU, and therefore we used ReLU empirically. We
think it is required to compare with other activation functions in the future. The learning
and validation errors for the 30-epoch learning are shown in Figure 8. The accuracy of
this method was verified by leave-one-out cross-validation, and the RMSE was 0.035. The
validation error during training was small around epoch 13; however, the error due to
leave-one-out cross-validation was smallest at epoch 30.
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6. Fabrication of Human Skin
6.1. Comparison of Methods

We will now describe the process of molding human skin with a multilayered spatial
distribution of pigments using the three types of CMYK transformation method described
in the previous section. First, we took images of the human target’s skin. The images were
taken in a dark room with artificial sunlight. In the experiment, an industrial RGB camera
(DKK33UP1300; The Imaging Source, New Taipei City, Taiwan) was used, and a polarizer
was placed in front of the camera and lights to remove surface reflections. In addition, an
image of a standard diffuse reflector was taken under the same conditions, while dividing
the pixel values of the skin image by the pixel values of the diffuse reflector. This operation
removes lighting effects approximately. Then, the melanin and hemoglobin concentrations
of each pixel were obtained by the application of pigment component separation. Finally,
the three different methods were used to estimate the CMYK values and halftoning was
applied to the modeling. We targeted the palm of the hand, because the palm has a large
spatial variation in pigment concentration, which allows us to better observe the spatial
distribution of the pigment.

The results using each method are shown in Figure 9. In this experiment, only one
image of a palm was used, and it was of a man’s right hand. The target skin image is shown
in Figure 9a, and Figure 9b–d shows the skin objects based on the CMYK concentrations
estimated using LUT, multiple regression analysis, and neural networks, respectively.
Subjectively, the method using multiple regression analysis yielded the most favorable
results. The objects using LUTs lost their overall smoothness, which may be because of the
lack of interpolation between the pigment concentrations obtained from the color patches.
In the LUT, a data point outside the dataset was substituted by the closest value in the
dataset. In the neural network-based method, the overall concentration was averaged and
contrast was reduced. We consider that the neural network with three intermediate layers
was overcomplicated because the present dataset was very linear. At least one layer of
neural networks works similarly to multiple regression analysis, and thus the results would
be comparable. We also evaluated the estimation accuracy of each of the three methods
using leave-one-out cross-validation, and found that the RMSE of multiple regression
analysis was minimal at 0.031. Significant differences in RMSE values for each method
were analyzed by t-test. The results of the analysis at a significance level of 0.05 showed a
significant difference in errors between multiple regression analysis and neural networks,
whereas there was no significant difference in errors between multiple regression analysis
and the LUT, and between neural networks and the LUT. Because of the high reproducibility
of the detailed textures and the low error of the prediction method, we decided to use
multiple regression analysis in this study. Here, white streaks are seen on the printed
objects; however, since they are not observed in the halftone data for printing, we consider
this as a problem with our printer. Figure 10 shows the fabricated object with multiple
regression analysis. In addition, since our research aims at planer printing, we used a UV
printer (UJF-3042HG, Mimaki Engineering, Nagano, Japan); however, the process is the
same as a 3D printer. While Mimaki 3D printers [34] and Stratasys 3D printers [35], which
are widely used for color 3D printing, have a resolution of 600 dpi, Mimaki’s UV printer
can print at 1200 dpi vertically and 720 dpi horizontally. The higher the printing resolution
of the printer compared to the resolution of the camera, the more halftone dots can be used
to represent each pixel. Therefore, the higher printing resolution allows more detailed
representation of the pigment concentration. Finally, we discuss the dependency of our
method on printers and inks. The elements required for the method are full-color printing
with CMYK inks, UV-curable inks that can be stacked, and clear inks. Therefore, we used a
Mimaki UV printer (UJF-3042HG, Mimaki Engineering) as a printer setup that meets these
requirements. There are several other UV printers that also satisfy the requirements (e.g.,
SC-V7000, Epson; VersaUV LEF2-200, Roland). In addition, the properties of clear ink vary
depending on the ink manufacturer and may affect our method; thus, it is necessary to
investigate the feasibility of using each clear ink through experiments.
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Figure 9. Results of fabrication using the three methods: (a) the target image; (b) result using the
LUT; (c) result using multiple regression analysis; (d) result using the neural network. Compared to
the original appearance, it can be seen that the fidelity of each method is different. Qualitatively, it is
observed that the sample achieved by multiple regression analysis has a high reproducibility.
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6.2. Number of Clear Layers

As mentioned earlier, in addition to the melanin and hemoglobin layers, which are
coloring layers, clear layers were inserted in the following order: the top layer, between the
melanin and hemoglobin layers, and between the hemoglobin and reflective layers. We
refer to these clear layers as the first, second, and third clear layers from the top, respectively.
The first clear layer was used to protect the colored layer. The second and third clear layers
were provided under the assumption that they improve skin-like appearance. We varied
the number of layers (and thus the thickness) of the second and third clear layers to observe
how they affect the skin-like appearance. We consider that the appearance is affected by
the change in the thickness of the clear layer, which changes the depth of the pigment.
Second and third clear layers with two, four, or six constituent layers were prepared, and
nine samples were created with different combinations of these thicknesses, as shown
in Table 1. The scattering characteristics of Mimaki’s clear inks have been investigated
in the references [25], and it has been shown that a small amount of scattering occurs.
Therefore, changing the thickness of the clear layer may cause inconsistency with the data
of 900 color patches; however, in this study, we ignored this effect as it is very small. In
this study, the layers of melanin and hemoglobin were fabricated in a single layer because
the concentration was expressed in area gradation. In the future, we believe that it will be
possible to represent subsurface scattering by spreading the pigments in the depth direction
as well.

