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Abstract: It is necessary to establish the relative performance of established optical flow approaches
in airborne scenarios with thermal cameras. This study investigated the performance of a dense
optical flow algorithm on 14 bit radiometric images of the ground. While sparse techniques that
rely on feature matching techniques perform very well with airborne thermal data in high-contrast
thermal conditions, these techniques suffer in low-contrast scenes, where there are fewer detectable
and distinct features in the image. On the other hand, some dense optical flow algorithms are highly
amenable to parallel processing approaches compared to those that rely on tracking and feature
detection. A Long-Wave Infrared (LWIR) micro-sensor and a PX4Flow optical sensor were mounted
looking downwards on a drone. We compared the optical flow signals of a representative dense
optical flow technique, the Image Interpolation Algorithm (I2 A), to the Lucas–Kanade (LK) algorithm
in OpenCV and the visible light optical flow results from the PX4Flow in both X and Y displacements.
The I2 A to LK was found to be generally comparable in performance and better in cold-soaked
environments while suffering from the aperture problem in some scenes.

Keywords: optical flow; thermal imaging; LWIR; navigation; Unmanned Aerial Vehicles (UAVs); the
image interpolation algorithm

1. Introduction

Robust navigation is a desirable capability for Unmanned Aerial Vehicles (UAVs).
Many UAVs rely on the Global Position System (GPS) to sense their position. However,
GPS requires a clear view of the sky to operate reliably, which limits its use in certain
working environments such as in high-density urban areas, inside buildings, underground,
or in areas where the signal is subject to deliberate or inadvertent interference. Additionally,
the vertical error of GPS can be several meters on Earth due to the layers of the atmo-
sphere, which refract and delay the transmission signals between the receivers and the
satellites [1]. This issue makes GPS navigation-based techniques unreliable in confined
spaces and indoors.

Unlike GPS-based navigation systems, vision-based systems do not rely on having an
unobstructed view between the UAVs and the satellite. Instead, it relies on the on-board
sensor, which can be an optical colour visual light sensor or a thermal sensor. Vision-based
systems can provide real-time information about the surrounding dynamic environment
and are resistant to conventional jamming. Hence, vision-based systems can be a good
solution to aid UAVs to navigate in GPS-denied areas.

2. Related Work

There have been efforts to develop both active and passive vision-based techniques for
navigation, yet a limited number of techniques have been attempted in darkness despite
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the potential to double the operating period. Thermal sensors are one imaging technology
that can operate in darkness in some environments. There are many reasons for this,
such as high cost and difficulty to acquire thermal sensors, limited access to airspace, and
operational difficulties experienced at night [2].

Early researchers tried to utilise both visual and infrared spectrum to help robots
navigating in dark and low visual environments.

Brunner et al. [3] combined the visual spectrum with infrared spectrum to aid the
Simultaneous Localization And Mapping (SLAM) in low light and smoke situations. The
result showed a significant increase in the SLAM performance in such conditions for
unmanned ground vehicles. Papachristos et al. [4] developed a fusion of thermal and
inertial sensor systems for small UAVs through a dark and GPS- denied environment. The
study relied on a Long-Wave Infrared (LWIR) sensor to detect thermal objects, combined
with the Support Vector Machine technique to accomplish real-time localisation. Another
approach proposed by Khattak et al. [5] outlined a multi-modal fusion system from a fusion
of visual light and the infrared spectrum combined with inertial sensors to help a small
UAV to manoeuvre in a dark tunnel.

However, the previous approaches only utilised a rescaled 8-bit resolution instead
of on full radiometric 14 bit. The reason for this approach is that the vast majority of
open-source computer vision libraries such as OpenCV are designed with 8-bit processing
in mind [6,7].

A rescaled 8-bit thermal frame results in lower contrast due to the loss of informa-
tion due to 6 bits being discarded [8]. Furthermore, the study in [9] shows that with the
same algorithm, utilising full input radiometric thermal information may produce better
performance, and with less accumulated errors over time than its rescaled counterpart.

Khattak et al. [10] proposed a framework to use full radiometric 14-bit data from an
LWIR sensor to navigate in a degraded visual environment. The framework was tested
in an underground mine, demonstrating better results compared to a rescaled version.
Recently, the same team [6] developed a thermal–inertial system for tracking features to
determine a path for a small UAV with full 14-bit radiometric resolution.

