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Abstract: Intricate lesions of the musculoskeletal system require reconstructive orthopedic surgery
to restore the correct biomechanics. Careful pre-operative planning of the surgical steps on 2D
image data is an essential tool to increase the precision and safety of these operations. However, the
plan’s effectiveness in the intra-operative workflow is challenged by unpredictable patient and device
positioning and complex registration protocols. Here, we develop and analyze a multi-stage algorithm
that combines deep learning-based anatomical feature detection and geometric post-processing to
enable accurate pre- and intra-operative surgery planning on 2D X-ray images. The algorithm allows
granular control over each element of the planning geometry, enabling real-time adjustments directly
in the operating room (OR). In the method evaluation of three ligament reconstruction tasks effect on
the knee joint, we found high spatial precision in drilling point localization (ε < 2.9 mm) and low
angulation errors for k-wire instrumentation (ε < 0.75◦) on 38 diagnostic radiographs. Comparable
precision was demonstrated in 15 complex intra-operative trauma cases suffering from strong implant
overlap and multi-anatomy exposure. Furthermore, we found that the diverse feature detection tasks
can be efficiently solved with a multi-task network topology, improving precision over the single-task
case. Our platform will help overcome the limitations of current clinical practice and foster surgical
plan generation and adjustment directly in the OR, ultimately motivating the development of novel
2D planning guidelines.

Keywords: computer-assisted surgery; surgical planning; reconstructive orthopedic surgery; ligament
reconstruction; deep learning; multi-task learning; X-ray images

1. Introduction

Joint injuries and the following structural instability are challenging patterns in ortho-
pedics, usually caused by events of dislocation or unnatural motion and tears of restraining
ligaments [1–4]. The destabilizing event comes with various implications for the patient’s
health and well-being, causing significant joint pain, functional impairment, symptomatic
giving way, osteochondral lesions, or damage to the articular cartilage [3,5–13]. For particu-
larly severe lesions, the biomechanically correct joint function is restored by surgical recon-
struction to relieve the patient’s symptoms and restore long-term stability [1,7,12,14–20].

An essential instrument to elevate the safety and accuracy of surgical reconstruction is
the careful planning and outcome verification on 2D image data. Fundamentally, a surgical
plan involves interrelating several salient features of the patient anatomy, such as osseous
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landmarks and anatomical axes, and performing a geometric construction for the under-
lying task. For example, reconstruction surgery of the Medial Patellofemoral Ligament
(MPFL) necessitates a precise fixation of the substitute graft on the femoral surface. Specif-
ically, the physiological correct ligament insertion point that guarantees joint isometry
can be approximated by the construction of the Schoettle Point [21] on a 2D true-lateral
radiograph. This construction builds on two anatomical keypoints on the distal femur
surface and a subsection of the posterior cortex of the femoral shaft to ultimately localize
the optimal point for tunnel drilling. Another application is the careful placement and
angulation of k-wires inserted into the patient anatomy for transtibial Posterior Cruciate
Ligament (PCL) reconstruction surgery, guiding the subsequent tunnel drilling [22–25].
High precision in the tunnel’s placement is essential to prevent any defects in joint biome-
chanics after reconstruction and unnecessary graft abrasion [26]. It also protects from early
breakout of the bone cortex with the risk of damaging nearby vascular structures [27–31].

For such reconstructive applications, surgical planning promises elevated treatment
safety and standardized assessment with a physiologically-grounded rationale. However,
several clinical and technical challenges complicate the plan’s intra-operative application.

1. Most planning methods rely on the combination of salient proxy structures. This
indirect description implies a greater number of error sources, which translates to
higher observer-variability if the planning is done manually;

2. Certain surgical planning can have a high level of geometric complexity. Sufficiently
precise manual execution is only possible with tailored software tools or otherwise
requires great amounts of time and labor;

3. The ability to register pre-operative planning and intra-operative live data is highly
complex due to the variable configuration of the joint and arbitrary relation between
patient, table, and imaging system;

4. Ad-hoc modifications of the surgical plan are essential to compensate for motion
during the intervention;

5. Manual interaction with a computer-assisted planning system is undesirable due
to the surgery’s sterile setting. At the same time, the planning system should offer
granular controls to correct each construction step with real-time visualization.

We propose a versatile platform for (semi-)automatic 2D planning and verification
in reconstructive orthopedic surgery that addresses most of the above challenges. Our
method involves three sequential stages: (i) First, a deep learning system detects the
relevant anatomical structures for the underlying surgical task on 2D image data. The
detection problem for each type of anatomical feature is solved in parallel using a multi-task
learning (MTL) scheme; (ii) Second, the identified structures are transferred to geometric
representations, such as keypoint coordinates and line segments. If needed, post-processing
can be used to derive additional information required by the planning geometry; (iii) Third,
the objects are combined and interrelated using a pre-defined blueprint describing the
planning geometry and calculation of the planning result. By mimicking each manual
step of the clinically established procedure, we align the automatic planning process to
clinical practice as close as possible. This interpretable relation between anatomy and
planning geometry reduces the hurdle of acceptance that the practitioner must overcome.
Additionally, if needed, the segmentation of the relevant bone can be used for a registration
of the planning result on subsequent live images. This allows an easier transfer of the
approach into an intra-operative workflow.

We evaluate our approach on three kinds of ligament reconstruction surgery on the
knee joint (Figure 1): (i) Localization of the optimal graft fixation point (Schoettle Point)
for tunnel drilling in MPFL reconstruction surgery [21]; (ii) Localization of anteromedial
(AM) and posterolateral (PL) bundle attachment points on the femur and tibia for Anterior
Cruciate Ligament (ACL) reconstruction [32–34]; (iii) Finding the optimal guidewire ori-
entation and insertion point for transtibial PCL reconstruction [23,24]. We study different
strategies for separating the anatomical features into individual tasks for each application
and evaluate different levels of parameter sharing using multi-head, multi-decoder, and
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single-task network topologies. Furthermore, we analyze a shared inductive bias across all
three applications and compare the performance to the single-application case.
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Figure 1. Illustration of the three considered surgical planning guidelines for ligament reconstruction
on the knee joint. (a) Description and localization of relevant anatomical structures for all plannings.
(b) Localization of the anatomic femoral insertion site for Medial Patellofemoral Ligament (MPFL)
reconstruction surgery. The construction builds upon the clinical study by Schoettle et al. [21].
(c) Identification of the surface attachment points for the anteromedial (AM; orange) and posterolateral
(PL; teal) bundles for Anterior Cruciate Ligament (ACL) reconstruction surgery. The planning
follows the quadrant method by Bernard et al. [32] and Stäubli/Rauschning [34] for the femur and
tibia, respectively. (d) Detection of the optimal drill path angulation and position for transtibial
reconstruction of the Posterior Cruciate Ligament (PCL) according to Johannsen et al. [23].

2. Related Work and Contribution
2.1. Image-Based Surgical Planning in Orthopedics and Traumatology

Prior research generally puts image-based surgical planning as a central component
of computer-assisted orthopedic surgery and a driver for increased safety and minimal
invasiveness of surgical intervention [35–37]. We refer the reader to comprehensive reviews
covering general concepts and applications in robotics [38–43], navigation [44–46], surgical
training [47], and augmented reality in orthopedic surgery [48].