Table 1. Number of layers of each clear layer in the different samples.

Sample No. 1 2 3 4 5 6 7 8 9

2nd clear layer 2 2 2 4 4 4 6 6 6

3rd clear layer 2 4 6 2 4 6 2 4 6

7. Subjective Evaluation
7.1. Evaluation Method

In this section, we evaluate the usefulness of our method in comparison with conven-
tional methods. For subjective evaluation, we used the semantic differential method (SD
method). This is a method proposed by the American psychologist Osgood to measure the
impression of a target concept. The SD method uses pairs of adjectives that have opposite
meanings (e.g., “rough” and “smooth” in our case). The evaluation was conducted using a
slide bar with a scale of −5 to +5.

The 13 pairs of adjectives used in this experiment are shown in Table 2. The subjects
were nine men and women in their twenties. The nine models shown in Table 1 were
evaluated. In addition, to show the effectiveness of our method, we compared models
with one and with two colored layers (all clear layers are a single layer). A typical one
layer sample was printed by converting the RGB image of the target palm into CMYK
values using Japan Color 2011 Coated, a color profile for printing, and inputting it into
a same printer, Mimaki UJF-3042HG. In the future, we consider that it is necessary to
compare with other commercial printer drivers. Experiments were conducted under
daylight illumination using a lighting booth (Spectralight 2, Macbeth). The factors that
contribute to the evaluation of skin appearance were extracted through factor analysis
of the experimental data as the first factor. Factor analysis is a method used to find
potential common factors from multivariate data, but the number of factors first needs to be
determined. Therefore, we evaluated the factor loadings, which indicate the contribution
rate of each factor, and found that up to the third factor, the contribution rate exceeded 90%.
Based on this result, the number of factors was set to 3.



J. Imaging 2022, 8, 73 12 of 14

Table 2. Adjective pairs used in the evaluation.

Negative Positive

Rough Smooth

Rough Slippery

Not-slippery Slippery

Dark Bright

Sober Brilliant

Mat Glossy

Heavy Light

Nonelastic Elastic

Dry Wet

Hard Soft

Cold Hot

Not transparent Transparent

Artificial Natural

7.2. Evaluation Results

Based on the factor analysis, the first factor was defined as the skin-ness factor. Evalu-
ation of this factor was obtained by taking the weighted average of the evaluation values
using the factor loadings. For a conventional one-layer model and our two-layer model,
this factor was −2.37 and 0.06, respectively. Thus, it can be seen that our proposed method
is able to more realistically reproduce skin appearance. The results of the evaluation of the
thickness of the clear layers (defined in Table 1) are presented in Table 3. The highest values
were obtained when the second clear layer comprised two layers and the third clear layer
comprised four layers. The evaluation value tended to increase as the number of the third
clear layer increases. However, since there are exceptions, we consider that it is necessary
to conduct experiments with more subjects to reduce the effect of the individual differences
and obtain more accurate results.

Table 3. Evaluation results for the thickness of clear layers.

Sample No. Number of 2nd Clear Layers Number of 3rd Clear Layers Evaluation Value

1 2 2 0.9428

2 2 4 1.5186

3 2 6 0.6254

4 4 2 −0.5796

5 4 4 0.9439

6 4 6 1.3705

7 6 2 −0.0477

8 6 4 1.3850

9 6 6 1.4106

8. Conclusions

In this paper, we proposed a pipeline for modeling of human skin with multilayered
spatial distributions of melanin and hemoglobin components based on images taken by
an RGB camera. To obtain pigment concentration distributions from the RGB skin images,
pigment component separation was used. Each pigment concentration was then converted
to a CMYK value using a color patch-based method. Halftoning was applied, and a clear
layer was inserted to realistically reproduce human skin. Subjective evaluation experiments
showed that our method could reproduce a more skin-like texture than the conventional
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printing method. We also investigated the effect of varying the thickness of the inserted
clear layer on the appearance. As a result, it was shown that changing the thickness of
the clear layer affects the appearance, and the combination with the highest evaluation
value was determined among the nine combinations of clear layer thicknesses prepared for
this study.

A remarkable feature of our method is the use of pigment concentration for the
reproduction of skin tones in printing. This method can be used to represent natural skin
tone changes by varying the pigment concentration, or to observe the relationship between
pigment and appearance on a real object. Here, a limitation of this study is that the objects
that can be fabricated are limited to planar objects. Therefore, as future works, our method
should be improved to be applied to 3D geometry and objects.
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