These works have shown that thermal sensors can provide valuable information to
navigate in low-light situations. However, these mentioned works are computationally
demanding, which limits their use on small UAVs and in real-time applications. In contrast,
biologically inspired optical flow techniques have been used by birds and insects to support
them to navigate in cluttered environments [11]. Recent studies have shown that honeybees
rely on optical flow for most of their navigation tasks, such as collision avoidance [12] or
landing [13,14]. Optical flow is evidently an efficient and effective way to achieve more
autonomous robust navigation for small UAVs.

Optical flow is defined as the apparent motion of image intensities or brightness
patterns across multiple scenes [15]. The PX4Flow sensor [16] is one of the most widely
used optical flow sensors, which has been integrated into many studies [17,18] with success.
Optical flow can be used for active navigation, such as frontal object avoidance [19], to
calculate time to impact [20] or can be used passively to collect information about the current
states of aircraft, such as pitch and roll [21], descent angles [22] and lateral drift [23] for fixed-
wing aircraft and to perform altitude control for automatic landing [13,14]. Furthermore,
the study of the feasibility and concept of using optical flow with thermal imaging for
navigation has been demonstrated in [24,25].

The paper is organised in 10 sections. Section 3 outlines our previous works and the
motivation for this study. Section 4 presents the I2 A in one and two dimensions. Sections 5
and 6 outline our hardware and software architectures. Section 7 considers our assessment
methodology, including the flying platform, two experimental sites and its conditions.
Sections 8 and 9 report and analyse the collected data from the flights. Section 10 outlines
the lessons learnt and future research directions.
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3. Contributions

Previous studies by us [26,27] have started to systematically explore the concept
of airborne thermal flow. These works utilised the LK in OpenCV. Additionally, the
characteristics of thermal flow over 24 h were investigated and compared to the output of
the visible-light-based optical flow sensor. One of the lessons learned from [27] was that
thermal flow from LK performed poorly from midnight until just before sunrise due to the
much lower contrast in thermal data long after the sun goes down.

While the LK technique yields reliable results with relatively low computational
demand, it suffers from sensitivity to noise due to the requirement to compute derivatives
and the need to find distinct features between frames even when contrast is low. As a result,
the implementation of thermal flow based on the LK suffered in a cold-soaked environment
with much less contrast in thermal images. To solve this problem, considering robustness to
noise and suitability for sub-pixel movements for airborne applications, dense techniques
such as the I2 A [28] might sometimes be a better alternative to the LK in lower-contrast
frames such as in cold-soaked environments.

The I2 A was first proposed by Srinivasan in [28], which demonstrated its robustness
to noise, and the fact that it does not require feature detection and tracking between frames
or high-order spatial or temporal derivatives of images. Our version of the I2 A was tailored
for airborne applications with the addition of predicted motion during the flight to increase
precision. Additionally, we aimed to explore the use of the I2 A with low-resolution and
low-contrast thermal images.

Furthermore, our I2 A implementation utilised full radiometric 14-bit frames from the
thermal sensor, while the LK in OpenCV only accepts 8-bit scaled intensity images. This
means that the I2 A had an initial advantage of obtaining 6 more bits depth from its input,
potentially outperforming the LK while not necessarily being the superior algorithm for the
situation. On the other hand, the LK in OpenCV is very well known for its accuracy and
has become a “go-to” implementation in real-time applications. As a result, it is still valid
to evaluate the I2 A against the OpenCV implementation of LK as well as the PX4Flow.

4. Optical Flow Computation

The I2 A has demonstrated its effectiveness when computing optical flow from an
image plan, which is much less computationally demanding [28], and the I2 A is best with
small movement changes in images [29].

The I2 A is used to compute the motion of one image or subimage with respect to
another[30]. It estimates the distance between f (x, y, t) and f (x, y, t + 1), across an obser-
vation window of arbitrary size, shape and spatial weighting, relative to the deformation
between f (x − k, y, t) and f (x + k, y, t). For small displacements of the sensor, it is assumed

that the input f (x, y, t + 1) is approximated by ̂f (x, y, t), a weighted linear combination of
f (x, y, t) and f (x ± k, y, t)