The overall process of image-based surgical planning can be structured into four main
components: (1) (Interactive) Visualization, (2) Modeling, (3) Analysis, and (4) Plan gen-
eration [49]. Visualization addresses intuitive ways of enriching the original image with
relevant numeric and geometric information for the application [48]. This information
includes the rotational and positional relation of joints [50], anatomic landmarks [51,52],
and optimal trajectories for instrumentation and implant positioning [53–57]. Modeling
covers the selection and mathematical representations of these data, allowing subsequent
optimization of the planning solution, i.e., numerical and geometric analysis. The academic
community has explored these two steps mainly by conventional image analysis [36], statis-
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tical shape modeling and machine learning [58], and, more recently, via deep learning [59].
The prevailing representation and analysis methods are semantic segmentation of the target
surface in 3D, landmarking of salient regions using numerical keypoints, the fusion of
image information with simulated joint kinematics [39,60], and registration using camera
data, markers, or anatomic surface information [48].

Despite the wide adoption of pre-operative plans in various types of orthopedic
surgery, their application to trauma interventions, such as ligament reconstruction, is
limited [35,37,48]. For these cases, diagnostic 3D-scans are rarely used and require complex
3D/2D registration of localized intra-operative fluoroscopic data with the pre-operative
volume. On the other hand, planning on diagnostic 2D radiographs has limited value in the
operating room due to limitations in patient positioning and the arbitrary relation between
the patient, table, and imaging device. In these scenarios, intra-operative planning on 2D
image data become an increasingly attractive alternative [21,61].

2.2. Multi-Task Learning and Task Weighting

In MTL, data samples from multiple related tasks are used together to build a learning
system with shared inductive bias [62]. By leveraging similarities in data and their un-
derlying formation process, the goal is to discover more generalized and potent features
that ultimately lead to better performance than independent single-task learning (STL)
inference [62]. For feature-based MTL, the shared inductive bias is typically realized by
soft or hard parameter sharing [62–65]. In the soft case, the parameters for each task are
separated but constrained using a distance penalty. In hard parameter-sharing, the inter-
action between tasks is structured by using a meta learner with shared parameters and
individual learners with task-specific parameters [66].

For most MTL problems, the update policy for the meta-learner parameters should
be designed to prevent any dominance of certain tasks over others. For task balancing,
several weighting heuristics have been proposed, most of them being based on a weighted
summation of the task-specific losses [67]. Gradient normalization (GradNorm) dynam-
ically approximates the gradient magnitude of the shared representation w.r.t. for each
task and aims to level the individual training rates [68]. Liu et al. [69] simplify this idea by
directly balancing the task losses’ rate of change over training time without considering
gradient magnitude. Kendall et al. [70] propose task uncertainty as a proxy for each task’s
weight, whereas Sener and Koltun [71] formulate MTL as a multi-objective optimization
based on Pareto-optimal updates. Multiple solutions consider analysis and manipulation
of individual gradient directions. Yu et al. [72] project the task gradients onto the normal
plane of conflicting tasks, thus avoiding opposing gradient directions and establishing
a stable update trajectory. Wang et al. [73] update this formulation by explicitly adapting
gradients for cases of positive similarity to better capture the diverse and often highly com-
plex task interactions. A different implementation of this rationale is probabilistic masking
of gradients with a conflicting sign using a drop-out-style operation [74], or weighting the
tasks such that their aggregated gradient has equal projections onto individual tasks [75].

We use GradNorm task balancing [68] in this work as it shows competitive performance
for more related tasks and is easy to implement at little to no computational overhead.

2.3. Contribution

Our method builds on previous work [50,54,55] and extends them in several ways:

1. This work establishes a multi-stage workflow that covers all necessary steps for image-
based surgical planning on 2D X-ray images. The workflow is designed to mimic the
clinically-established manual planning process, enabling granular control over each
anatomical feature contributing to the planning geometry;

2. We evaluate the model for three trauma-surgical planning applications on both diag-
nostic as well as intra-operative X-ray images of the knee joint. The numeric results
match clinical requirements and encourage further clinical evaluation;
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3. We empirically show that the detection of anatomical landmarks benefits from a MTL
setting. We confirm that explicit task weighting significantly reduces the landmark
localization error, and illustrate that a multi-head network topology achieves similar
performance to task-specific decoders, which are computationally much more expensive.

4. Our study demonstrates that sharing tasks across anatomically related applications does
not significantly improve performance compared to the single-application variant.

2.4. Article Structure

In Section 3, we present the multi-stage algorithm for (semi-)automatic orthopedic
surgery planning and provide details on each step. Furthermore, we describe the different
MTL schemes considered in this work, their training protocols, the pre- and intra-operative
datasets used, and finally the evaluation metrics for reporting the results. In Section 4, we
pose several research questions that are investigated through a series of experiments. After
that, we discuss the observations and findings in Section 5 and summarize our contribution
in Section 6.

3. Materials and Methods
3.1. (Semi-)Automatic Workflow for 2D Surgical Planning
3.1.1. Multi-Stage Planning Algorithm

In the following, we describe a multi-stage algorithm that automatically models,
analyzes, and visualizes a 2D orthopedic surgery plan. The general workflow is illustrated
in Figure 2.

Before any geometric processing, a planning blueprint for the target surgical applica-
tion needs to be defined, describing the necessary sequential construction steps. Based on
this blueprint, we can derive the relevant anatomical features and group them according to
the underlying task type. Furthermore, any post-processing that builds upon these features
can be defined, e.g., the calculation of intersection points, or the extraction of relevant
parts of a bone outline. In this work, we focus on three main feature and spatial task types
(excluding any secondary features generated by post-processing) that are employed by
most surgical planning procedures:

1. Semantically coherent regions. Segmentation of connected regions that share certain
characteristics, mostly bones and tools;

2. Anatomical keypoints. Point-like landmarks that pinpoint features of interest on the
bone surface;

3. Elongated structures. Straight and curved lines that describe edges, ridges, or that
refer to indirect features, such as anatomical axes.

After task configuration, in Stage A) , an MTL algorithm extracts all relevant anatom-
ical structures in parallel, sorted by their task type. Second, in Stage B), the features
are translated from their original inference encoding to geometrically interpretable ob-
jects/descriptors. For example, the heatmap encoding of a keypoint is converted to its
geometric equivalent of x and y coordinates, using the spatial argmax operation or a least-
squares curve fitting. Stage C) finally describes the automatic processing of the individual
planning steps and its overlay on the input image. The user can interact with the plan-
ning result to correct any misalignment, and the planning is updated in real-time. In the
following, we provide details on the individual stages.
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Figure 2. Overview of the automatic planning workflow. After selecting a planning blueprint and
a corresponding configuration, the target X-ray image is processed in three consecutive stages. After
extraction the 2D anatomical features with a multi-task network, they are transformed to their
corresponding geometric descriptors. The individual construction steps defined in the planning
blueprint are automatically calculated by interrelating the extracted geometry (here, steps 1–3 in
Stage C)). If needed, the user can manually modify the planning by adjusting individual control
points upon real-time updates of the complete plan.