̂f (x, y, t + 1) = f (x, y, t) +
vx

2k
( f (x + k, y, t)− f (x − k, y, t)) (1)

where vx is the angular velocity in pixels per frame shift, k is a reference shift in pixels
that is small, but larger than any expected motion, and vx/2k specifies the deformation of
f (x, y, t) normalised with respect to the distance between f (x − k, y, t) and f (x + k, y, t), or
2k pixels. For the constraint of interpolation to apply, the value of vx/2k will range between
−1.0 and 1.0. Within an observation window psi, vx is solved by minimising the mean

squared error between ̂f (x, y, t + 1) and f (x, y, t):

ψ(x, y)⊗
[[

f (x, y, t)− ̂f (x, y, t + 1)
]2
]
= 0 (2)
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and taking a derivative of (2) with respect to vx/2k yields the expression

vx

2k
=

(ψ(x, y)⊗ [( f (x, y, t + 1)− f (x, y, t)])(ψ ⊗ ( f (x + k, y, t)− f (x − k, y, t))))

ψ(x, y)⊗
[
( f (x + k, y, t)− f (x − k, y, t))2

] (3)

where vx/2k is the normalised position of f (x, y, t + 1) between f (x − k, y, t) and f (x +
k, y, t), and thus vx is the shift between f (x, y, t + 1) and f (x, y, t) in pixels.

To reduce aliasing caused by high-frequency components, the images are passed
through a low-pass filter, which can be a Gaussian or a square convolution kernel, before
computing optical flow.

Extension to Two Dimensions

The theory can be extended to compute optical flow in two dimensions. Assuming
that the motion has two degrees of freedom, with a small shift, the shifted image can be
presented as:

̂f (x, y, t + 1) = f (x, y, t) + vx
2k ( f (x + k, y, t)− f (x − k, y, t))

vy
2j ( f (x, y + j, t)− f (x, y − j, t))

Similar to Equation (3), the parameters vx and vy can be solved by setting ∂vx
∂vy

and ∂ vy
∂vx

to zero.
The resulting simultaneous equations may be expressed in matrix form, as follows:[

A2 AB
AB B2

][
vx/2k
vy/2j

]
= 2

[
AC
BC

]
(4)

where

A = ψ(x, y)⊗ ( f (x + k, y, t)− f (x − k, y, t))
B = ψ(x, y)⊗ ( f (x, y + j, t)− f (x, y − j, t))
C = ψ(x, y)⊗ ( f (x, y, t + 1)− f (x, y, t))

Matrix inversion is required at each point in the images generated by the expressions
defining the matrix coefficients, and after each image has been convolved with a two-
dimensional kernel, ψ, which acts to localise each motion computation. Gaussian ψ kernels
were used throughout the flight tests.

5. Hardware Implementation

This section describes the hardware system used in the experiment. All the compo-
nents had to satisfy three constraints: low in cost, light in weight and small in size. Figure 1
shows a block diagram of all the components of our system. A lithium-polymer battery was
used to power the system via a 5 V power supply voltage regulator to maintain constant
voltage and current throughout the experiment.
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Figure 1. Hardware implementation block diagrams of the system.

Figure 2 shows our constructed payload in the housing frame, with components
labeled in red.

Figure 2. Inside (on the left) and outside (on the right) of the system.

5.1. Thermal Sensor

The FLIR Lepton 3 (Teledyne FLIR LLC., Wilsonville, OR, USA) was chosen in this
study due to its light weight and low cost. The FLIR Lepton 3 is an uncooled LWIR thermal
sensor with a 56◦ field of view [31]. The sensor has a low angular error of 0.03◦, which is
adequate, without any calibration needed [26]. Additionally, the sensor also satisfies both
weight and size constraints at 0.9 g and 11.8 mm × 12.7 mm × 7.2 mm in size. The sensor
can output 14-bit 160 × 120 radiometric resolution thermal images at 8.7 HZ.

Flat Field Correction

The thermal sensor comes with a built-in shutter with Flat Field Correction (FFC) for
stationary usage. The FFC compensates for errors that build up over time during operation.
The FFC is essential when the sensor captures the same scene for a prolonged period to
prevent ghosting [31]. During the FFC process, the sensor freezes for a small amount of
time depending on the model (0.3–2 s), which is undesirable for navigation applications.
Since the Lepton is mounted on a constantly moving aircraft, it is essential to disable the
FFC to achieve continuous inputs.

5.2. Interfacing with the Lepton Sensor

The Lepton is integrated on the Purethermal 2 board. The board weighs 50 g, with
the dimensions of 30 mm × 18 mm. The board uses its own integrated circuit with an
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integrated ARM microprocessor, which is capable of executing the Lepton commands
by itself, thus freeing up some of the processing that would otherwise be done by the
main computing system, the Raspberry Pi 3. The Purethermal 2 board interfaces with the
Raspberry Pi via a USB connector.

Range Sensor

A LIDAR lite v3 (Garmin Ltd., Lenexa, KS, USA) [32] was used in this study due to its
light weight of only 22 g and low power consumption. The purpose of the range sensor is
for post-flight altitude verification.

5.3. Onboard Processor

The Raspberry Pi 3 (Pi 3) (Raspberry Pi Foundation, Cambridge, UK) was used in this
study to obtain and save 14-bit raw thermal images from the Lepton 3 for later processing.
The Pi 3 satisfies both weight and size constraints for small aircraft applications.

5.4. PixHawk and PX4Flow

The PixHawk was powered by the Pi 3 via “Telemetry 2” connection. The PX4Flow
interfaces with the PixHawk via the I2C communication protocol. Data “Ulog” files were
saved on the PixHawk, which captured the optical flow signals from the PX4Flow.

6. Software Implementation

Figure 3 shows the structure of our payload. The Pi 3 is the main computer of the
system, requesting raw 14-bit data from the Lepton 3 in the beginning. The raw 14-bit data
were saved for later processing. Each consecutive 14-bit frame then will be down-scaled to
8 bits while maintaining a common scale with the technique in [27]. The two processed
frames were processed with the LK in OpenCV to determine the 2D optical flow vector
(flow_x, flow_y). The ground distance was also received from LIDAR, and it is sent along
with the optical flow vector to the PixHawk2 via the “OPTICALFLOWRAD” MAVLINK
package to be saved in Ulog format. The PX4Flow data were also saved on the PixHawk1.

Figure 3. Software algorithm block diagram.
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In this study, the system was constructed with OpenCV version 4.5.5, Numpy version
1.19.2 and Python version 3.8.

6.1. Lucas–Kanade Algorithm in OpenCV

The LK implementation in OpenCV uses Shi–Tomasi [33] corner feature detection to
identify distinguishable features across two images. The LK optical flow technique operates
based on three assumptions [15]:

• Brightness constancy: The contrast should not differ between two frames.
• Small movements: The displacement between two frames should not be too large.
• Spatial coherence: The neighbouring pixels should move together and have the same

motion across two frames.

The three conditions must be met in order to compute the optical flow field between
two frames with the LK and the I2 A.

6.2. Automatic Gain Control

In modern thermal sensors such as the FLIR Lepton 3, the Automatic Gain Control
(AGC) is turned on by default to give to the user the most detail when the average temper-
ature of the scene is changing. When the sensor first captures radiometric thermal data,
the data are in a 14-bit depth format, which are “raw” data. However, the raw 14-bit data
must be converted down to 8 bits to visualise them on electronic displays. Additionally,
the LK implementation in OpenCV only accepts 8-bit input data for optical flow estimation.
Hence, it is necessary to convert them from 14 bits to 8 bits.

By default, the AGC built into the sensor is responsible for this. However, a problem
arises when there is a drastic change in the scene temperature, when a significantly hotter
or cooler object enters or exits the scene. One example, in Figure 4, shows two 8-bit frames
taken continuously when a hot cup is moving out of the scene when processed with AGC.

(a) Frame 1 (b) Frame 2

Figure 4. Automatic Gain Control (AGC) changes the contrast in an image when a hot cup moves
into a scene: (1)–(2).

Additionally, Table 1 shows the average, 10% and 90% percentile for the pixel intensity
of the images shown in Figure 4. It is clear that the pixel intensity of an image changes
dramatically when a very hot or cold object enters or exits the scene due to the AGC.

Table 1. Pixel intensity values with Automatic Gain Control (AGC) of two images shown in Figure 4.

Pixel Intensity Mean 90% Percentile 10% Percentile

AGC
Frame 1 71 174 20

Frame 2 55 132 17
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The AGC was designed to show the maximum possible dynamic range of the image,
which is good for inspection purposes. However, this may cause problems for many feature
matching algorithms due to the drastic change in contrast between images. Additionally,
rescaling 14-bit images with the AGC also violates the first condition of the LK technique:
brightness constancy.

6.2.1. Rescaling Technique

This section summarises our technique from [27] to convert 14-bit raw thermal images
to 8-bit images while maintaining the contrast between two images.