3.1.2. Stage A) MTL for Joint Extraction of Anatomical Features

Following the MTL paradigm, we want to find a functional mapping f t
θ : X → Y t

from the input space X to multiple task solution spaces {Y t}t∈[T] [62,71]. θ is a set of
trainable parameters and T is the number of tasks. The data that are required to approx-
imate this mapping in a supervised learning manner are characterized by M datapoints
{xi, y1

i , . . . , yT
i }i∈[M], where yT

i is the individual label for task t.
We further consider a hard parameter-sharing strategy and split the parameters θ

into a single set of shared parameters θsh and task-specific parameter sets {θt}t∈[T] [66].
Specifically, we define a meta learner gθsh : X → Z and individual learners for each task
ht

θt : Z → Y t that by their composition ht
θt ◦ gθsh yield function

f t
θsh ,θt : X → Y t. (1)

This learning scheme allows to leverage dependencies and similarities between the
tasks, and to retain task-specific discriminative capacity. Specifically, for the extraction
of anatomical features, the salient structures used for localizing certain landmarks may
be of similar importance when trying to solve a segmentation task of the complete bone.
In addition, most structures relevant for surgical planning share the same underlying
anatomical processes. For the optimization of each task with gradient descent, a distinct
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loss function Lt(·, ·) : Y t × Y t → R+
0 is used. Although each loss function dictates the

updates for the individual learners, the parameter updates for the meta learner are derived
by their weighted linear combination. The general optimization problem can be written as

min
θsh ; θ1,...,θT

T

∑
t=1

wt

[
1
M

M

∑
i=1
Lt
(

f t
θsh ,θt(xi), yt

i

)]
. (2)

wt is a scalar weight for the loss function for the tth task.
Although the choice for the task’s loss function in theory only depends on the task

type, it should ideally be based on a spatial representation of the anatomical structure
of interest. Such representation exploits dependencies in spatial appearance and a closer
alignment of the feature topology. For example, semantic segmentation and heatmap-based
landmark regression rely on a strong pixel-wise correlation between input and target. In
contrast, a numerical regression task where the x and y coordinates of a landmark are
approximated with a fully-connected layer typically exhibits a weaker spatial coupling
between the learned features and the numerical coordinates. For this reason, we use spatial
representations for the tasks considered in this work (Table 1).

Table 1. Mathematical representation of the relevant anatomical structures that allow subsequent
optimization and geometric analysis.

Anatomical Structure Spatial Representation

Semantically coherent regions
Pixel-wise and multi-label segmentation. The multi-
label aspect allows for overlap-aware segmentation,
e.g., in areas between bones or metal implants.

Anatomical keypoints

Individual heatmaps/activation maps. For that pur-
pose, a multivariate Gaussian distribution with its
mean at the keypoint coordinate and a predefined stan-
dard deviation is sampled.

Elongated structures
Line-symmetric heatmap/activation map. The dis-
tance to the line segment or the axis of interest is eval-
uated and transformed using a Gaussian function.

The derivation of the weights wt, which ultimately steer the task’s relative priority,
is a delicate yet decisive step. In general, we can distinguish two variants: (i) Constant
weights, and (ii) Dynamic weights which are adapted during optimization. At first glance,
constant weights are easily interpretable and can be used to incorporate prior knowledge
to assign relative importance. However, since these weights act as multiplicative factors
of the gradient magnitudes, which might vary significantly across subsequent backward
passes, it is difficult to identify a suitable and stable weight composition [54]. In addition,
different magnitudes of the individual loss functions need to be accounted for to prevent
dominance of some tasks over others. These downsides can be mitigated by using dynamic
weighting policies, which compensate for fluctuations in the tasks’ relative standings. They,
however, come with the disadvantage of more elaborate update algorithms, or, depending
on the particular policy and task composition, might lead to inferior total performance.

For our particular problem scenario, we consider the following weighting strategies.

1. Uniform (constant). All tasks are weighted uniformly: wt = 1.
2. Balanced relative learning rates (dynamic). Gradient normalization by Chen et al. [68]

to ensure balanced training rates of all tasks, i.e., approximately equally-sized update
steps for each task: wt = GradNorm(t).

We further consider different variants of model topology that differ in proportion
between shared and task-specific parameters. Indeed, the shared inductive bias’s capacity
greatly influences the types of features learned in the meta learner. As the task-specific
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complexity shrinks, more general features need to be extracted, leading to superior solutions
for similar tasks that benefit from each other or inferior solutions for conflicting tasks. We
analyze this trade-off using two model topologies that facilitate different levels of parameter
sharing and compare them to a single-task earning baseline.

1. Single-task baseline. For comparison, a STL baseline of independent encoder-decoder
structures is optimized. Here, no parameters are shared;

2. Multi-head topology. Both the encoder and decoder parameters are shared between
the tasks in this variant. The output of the decoder is fed into task-specific prediction
heads, which involve significantly less dedicated parameters and, thus, require a multi-
purpose feature decoding. We argue that such a constrained decoder might benefit
learning for highly similar tasks;

3. Multi-decoder topology. After feature extraction in a shared feature encoder, the latent
representation is used as input for the task-specific decoders and prediction heads. In
other words, an abstract representation has to be found that serves the reconstruction
for different kinds of tasks.

3.1.3. Stage B) Extraction of Geometric Objects and Post-Processing

In Stage A), the multi-task network infers all anatomical features via specific spatial
encodings. These encodings ensure an efficient optimization of the MTL scheme but cannot
be directly used for the geometrical construction defined in the planning blueprint. For
that reason, the feature representations are subsequently transformed to more general de-
scriptors using a common set of operations shared between different planning applications.

For the three main tasks (Section 3.1.2), the representation transformations are as
follows. The pixel-wise segmentation on the input image is interpreted as subsets Sk
with k ∈ {0, . . . , K} that represent coherent regions of interest, e.g., bones, implants, soft
tissue, or background. Due to the multi-label definition, the subsets do not have to be
disjoint, which allows to identify region overlap. This is an important trait in the context of
transmissive imaging, which assumes an additive model of the pixel intensities and, thus,
perceivable superimposition. The segmentation results are further represented as closed
polygons, facilitating further spatial analysis and shape relations. The inferred heatmaps
directly encode the positional likelihood of the anatomical keypoint. The equivalent
x and y coordinates are extracted by a spatial argmax operation or by a least-squares
curve fitting in case predicted heatmaps suffer from large local intensity variation. The
heatmap representation of an elongated structure is converted to a polyline by the following
steps. First, the heatmap is interpreted as a 2D point cloud, and each point is assigned
an importance weighting based on the predicted likelihood. By selecting the points with
a weight above the threshold of 1σ, we extract only the most descriptive points for the
target structure. Finally, we obtain the 2D polyline by interconnecting a set of equidistant
points sampled from a smooth parametric B-spline which interpolates the selected points.
If we are interested in a particular region of an object’s contour C, we alternatively interpret
the structure’s heatmap as a weighted mask that reduces the contour to a certain subsection
C ′ ⊂ C.