Our technique takes two 14-bit images as input, and then rescales these two frames
based on their maximum and minimum pixel intensity. Figure 5 shows the conversion of a
pair of 14-bit images, image1 and image2, to two 8-bit images.

Figure 5. A pair of images with the same scaling value.

Figure 6 shows the rescaled images with our technique from Figure 4. The result
shows that the brightness does not change but there are small artefacts in the second image
in this case.

(a) Frame 1 (b) Frame 2

Figure 6. A pair from Figure 4 with our technique. In this extreme case, there are small artefacts,
which are circled in red.
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Figure 7 shows a pair of images captured from the flight, processed with AGC and
our technique. Visually, a pair with AGC cannot be used for optical flow estimation due to
corresponding pixels having different gains applied to their read-out. On the other hand,
when applying our technique, the second rescaled image is able to maintain its contrast.
Additionally, the undesired artefact effect is too small to be visually detected.

Table 2 shows the average, 10% and 90% percentile pixel intensity from images shown
in Figure 7. It is clear that the same brightness is maintained across two images for optical
flow estimation.

(a) Frame 1 with AGC. (b) Frame 2 with AGC.

(c) Frame 1 with technique our technique. (d) Frame 2 with our technique.

Figure 7. Two captured consecutive frames with AGC enabled (a,b) and with technique (c,d).

Table 2. Pixel intensity values of a pair of 8-bit images with AGC (first two rows) and our technique
(last two rows).

Mean 90% Percentile 10% Percentile

Frame1_AGC 139 185 95

Frame2_AGC 188 238 144

Frame1_Same 139 185 94

Frame2_Same 139 184 94

Good, distinct features were found based on the Shi–Tomasi algorithm [33]. The
output of the algorithm is single displacement vectors in two dimensions as a median of all
good points found. Table 3 shows the parameter settings for LK and Shi–Tomasi algorithms
in OpenCV.



J. Imaging 2022, 8, 116 10 of 18

Table 3. Setting parameters for LK optical flow and Shi–Tomasi corner detection algorithm.

Feature Detection Settings Maximum corners 1000
Quality level 0.02

Minimum distance 5
Block size 5

LK Settings Window size (15,15)
Maximum pyramid level 2
Search termination count 10

Search termination ε 0.03

6.2.2. Benefit of 14-Bit Implementation with the I2A

Table 4 shows the pixel intensity of a pair of 14-bit images, showing that the brightness
is consistent across both images. Hence, there is no need to apply the conversion techniques
in Section 6.1 while using full radiometric 14-bit data.

Table 4. Pixel intensity values of two unprocessed 14-bit images, which shows that they both have
approximately the same contrast and overall pixel brightness.

Mean 90% Percentile 10% Percentile

14-bit
Frame 1 30,070 30,307 29,759

Frame 2 30,100 30,484 29,773

Besides bypassing the troubled AGC and rescale techniques, utilising full 14-bit ra-
diometric data directly can provide better results compared to their 8-bit version counter-
part [9]. Additionally, the team in [6] also showed that using full 14-bit radiometric data
makes the algorithm more resilient to the occasional absence of data due to the availability
of an additional 6 bits of data that would otherwise be lost during the conversion technique.

In this experiment, the shift values are 4 pixels in both X and Y displacements and the
chosen kernel is a 9 × 9 Gaussian.

7. Assessment Methodology

This section shows how the tests were conducted, including the site of the experiment,
flight plans, flying platform, weather conditions at the site and how the signals were
analysed.

7.1. Flying Platform

The payload was mounted underneath the 3DR SOLO (3DR, Berkeley, CA,USA). The
now obsolete SOLO was available and had the capacity to carry a payload of up to 500 g
with a tolerable flight time of 10 min.

7.2. Field Experiment

The SOLO was programmed to fly one square lap at a constant height of 8 m with
target velocity at 8 m/s. Figure 8 shows the flight path in this experiment. The SOLO took
off at point H, flew to point (1)-(2)-(3)-(4)-(5) and then landed at (5).
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Figure 8. Flight plan in mission planner.

We carried out two flight trials in this study. The first trial was during a normal sunny
day in autumn, while our second trial was during a cold and foggy day several months
later in winter. Both trials were performed at the same field with the same flight plan.

The purpose of the first trial was to compare the performance of the LK, the I2 A and the
PX4Flow during normal conditions: on a sunny, clear-sky day with high thermal contrast.
The second trial aimed to compare them in a cold-soaked, lower-contrast environment.

Table 5 shows the field conditions, including min and max temperatures, temperature
and weather conditions, at the time for each experiment [34].

Table 5. Weather conditions at the experimental sites.

Experiment 1 Experiment 2

Min temperature 17 ◦C 5 ◦C

Max temperature 31 ◦C 11 ◦C

Temperature at the time of flying 27 ◦C 9 ◦C

Field condition at the time of flying Clear, sunny Foggy with light rain

It was expected that the PX4Flow and the LK would perform worse in cold-soaked
conditions, as learned from our previous study in [27]. Additionally, we also used the same
flight plan at the same experimental site to evaluate LK and I2 A performance in the two
experiments.

7.2.1. Experiment 1: High Thermal Contrast Condition

The first test was conducted at 11am, during a clear and sunny autumn day at the site.
Figure 9 shows some thermal images of the site taken from the SOLO; all the images are in
8 bit and were converted from 14 bits with the same scale as described in Figure 5.
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(a) Captured frame at point (1) (b) Captured frame at point (2)

(c) Captured frame at point (3) (d) Captured frame at point (4)

Figure 9. Processed 8-bit thermal frames of some interesting points in Experiment 1.

7.2.2. Experiment 2: Lower Contrast Condition

The second trial was done in winter at 0900 h at the same location, using the same
flight plan. Figure 10 shows the lack of sunlight and rainy and foggy condition of the site.

Figure 10. Field condition in Experiment 2.

Figure 11 shows captured and processed 8-bit thermal frames at four interesting points
during Experiment 2, at approximately the same location as in Experiment 1. It indicates
that the thermal frames in Experiment 2 contained much less contrast, details and dynamic
ranges compared to Experiment 1.
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(a) Captured frame at point (1) (b) Captured frame at point (2)

(c) Captured frame at point (3) (d) Captured frame at point (4)

Figure 11. Processed 8-bit thermal frames at same locations as in Figure 9, in Experiment 2.

7.3. Signal Analysis

To evaluate the performance of the LK, the I2 A and the PX4Flow sensor, the output
signals of each technique were compared to each other in both X and Y displacements.
Cross-correlation processing was applied to determine how closely the two signals matched
each other. High and positive cross-correlation indicates that the two signals are well
matched.

8. Results

This section shows the optical flow measurements from the two flight tests in both X
and Y axes. We also used our collected data from our previous paper [27].

8.1. Experiment 1

This section shows the resulting signal for our flight test in X and Y displacements for
the I2 A, the LK and from the PX4Flow.

Figure 12 shows the overlaid signals and the cross-correlation value of the LK and the
I2 A. Given the high value of cross-correlation, the I2 A performed as well as the LK during
the test in both the X and Y displacements.

Figure 12. Overlay of the I2 A and the LK signals in Experiment 1. A high positive correlation value
shows a strong relationship between these two signals.
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Figure 13 shows overlaid signals and their cross-correlation values for the PX4Flow and
the I2 A. A high correlation value shows a strong relationship between these two signals.

Figure 13. Overlay of the PX4Flow and the I2 A signals in Experiment 1. A high correlation value
shows a strong relationship between these two signals.

Figure 14 shows overlaid signals and their cross-correlation values for the PX4Flow
and the LK. A high correlation value shows a strong relationship between these two signals.

Figure 14. Overlay of the PX4Flow and the LK signals in Experiment 1. A high correlation value
shows a strong relationship between these two signals.

Figure 15 shows the three signals—the I2 A, the LK and the PX4Flow—over X and Y
displacements.

Figure 15. Overlay of the I2 A, the LK and the PX4Flow signals in Experiment 1.
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8.2. Experiment 2

In Experiment 2, the PX4Flow did not work, while thermal flow with the LK and the
I2 A was functional.

Figure 16 shows thermal flow measurements from the LK and the I2 A. The results
clearly indicate that the I2 A works better than the LK in this trial. While the LK can keep up
with the I2 A at some points during the flight, the I2 A still yields some flow measurements
while the LK yields nothing. At point (1) and (2) in Figure 11, the I2 A and the LK produce
comparable results since the frame contrast is still high. However, while the contrast is low
at point (3) and (4), the LK cannot keep up with the I2 A. Hence, the I2 A has the advantage
in cold-soaked, low-contrast conditions.