3.1.4. Stage C) Geometric Construction of Individual Planning Steps

Once the geometric descriptions and groupings are created, they are interrelated based
on the planning geometry provided in the planning blueprint (Appendix B). According
to the manual workflow, this interrelation is distributed over several steps, each targeting
a single anatomical structure. The final result is then overlaid on the input image to
provide visual guidance for the user. After close inspection and visual alignment of the
planning to the underlying anatomy, the user might want to modify some parts of the
planning geometry retrospectively. The design choice of our multi-stage approach naturally
supports this use case. After manually adjusting any of the contained geometric objects,
the geometric calculations in Stage 3) can be repeated at little computational cost, enabling
real-time visualization of the planning on live images.
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3.2. Multi-Task Network Architecture

The deployed multi-task network architecture (Figures 3 and A3, Table A1) is a Fully
Convolutional Network and builds on the highly symmetrical Hourglass architecture [54,76].
An Hourglass first captures and encodes the input morphology at various scales and abstrac-
tion levels in a contracting path. The encoded features are then processed in an expanding
path and recombined with residual information from the encoder (via parameterized skip
connections) to reconstruct a multi-channel representation of the input. This representa-
tion is the input to one ore more prediction heads, each responsible for a parameterized
mapping to the desired output for one of the tasks.
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Figure 3. Architecture of the proposed multi-task network. After calculating a shared representation
of the input image xi with the meta learner, an individual learner for each task computes an cor-
responding prediction yT

i in the task solution space Y t. Two strategies for the individual learners
with different levels of parameter sharing are displayed: (i) Multi-decoder topology with indepen-
dent decoders and prediction heads, (ii) Multi-head topology with shared decoder but independent
prediction heads. Details of the architecture are provided in Figure A3, Table A1.

Every convolution block in the Hourglass, both in the contracting path, the expanding
path(s), as well as the task-specific mappings, is constructed as a stack of residual pre-
activation bottleneck units [76]. These residual units introduce an additional identity
function to provide a direct and unchanged propagation path for the features and allow the
preservation of the feature identity across multiple processing steps [77–79]. Based on a joint
representation of feature information at every stage in the computation graph, the network
can learn an optimal iterative refinement strategy and globally retain important information
without sacrificing information gain [79]. We argue that this design choice is particularly
advantageous in MTL scenarios, where some tasks may put more emphasis on global
semantics provided by highly aggregated abstract features (e.g., semantic segmentation).
In contrast, others may depend more on low-level feature representations (e.g., precise
anatomical keypoint localization).

In comparison to the U-Net topology, where the number of convolutional kernels
typically increases with decreasing feature size [80], the Hourglass assigns equal importance
to all abstraction levels by using a constant number of kernels throughout the complete
encoder–decoder architecture.
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3.3. Dataset, Ground Truth, and Augmentation Protocol
3.3.1. Cohort 1: Diagnostic X-ray Images

First, we use diagnostic radiographs to analyze the effect of the MTL network topology,
different loss/task weightings, and the amount of training data. We perform the ablation
study on 211 (strictly) lateral diagnostic X-ray images of the knee joint acquired prior to
reconstruction surgery. The images are of various spatial resolutions and occasionally
show overlapping surgical implants. For each image, the study’s first author annotated
the outline polygon for the femur (S1) and tibia (S2) bone using the labelme annotation
tool [81]. The anatomical keypoints (K1–K7) and lines (L1–L3) that are part of the planning
geometries for MPFL, PCL, and ACL reconstruction surgery were annotated by the study’s
first author (training) an orthopedic surgeon (test) with a proprietary interactive tool by
Siemens Healthcare GmbH. The data were separated into three subsets for training (167),
validation (16), and testing (38) using stratified sampling. For the test split, all data that
show a fixed-sized steel sphere with a 30 mm diameter was selected, allowing conversion
between pixel and mm spaces.

3.3.2. Cohort 2: Intra-Operative X-ray Images

We study the applicability to intra-operative surgical planning using 89 lateral intra-
operative fluoroscopic X-ray images from 43 distinct patients. The retrospectively collected
data were originally acquired during reconstructive trauma surgery with a mobile C-arm
system with flat panel detector (CIOS Spin, Siemens Healthcare GmbH). Compared to
diagnostic radiographs, this cohort poses unique challenges to the automatic image analysis
system. The images show a considerable overlap of the anatomy with implants and surgical
tools, variance in administered dose, and in some cases, bilateral exposure of the knee
joints due to spatial limitations in patient positioning. Additionally, the field of view of
mobile C-arms is smaller than that of conventional X-ray machines, which leads to a more
pronounced truncation of the bone shafts. The cohort was split into training (60), validation
(14), and test (15) with no patient overlap across subsets. Similar to the diagnostic data, the
planning geometry for MPFL, PCL, and ACL reconstruction surgery was annotated by the
first author using a custom extension of labelme.

3.3.3. Augmentation and Ground Truth

For the training subset we applied online-augmentation with light spatial shearing
(s ∈ [−2°, 2°], p = 0.5), horizontal flipping (p = 0.5), in-plane rotation (α ∈ [−45°, 45°],
p = 1), and scaling (s ∈ [0.8, 1.2], p = 1) [82]. Any spatial transformation of the ground
truth data were performed using projections of the numerical coordinate representations
to prevent information loss by discrete interpolation. Before network propagation, the
image intensities were normalized to the value range of [0, 1] using min–max normal-
ization given by x̃ = (x−min(x))/(max(x)−min(x)). Since the original images are of
different spatial resolutions and aspect ratios, they were brought to common dimensions
of [H:256×W:256]px by bi-cubic down-sampling. Thereby, the original aspect ratio was
maintained, and the images were zero-padded to the target resolution.

After augmentation, the numerical ground truth was converted to its respective
spatial representation. For that purpose, the bone outline polygons were converted to
binary segmentation masks with the original image resolution. The numerical keypoint
coordinates were translated to spatial activation maps/heatmaps by sampling a bivariate
Gaussian function without normalization factor (i.e., (x0, y0) = 1 at keypoint coordinate)
and a standard deviation of σ = 6 px. Similarly, the line heatmaps were generated by
evaluating the point-to-line distance of the line-surrounding points in a locally-bounded
hull. The line-orthogonal width of this hull was defined as w = 6σ. The point and line
heatmaps were truncated at ±3σ, the remaining values were set to zero.
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3.4. Training Policy and Implementation Details

The network parameters of the pre-operative models were optimized for 400 epochs
using mini-batch gradient descent with a batch size of 2 and Nesterov momentum [83]. The
learning rate and momentum were adjusted according to the cyclical learning rate policy
(CLR) [84], annealing both values linearly between a lower and upper bound (lrmin = 0.001,
lrmax = 0.1, momentummin = 0.8, momentummax = 0.9) within a full cycle length of 360
update iterations. For the intra-operative data, the training time was increased to 500. To
overcome initially observed optimization instability, the cyclic gradient descent policy was
replaced with RMSProp and a single learning rate decay with factor 0.1 at 350 epochs.
A linear combination of Soft-Dice and Binary Cross Entropy Lseg := sDice + BCE was used
as loss function for the segmentation task. For keypoint and line regression, mean squared
error losses L{kpt,line} := MSE were used. In the case of dynamic updates of the task weights
using Gradient Normalization, the task weights were optimized using the same update
policy and the asymmetry hyper-parameter was set to α = 1, which was found to be the
optimal value in a previous study ([54]). The model selection was based on the minimum
inference error across all tasks on the validation set, which we evaluated after each training
epoch. The selection criterion was defined as the minimum unweighted composite loss, i.e.,
L = ∑T

t=1 Lt. The network parameters were penalized with an L2 weight regularization
term of d = 0.00005 to mitigate overfitting effects on the training subset.

All models were implemented in PyTorch v1.8 (Python v3.8.12, CUDA v11.0, cuDNN
v7.6.5). It was ensured that all pseudo-random processes were initialized using the same
random seed.