Figure 16. I2 A and the LK signals in cold-soaked conditions, Experiment 2. A weaker correlation
value shows a weaker relationship between signals compared to Experiment 1.

8.3. Aperture Problem

The aperture problem refers to the phenomenon that causes one-dimensional spatial
structures such as a bar, line or edge to be determined ambiguously when viewing from a
small hole, when the motion is not known [35].

Two parts of our dataset at 1400 h from our previous work in [27] were used to test
the performance of the I2 A in a scene when the aperture problem was prominent. We used
sequences of the main road and wheat field with a strong vertical and horizontal line, as
shown in Figure 17.

Figure 17. Thermal images of the main road (left) and the wheat field (right) at 1400 h.

Figure 18 shows a comparison of Y displacement over the main road and the X
displacement over the field of the I2 A and the LK.
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Figure 18. The I2 A and the LK signals in Y and X displacements above the main road (left) and the
wheat field (right). It is clear that the I2 A does not work in these scenarios.

From Figure 18, the I2 A suffers from the aperture problem while the LK does not. This
issue potentially limits the use of the I2 A in some scenarios.

9. Discussion

The greatest weakness of simple optical flow algorithms based on spatio-temporal
gradients is their inability to deal with the aperture problem or to detect information
deficiencies in the image. This problem is entirely based on how they were originally
formulated, and is not particularly fundamental, although it does deviate from the ideal of
massive Single Instruction Multiple Data (SIMD) processing of the entire image in a single
pass. In this sense, the aperture problem seems to be a reasonably manageable problem,
since there is no particular reason that a salience operator could not be run across the entire
image also using SIMD instructions, and then used as a gate to determine which data are
likely to be valid. This is well travelled ground in the literature from decades ago [36,37].

Outdoor environments are difficult to control. However, it seems likely that under
cold-soaked conditions, such as very late at night, where noise is more apparent in thermal
images [27], the I2 A might have some advantages, as shown in Figure 16.

In general, agreement between the I2 A and LK and PX4Flow shows that both the
dense and sparse optical flow techniques can be used reliably with low-resolution thermal
data for airborne applications.

10. Conclusions

The results have shown that the I2 A is capable of computing optical flow reliably
from low-resolution thermal imagery, compared to the LK technique and the PX4Flow.
Additionally, the I2 A performs better than the LK in lower contrast and higher noise during
colder conditions.

The I2 A can take advantage of new-generation compact systems with more powerful
graphics processing units, such as the Nvidia Jetson, that are capable of SIMD processing.
Moreover, the I2 A is robust to noise, while the “aperture problem” is a considerable issue.
Hence, we expect the I2 A to continue to work well compared to the LK during the day and
better during the night due to the characteristics with noise and sensitivity. It is the case,
however, that the LK has a built-in test of the quality of the result, based on the number
of features.

The drone was programmed to fly at constant height and speed in this study; a fixed
“shifting value” worked well in this scenario, but might not work well in situations where
the altitude or velocity changes over time. Therefore, the shifting value should be able to
update itself to respond to the changes in height and velocity of the UAVs.

Further study will focus on variations of these algorithms that are better tuned to the
aerial environment for fixed wing flight and to deal with the aperture problem. Additionally,
further study will also investigate the deep learning approach for thermal flow.
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LWIR Long-Wavelength Infrared
AGC Automatic Gain Control
FFC Flat Field Correction
I2 A Image Interpolation Algorithm
UAV Unmanned Aerial Vehicle
LK Lucas–Kanade Algorithm

References
1. Bos, M.; Fernandes, R.; Williams, S.; Bastos, L. Fast error analysis of continuous GPS observations. J. Geod. 2008, 82, 157–166.

[CrossRef]
2. Nguyen, T.X.B.; Rosser, K.; Chahl, J. A Review of Modern Thermal Imaging Sensor Technology and Applications for Autonomous

Aerial Navigation. J. Imaging 2021, 7, 217. [CrossRef] [PubMed]
3. Brunner, C.; Peynot, T.; Vidal-Calleja, T.; Underwood, J. Selective combination of visual and thermal imaging for resilient

localization in adverse conditions: Day and night, smoke and fire. J. Field Robot. 2013, 30, 641–666. [CrossRef]
4. Papachristos, C.; Mascarich, F.; Alexis, K. Thermal-inertial localization for autonomous navigation of aerial robots through

obscurants. In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15
June 2018; pp. 394–399.