3.5. Evaluation Protocol

The sensitivity and precision of the predicted segmentation masks was measured
using the Dice coefficient across both spatial dimensions, averaged over foreground and
background. To also account for contour fidelity, we calculated the Average Symmetric
Surface Distance (ASSD) [85]. For two contours C and C′ with points x ∈ C and x′ ∈ C′,
the ASSD is computed by evaluating the distance function d(x, C′) = minx′∈C′‖x− x′‖2.

ASSD =
1

|C|+ |C′|

(
∑
x∈C

d(x, C′) + ∑
x′∈C′

d(x′, C)

)

The keypoint localization error is measured as the Euclidean Distance (ED) between
the ground truth coordinates and network predictions. For the lines, we are interested in
the quality of fit between centroids and the orientation angles. For that purpose, we first
truncate the heatmaps at the likelihood of 2σ to get rid of outliers and then calculate their
centroid cx,y and orientation angle γ via raw image moments Mpq [86].

cx,y = (x̄, ȳ) =
(

M10

M00
,

M01

M00

)

γ =
1
2

arctan
(

2µ′11
µ′20 − µ′02

)
, with µ′20 =

M20

M00
− x̄2

µ′02 =
M02

M00
− ȳ2

µ′11 =
M11

M00
− x̄ȳ

4. Results
4.1. Research Questions

As motivated in Section 3.1, we analyze the proposed MTL algorithm for optimization
of several anatomical detection tasks for 2D surgical planning. Specifically, we answer the
following research questions:
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Rq (1). How does the MTL network topology and task weighting strategy affect anatom-
ical feature extraction?

Rq (2). Does sharing tasks across anatomically related applications improve the feature
extraction and target positioning compared to the single-application variant?

Rq (3). How does the number of training data affect the planning accuracy?
Rq (4). Can the performance on highly-standardized diagnostics images be applied to

more complex imaging data in the intra-operative environment?

4.2. Rq (1) Network Topology and Task Weighting

We study the effect of a shared inductive bias via different levels of hard parameter-
sharing on the optimization behavior and surgical planning quality. The two different MTL
topologies, multi-head and multi-decoder, are optimized using either a uniform or dynamic
GradNorm task weighting. The performances are compared to the respective STL variant.

The individual prediction errors per application and anatomical feature according to
Stage A of the multi-stage algorithm are illustrated in Figure 4. For all three application types
(Figure 4a,c), the segmentation quality does not benefit from a shared feature representation.
The difference between the STL variant and the unweighted MTL variants is negligible
but increases substantially for the dynamically weighted variants, which is reflected most
notably in the average contour error. Interestingly, this trend is more pronounced for the
applications with three tasks (MPFL, PCL) than it is for the ACL application with two tasks.

In contrast, the median precision of the predicted keypoints is significantly higher for
the task-weighted MTL variants and increases with the number of landmarks. Starting
with the PCL application (nkpt = 1) where no substantial difference in the localization
error between the variants can be observed, the weighted multi-head and multi-decoder
models lead to a reduction of the position error by up to 50% for the ACL application
(nkpt = 5). In the latter ACL case, this particularly shows for the tibial keypoints K4–K6
that are anatomically more complex and have a larger positional variance. There, the STL
variant and unweighted multi-decoder variant suffer significantly from a comparatively
large task-specific inductive bias. The reduced keypoint precision for these variants is
accompanied by a drastically reduced maximum intensity of the predicted heatmaps,
indicating low intra-model confidence and leading to error-prone intensity-peak extraction
(Table 2, Figure 5). For the estimation of the lines, the results do not show a clear trend,
but the weighted multi-head variant generally achieves the most accurate and consistent
results. The results further indicate that in most cases, separating the reconstruction with
task-specific decoders leads to slight improvements of the segmentation, but in all other
cases is comparable to or even performs worse than the significantly more sparse multi-
head variant. This observation suggests that not only a shared encoding but also a shared
decoding of aggregated features with only a small trailing task-specific part is preferable.

These insights are in large part supported by the applications’ planning metrics calcu-
lated at Stage C of the multi-stage algorithm (Figure 6). Looking at the tibial aspects of the
ACL planning, we see highly significant improvements of the approximated bundle attach-
ments using a weighted MTL scheme compared to STL and unweighted MTL. However,
the difference between the two levels of parameter-sharing is not significant, which means
that a shared decoder neither benefits nor worsens the discriminative power. Interestingly,
the planning metrics corresponding to the position of the femoral ligament attachment
bundles are not positively affected by any MTL setting, with the single-task performance
being among the best variants. This relation supports the previous findings (Figure 4)
where anatomically intricate and ambiguous landmarks significantly benefit from more
constrained and generalized features, and clearly visible ones, such as the Blumensaat
keypoints K1 and K2, profit from a higher number of task-specific features, allowing to
align much stronger to the most frequent anatomical pose.
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Figure 4. Radar charts of prediction errors per application and anatomical feature according to
Stage A) (Section 3.1.2) and different model topologies and optimization policies. For all metrics
but the mean Dice coefficient (mDice ↑) for segmentation tasks, lower is better. (a), MPFL. (b), ACL.
(c), PCL. (d), combined (MPFL, ACL, PCL).

Table 2. Analysis of the maximum intensity of keypoint heatmaps for different model topologies and
task weighting strategies. Each variant’s values for mean and standard deviation (mean± std) are
calculated across all application-specific keypoints on every test set image. The results of the best
network variant for each planning methodology is marked in bold.

Multi-Head Multi-Decoder Single-Task
Planning Uniform GradNorm Uniform GradNorm Uniform

MPFL (n = 2) 0.64± 0.11 0.83± 0.09 0.76± 0.09 0.76± 0.11 0.80± 0.12
ACL (n = 5) 0.42± 0.08 0.71± 0.12 0.43± 0.07 0.73± 0.12 0.57± 0.16
PCL (n = 1) 0.90± 0.11 0.84± 0.11 0.83± 0.09 0.79± 0.10 0.84± 0.08
Comb. (n = 7) 0.41± 0.12 0.66± 0.12 0.38± 0.10 0.71± 0.12 0.23± 0.11
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Figure 5. Visualization of heatmap prediction quality for different model topologies and task weight-
ing strategies for a random sample from the test set.

In this context, it should be noted that the visible spatial layout of the proximal tibia
head, where most considered landmarks are located, strongly varies with slight changes
in the viewing direction (Figure A1). Since the complex 3D structure of the tibial articular
surface cannot be fully assessed by a single projection to 2D, different viewing directions
result in a greater positional variance of the landmarks. This variance leads to ambiguity in
ground truth annotation and consequently limits the models’ ability to generalize well. The
ambiguity is further increased by difficulties in interpreting depth information, caused by
the general thickness of the tibial plateau, multiple intra-bone overlaps, and the resulting
fuzzy contours. However, these uncertainties in landmark detection are less pronounced
for the distal femur. There, the anatomy is less complex, and the depth in 2D projections is
easier to assess. Moreover, the position of the femoral keypoints K1 and K2 located in the
intercondylar notch is not affected by some rotation of the viewing direction around the
Blumensaat line.

For the MPFL and PCL planning applications, the different network topologies and
weighting variants do not significantly differ from each other. For MPFL planning in partic-
ular, all model variants meet the standard clinical requirements of (<2.5 mm) precision [21]
and previously published inter-rater performance [54].
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Figure 6. Boxplots of the planning metrics for each surgical application and different model topologies
and optimization policies (without fliers/outliers). (a), MPFL. (b), ACL. (c), PCL. (d), combined
(MPFL, ACL, and PCL). For each boxplot and topology pairing, we tested statistical significance
with a two-sided Mann–Whitney U rank test ((n) not significant: p ≥ 0.05, (*) significant: p < 0.05,
(**) highly significant: p < 0.001).

4.3. Rq (2) Combining Tasks Across Multiple Surgical Applications

We analyze whether task sharing across different surgical planning types improves
over the single-application case. For that purpose, we aggregate the anatomical features
of a task for all considered planning applications and define a combined model that we
analyze the same way as in Experiment (1).

As can be seen in Figures 4 and 5, the precision of the keypoints estimated with the
combined model benefits from a generalized feature set. Especially for the keypoints
K3–K7 that suffer from positional uncertainty in the 2D projections, the combined model
suffers from extensive spatial smearing at the heatmap peak and severely reduced like-
lihood (Table 2). This imprecision of the intensity’s spatial peak negatively impacts the
argmax-based coordinate extraction, resulting in large deviations from the ground truth.
Furthermore, the combined model’s segmentation quality slightly improves when using
task-specific decoders, matching the models’ behavior in the single-application case. How-
ever, this performance gain does not translate into better line and keypoint prediction
accuracy, which ultimately does not warrant the additional computational cost of mul-
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tiple decoders. The combined model’s planning metrics show no significant change in
performance compared to their single-application counter-parts in ACL and PCL planning
(Figures 6 and 7). However, the localization of the MPFL Schoettle Point suffers from
a combined task definition which leads to larger angulation and general positioning errors
of the approximated femoral shaft line (Figure 4).

Figure 7. Comparison between single- and multi-application model performance on the test set.
(a), MPFL. (b), ACL. (c), PCL. For each boxplot and pairing, we tested statistical significance with
a two-sided Mann–Whitney U rank test ((n) not significant: p ≥ 0.05, (*) significant: p < 0.05.

4.4. Rq (3) Effect of the Number of Training Data

We analyze how the amount of training data influences the choice of MTL topology
design and loss weighting. For that purpose, the size of the training cohort is subsequently
reduced by taking only a fraction of data f ∈ {1.0, 0.75, 0.5, 0.25} (random selection, fixed
between experiments).

Almost all single-application variants (Figure 8a,c) evidence a low negative correlation
of the planning errors with increasing data count (strictly negative correlation for all
weighted MTL models). Most noticeable is the significant positive impact (correlation
probability p < 0.05) of the amount of data when applying the STL models to the ACL
application (Figure 8b). However, the performance peaks are not always reached using the
maximum amount of data. Although the femoral planning metrics, for example, benefit
from a broader selection of data samples, the error rate is lowest at a reduced data factor of
f = 0.75.

No clear trend of the effect of differing amounts of training data can be extrapolated
for combined task representations of multiple planning applications (Figure 8). For the STL
models, the performance drops significantly with increasing data points, particularly for
the femoral planning metrics. Interestingly, the performance of the MTL models remains
almost unchanged with increasing factor f , indicating that a higher variance in the training
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distribution can not be exploited for learning a more generalized feature set. However, the
direct comparison between STL and MTL in the multi-application scenario attests to the
MTL variant a more effective extraction of the relevant features and thus a more stable
learning process and better inference performance.
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Figure 8. Effect of different amounts of training data on the planning metrics (logarithmic scale for
y-axis for better visibility). (a), MPFL. (b), ACL. (c), PCL. (d), combined (MPFL, ACL, PCL). We report
correlation coefficients ρ with rejection probability p < 0.05 based on two-sided Spearman’s rank
correlation measure.

4.5. Rq (4) Application to Intra-Operative Data

We apply the weighted MTL algorithms to a complex intra-operative setting. The
X-ray images show difficult trauma cases with fractured anatomy, strong instrumentation
overlap, weak contrast, and bilateral exposure of the knee joints. We skip the evaluation of
the PCL planning since it requires explicit knowledge of the pixel-to-mm relation.

For MPFL planning, the automatic planning achieves high accuracy for cases with
clearly visible bone shaft (Table 3, Figure 9). In the case of strong shaft truncation, the
estimated femoral cortex line suffers from dorsal shifting with increased deviation from
the anatomical bone axis. The translation leads to malpositioning of the Schoettle Point.
For extreme cases, the cortex line cannot be recovered. This dependency confirms previ-
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ous findings highlighting the importance of an application-specific acquisition protocol,
especially for the limited field of view in mobile C-arm imaging [50]. Although femoral
ACL planning is highly accurate, tibial ACL planning suffers from ventral migration of
the tibial proximal epiphysis corner towards the champagne drop-off point. This area is
often superimposed by metallic plates, obscuring salient visual cues needed for precise
localization. In 3 out of 15 test cases, the planning was cancelled due to fragmentation
of the tibia segmentation mask and subsequent errors in contour extraction. These error
modes can be reduced for three out of four bundle insertion points in ACL planning when
using a multi-decoder model.

The increased complexity in the intra-operative setting could to be compensated by
additional training data. In particular, more variation in instrument type and position
must be covered to address the ambiguity in bone segmentation and the resulting high
contour errors.

Table 3. Numerical planning results on intra-operative test data. Each metric value is reported
w.r.t. the original resolution of [H:976×W:976]px. The results of the best network variant for each
planning methodology is marked in bold. In three ACL cases, planning was not possible due to poor
segmentation quality.

Multi-Head Multi-Decoder
Planning Metric [px] Median, CI95% Cnt. Median, CI95% Cnt.

MPFL Schoettle Pt. 9.08, [6.35, 128.21] 15 14.02, [9.72, 22.46] 15
ACL AM Femur 8.17, [5.34, 15.65] 12 4.80, [3.79, 14.04] 12

PL Femur 5.66, [4.17, 12.84] 12 5.04, [2.85, 12.48] 12
AM Tibia 22.13, [9.52, 82.04] 12 14.18, [10.27, 42.87] 12
PL Tibia 13.17, [10.09, 38.74] 12 16.55, [12.85, 41.71] 12

M
P
F
L

A
C
L

a

b

Figure 9. Planning predictions on intra-operative test data with multi-head topology and GradNorm
task weighting. (a), MPFL. (b), ACL.
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5. Discussion

Careful preparation of the surgical plan and its integration into the intra-operative
workflow are key drivers for safety and low revision rates in reconstructive orthopedic
surgery. Currently, available software mainly supports pre-operative planning on diagnos-
tic 2D and 3D data and the following registration on intra-operative images. However, for
some surgical interventions, such as ligament reconstruction and intramedullary nailing,
pre-operative 3D scans are typically not acquired. Moreover, the usefulness of planning
on static 2D radiographs remains questionable due to an unpredictable patient and device
positioning during intra-operative management. A planning platform operating on intra-
operative data would elevate surgical safety, increase the precision in critical positioning
steps, and enable live outcome assessment in the operating roomt (OR).

In this study, we developed and analyzed a multi-stage algorithm that combines deep
learning-based anatomical structure localization on 2D X-ray images and geometric post-
processing to enable pre- and intra-operative surgery planning. The algorithm mimics the
clinically established, manual planning rationale by separating feature detection and their
geometric interrelation in a surgical plan. In the method evaluation on three trauma-surgical
applications, we observed a high spatial precision in localizing optimal drill insertion points
and low angulation errors for k-wire instrumentation and anatomical axis detection.

A fundamental characteristic of the multi-stage design is that the extrinsic positioning
errors depend solely on the performance of automatic feature detection. While we cannot
reduce the intrinsic error between the true anatomical position and approximation of
the target by the planning blueprint, we approach extrinsic error reduction in two ways.
First, users can manually adjust the position of the detected anatomical features, granting
granular real-time control over the plan. Second, the feature extractor’s learning policy can
be improved using an MTL scheme. MTL’s main rationale is to exploit similarities in data
and underlying data formation by using a meta-learner that optimizes a common feature set.
Our results substantiate the benefit of these generalized features for detecting anatomical
structures on orthopedic image data. In particular, the precision of anatomically complex
keypoints benefits from MTL compared to STL. We conclude that additional supervision
of a keypoint’s context area reduces positional uncertainty by exploiting strong spatial
correlations between the keypoint and the bone outline on a 2D projection. This outline can
be reliably detected and exhibits low variation between patients. Since most radiographic
keypoints lie on this outline, boundary-aware tasks, such as bone segmentation, provide
strong auxiliary cues during optimization.

Consistent with recent MTL literature, task balancing effectively prevents overfitting
to the segmentation task, which is spatially more dominant than the keypoint heatmaps
and contributes high-magnitude gradient signals to the composite loss function. Although
balancing with GradNorm shows superior performance over unweighted optimization,
it solely targets homogenization of the tasks’ relative learning rates, not taking into ac-
count complex and potentially conflicting task interaction. We believe that it could be
advantageous to combine this balancing with an active alignment of gradient direction and
magnitude, e.g., by using Gradient Sign Dropout [74] or Gradient Vaccine [73]. Although
such iterative improvements are attractive, their actual expediency is challenged by an
upper performance limit imposed by the number of tasks, their concrete characteristics and
relatedness, and the model complexity of the meta-learner.

This limitation is particularly evident when combining tasks across similar surgical
applications. Faced with increased task complexity, the combined model is unable to
find a common representation that improves over the single-application case. Without
increasing model capacity—which comes at the expense of increased execution time and
computational footprint—we advocate an MTL scheme on the application level rather than
grouping multiple applications per anatomical region.

No clear conclusion can be made for the necessary amount of training data. Although
the model performance increases slightly with more data samples, the magnitude of
improvement neither warrants the additional labeling effort nor lets us define lower and
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upper bounds for the cohort size. In addition, the ablation study was performed on pre-
operative diagnostic X-ray images with a highly standardized protocol for acquisition and
patient positioning. This little variation compares poorly to the types of variance that are
observed in the inter-operative environment. There, intricate fracture patterns, a broad
array of surgical tools and implants, and greater out-of-plane rotation angles caused by
spatially-constrained patient positioning introduce novel types of image characteristics. In
this scenario, additional data may help to reduce model bias.

We see several limitations of our study. At the present stage, our method does not
consider the registration of an initial surgical plan on subsequent intra-operative live data.
Although the lack of registration does not immediately impact the planning process, it
hamstrings outcome evaluation and more advanced real-time guidance using fluoroscopy
or periodical positioning checks with single shots. Furthermore, the method was only
evaluated for surgical applications on the knee joint. Compared to the large femur and tibia,
the bones of the wrist, elbow or foot are much smaller and have less pronounced contours
in the 2D projection due to strong inter-bone overlap. A further restriction of our method
is the disconnect between the optimization criterion and the actual planning target. The
algorithm’s first stage solves the anatomical feature detection problem independently from
the planning geometry, which can be seen as optimizing a proxy criterion with less anatomic
and geometric constraints. However, such constraints could help rule out implausible
configurations and likely push the model to learn an abstract semantic representation of
the actual planning target.

To address these shortcomings, future studies could investigate a combination of
anatomical feature extraction and subsequent plan generation with direct regression of the
planning target. The planning geometry can be implemented with differentiable functions,
allowing gradient propagation from the actual target to the anatomical feature extractor. In
this scenario, a consistency term between the geometric and direct target estimates can help
align both estimates during optimization. Furthermore, previous studies have shown that
planning methods are highly susceptible to rotational deviations between the underlying
anatomy and the standard projection [87,88]. We believe that extending our method
with an automatic assessment [89,90] of this mismatch could assist in preventing target
malpositioning and improve the planning’s reliability and clinical acceptance. Another
desirable extension is to combine our method with surgical tool recognition. In particular,
knowledge of the k-wire direction and tip position would allow software-side security
controls and advanced guidance in the intra-operative execution of the plan [56].

However, already in its current stage, the presented approach offers a precise automatic
tool to support surgical intervention planning directly on intra-operative 2D data. Such
intra-operative plan generation is particularly relevant for trauma surgery, where pre-
operative 3D images are often unavailable, limiting the application of many analysis and
navigation solutions operating on MRI [91–94] and CT [95–97] data. The proposed multi-
stage planning algorithm was designed to separate automatic image analysis and geometric
plan generation, allowing the user fine-grained control over each step of the proposed plan.
This design decision ultimately improves user acceptance of the planning tool by allowing
inaccuracies in the automatically proposed plan to be corrected for complex and rare injury
patterns. Furthermore, we were able to show empirically that parallel detection of all
anatomical features relevant to the plan using a weighted MTL policy benefits positioning
accuracy, confirming the long-standing consensus in the MTL literature.

6. Conclusions

In this work, we specifically address the need for accurate X-ray guided 2D planning
in the intra-operative environment for common injury patterns in reconstructive orthopedic
surgery. The proposed multi-stage algorithm separates automatic feature extraction and the
actual planning step, which we consider a pivotal design choice that allows for real-time
control of individual planning components by the user. The detection step can be efficiently
solved with a lightweight MTL scheme, allowing short execution times and improving
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spatial precision over the STL case. We believe that the developed platform will help
overcome the limitations of current clinical practice, where planning is done manually on
diagnostic 2D data with limited intra-operative value. Generating the surgical plan directly
in the OR will elevate surgical accuracy and ultimately motivate the development of novel
2D planning guidelines. Future work should explore the possibilities of end-to-end training
of the feature extractor to provide gradient updates in each step of the planning geometry.
Additionally, integrating the method with automatic mechanisms for image alignment and
surgical tool localization would assist the surgeon not only in planning, but also in image
data acquisition and directly in surgical execution.
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Appendix A. Pre-Operative Planning Examples
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Figure A1. Planning predictions on pre-operative test data with multi-head topology and GradNorm
task weighting. (a), MPFL. (b), ACL. (c), PCL.

Appendix B. Planning Geometry

Appendix B.1. MPFL Reconstruction

In the following, we outline the geometric calculation of the Schoettle Point psp for
MPFL reconstruction planning (Figure A2a) [21]. First, the heatmap is thresholded at 1σ
likelihood, and the bone contour C is calculated using morphological operations on the
binary segmentation S1 [50]. The thresholded heatmap is used to select the bone shaft’s
relevant contour points. A line is fitted to this 2D point cloud using major axis regression,
and the cloud’s two extreme points are used as start and end points l1 and l2 of the cortex
vector ~v.

Next, the detected keypoints k1 and k2 are projected onto the unit vector v̂.

k′1 = l2 + ((k1 − l2) · v̂)v̂
k′2 = l2 + ((k2 − l2) · v̂)v̂

(A1)

This allows to calculate the radius r of the Schoettle confidence circle around the
Schoettle Point as r = ||

(
k′1 − k′2

)
/2||2. To ensure that psp is always positioned anterior to

~v, k2 is assumed to always be posterior to v̂. This assumption lets us calculate the knee
configuration τ using the z-component magnitude of the 3D cross-product’s between v̂ and
(k2 − l2).

τ = sgn
(

det
[

v̂x (k2 − l2)x
v̂y (k2 − l2)y

])
(A2)

τ > 0 refers to a left knee, τ < 0 denotes to a right knee, and τ = 0 denotes placement of k2
on the line through v̂. Finally, the target Schoettle Point psp is computed as follows.

v̂⊥ = R(90°) v̂ =

[
0 −1
1 0

]
v̂

psp = k′2 +
(
k′1 − k′2

)
2

− (τ r)v̂⊥
(A3)
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Figure A2. Geometric relations of the considered surgery planning types. (a), MPFL. (b,c), femoral
and tibial ACL. (d), PCL.

Appendix B.2. ACL Reconstruction

Standard ACL reconstruction planning can be divided into femoral and tibial plan-
ning of the anteromedial (AM) and patellolateral (PL) bundles. Geometric planning
on the femoral side follows the quadrant method by Bernard et al. [32]. Tibial attach-
ment points are related to fractions on the Amis/Jakob line [33] originally described by
Stäubli/Rauschning [34].

Appendix B.2.1. Femoral Bundle Attachments

The basic geometric relations are visualized in Figure A2b. After extracting the femoral
bone contour C, a line is defined that passes through the anterior and posterior Blumensaat
points k1, k2. The bounds of the rectangular grid are calculated as follows. First, the anterior
and posterior intersection of the Blumensaat line with C are obtained by iterative search on
small contour sections with Bézier clipping. Overlapping groups of four contour points
are interpolated with a Bézier spline, generating a set of candidate intersections. The
actual intersection points are selected by evaluating the minimum orthogonal distance
to the Blumensaat line. This process in repeated for multiple distal shifts of the detected
Blumensaat line to extract to maximum head width. The grid’s distal bound are similarly
identified by selecting the largest possible parallel shift of the Blumensaat line that still
intersects with C.

The projection of the AM bundle center pam onto the Blumensaat line is at ∼25% from
the most anterior aspect, and in orthogonal projection ∼25% from the most distal aspect of
the femoral condyle. The center of the projected PL bundle ppl lays at ∼33% from the most
anterior aspect, wheres the orthogonal projection is located at ∼50% from the most distal
aspect of the femoral condyle [61].

Appendix B.2.2. Tibial Bundle Attachments

The bundle positions on the tibial head are visualized in Figure A2c. After extracting
the tibial bone contour C, a parallel line to the tibial plateau (k1− k2) passing through
k3 is computed, i.e., the Amis/Jakob line. The intersection is again calculated using
interative search along C with Bézier clipping. Afterwards, the optimal positions of the AM
and PL bundles along the Amis/Jakob line are at 36% and 52% from the posterior tibial
epiphysis, respectively.

Appendix B.3. PCL Reconstruction

Planning of the transtibial drilling tunnel orientation and PCL insertion site follows
the radiographic construction described by Johannsen et al. (Figure A2d) [23]. We refer the
reader to [55] for a comprehensive explanation of this construction and [50] for details on
the utilized anatomical axis detection.
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In brief, after extracting the tibial contour C and estimating the anatomical axis ~vax, the
drilling path ~vgw is initialized at a 45◦ acute angle oriented towards the anterior aspect of
the tibia Ṡimilar to planning of the MPFL Schoettle Point, this step necessitates knowledge
of the knee orientation. The orientation τ can be calculated using the vectors ~vax = (l1 − l2)
and ~vcgd = (k1 − l2):

τ = sgn
(

det
[
(~vax)x (~vcgd)x
(~vax)y (~vcgd)y

])
. (A4)

The initial position of the PCL insertion point ppcl is constructed such that the drilling
path ~vgw intersects C at the anatomic insertion site on a parallel line with distance 5.5 mm
to the champagne glass drop-off line (line orthogonal to the bone axis passing through
k1). The search for smooth intersection ppcl is done iteratively by Bézier spline fitting to
overlapping groups of four contour points and subsequent Bezier clipping. This procedure
reduces the effect of segmentation inaccuracy.

After initialization, a safety margin between the drilling path and the bone cortex is
established by the smallest possible parallel shift of ~vgw such that ||k1 − k2||2 >= 7 mm.

Appendix C. Neural Network Topology

Table A1. Detailed topology of the used multi-task network in the multi-head configuration. The
architecture is adapted from the Stacked Hourglass Network by Newell et al. [76]. The bottleneck and
head topology are illustrated in Figure A3. (s: stride, p: padding, ⊕: feature fusion by element-wise
addition, NN: nearest-neighbor).

Block Input Operation Cin Cout Input Size Output Size

Pr
e P1 – 3x3 conv, p=1 1 64 256× 256 256× 256

P2 P1 Bottleneck 64 128 256× 256 256× 256
P3 P2 Bottleneck 128 128 256× 256 256× 256

En
co

de
r

E1 P3 Bottleneck 128 128 256× 256 256× 256
2× 2 max pool, s=2 128 128 256× 256 128× 128

E2 E1 Bottleneck 128 128 128× 128 128× 128
2× 2 max pool, s=2 128 128 128× 128 64× 64

E3 E2 Bottleneck 128 128 64× 64 64× 64
2× 2 max pool, s=2 128 128 64× 64 32× 32

E4 E3 Bottleneck 128 128 32× 32 32× 32
2× 2 max pool, s=2 128 128 32× 32 16× 16

Sk
ip

C
on

.

S1 P3 Bottleneck 128 128 256× 256 256× 256
S2 E1 Bottleneck 128 128 128× 128 128× 128
S3 E2 Bottleneck 128 128 64× 64 64× 64
S4 E3 Bottleneck 128 128 32× 32 32× 32

D
ec

od
er

D1 E4 Bottleneck 128 128 16× 16 16× 16
x2 NN up-sampling 128 128 16× 16 32× 32

D2 D1⊕S1 Bottleneck 128 128 32× 32 32× 32
x2 NN up-sampling 128 128 32× 32 64× 64

D3 D2⊕S2 Bottleneck 128 128 64× 64 64× 64
x2 NN up-sampling 128 128 64× 64 128× 128

D4 D3⊕S3 Bottleneck 128 128 128× 128 128× 128
x2 NN up-sampling 128 128 128× 128 256× 256

H
ea

ds H1 (t = 1) D4⊕S4 Head 128 C1 256× 256 256× 256
H2 (t = 2) D4⊕S4 Head 128 C2 256× 256 256× 256
H3 (t = 3) D4⊕S4 Head 128 C3 256× 256 256× 256
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Figure A3. Topology of utilized neural network building blocks based on the work from Newell et al. [76]
and He et al. [77]. (a), layout of 3-layer pre-activation bottleneck with identity mapping [77]. If
the number of input and output channels is different, the identity function is replaced by a 1 × 1
convolution. (b), task heads which output Ct predictions. (p: padding, ⊕: feature fusion by element-
wise addition).
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