5. Khattak, S.; Papachristos, C.; Alexis, K. Visual-thermal landmarks and inertial fusion for navigation in degraded visual
environments. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–9.

6. Khattak, S.; Papachristos, C.; Alexis, K. Keyframe-based thermal–inertial odometry. J. Field Robot. 2020, 37, 552–579. [CrossRef]
7. Shin, Y.S.; Kim, A. Sparse depth enhanced direct thermal-infrared SLAM beyond the visible spectrum. IEEE Robot. Autom. Lett.

2019, 4, 2918–2925. [CrossRef]
8. Mouats, T.; Aouf, N.; Chermak, L.; Richardson, M.A. Thermal stereo odometry for UAVs. IEEE Sens. J. 2015, 15, 6335–6347.

[CrossRef]
9. Bloesch, M.; Burri, M.; Omari, S.; Hutter, M.; Siegwart, R. Iterated extended Kalman filter based visual-inertial odometry using

direct photometric feedback. Int. J. Robot. Res. 2017, 36, 1053–1072. [CrossRef]
10. Khattak, S.; Papachristos, C.; Alexis, K. Keyframe-based direct thermal—Inertial odometry. In Proceedings of the 2019

International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 3563–3569.
11. Srinivasan, M.V.; Chahl, J.S.; Weber, K.; Venkatesh, S.; Nagle, M.G.; Zhang, S.W. Robot navigation inspired by principles of insect

vision. Robot. Auton. Syst. 1999, 26, 203–216. [CrossRef]
12. Srinivasan, M.V. Honey bees as a model for vision, perception, and cognition. Annu. Rev. Entomol. 2010, 55, 267–284. [CrossRef]

[PubMed]
13. Chahl, J.S.; Srinivasan, M.V.; Zhang, S.W. Landing strategies in honeybees and applications to uninhabited airborne vehicles. Int.

J. Robot. Res. 2004, 23, 101–110. [CrossRef]
14. Srinivasan, M.V.; Zhang, S.W.; Chahl, J.S.; Barth, E.; Venkatesh, S. How honeybees make grazing landings on flat surfaces. Biol.

Cybern. 2000, 83, 171–183. [CrossRef]
15. Horn, B.K.; Schunck, B.G. Determining optical flow. Artif. Intell. 1981, 17, 185–203. [CrossRef]
16. Honegger, D.; Meier, L.; Tanskanen, P.; Pollefeys, M. An open source and open hardware embedded metric optical flow

cmos camera for indoor and outdoor applications. In Proceedings of the 2013 IEEE International Conference on Robotics and
Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 1736–1741.

http://doi.org/10.1007/s00190-007-0165-x
http://dx.doi.org/10.3390/jimaging7100217
http://www.ncbi.nlm.nih.gov/pubmed/34677303
http://dx.doi.org/10.1002/rob.21464
http://dx.doi.org/10.1002/rob.21932
http://dx.doi.org/10.1109/LRA.2019.2923381
http://dx.doi.org/10.1109/JSEN.2015.2456337
http://dx.doi.org/10.1177/0278364917728574
http://dx.doi.org/10.1016/S0921-8890(98)00069-4
http://dx.doi.org/10.1146/annurev.ento.010908.164537
http://www.ncbi.nlm.nih.gov/pubmed/19728835
http://dx.doi.org/10.1177/0278364904041320
http://dx.doi.org/10.1007/s004220000162
http://dx.doi.org/10.1016/0004-3702(81)90024-2


J. Imaging 2022, 8, 116 18 of 18

17. Chao, H.; Gu, Y.; Napolitano, M. A survey of optical flow techniques for robotics navigation applications. J. Intell. Robot. Syst.
2014, 73, 361–372. [CrossRef]

18. Jung, S.; Hwang, S.; Shin, H.; Shim, D.H. Perception, guidance, and navigation for indoor autonomous drone racing using deep
learning. IEEE Robot. Autom. Lett. 2018, 3, 2539–2544. [CrossRef]

19. Miller, A.; Miller, B.; Popov, A.; Stepanyan, K. Optical Flow as a navigation means for UAV. In Proceedings of the 2018 Australian
& New Zealand Control Conference (ANZCC), Melbourne, Australia, 7–8 December 2018; pp. 302–307.

20. Camus, T. Calculating Time-to-Contact Using Real-Time Quantized Optical Flow. Available online: https://www.nist.gov/
publications/calculating-time-contact-using-real-time-quantized-optical-flow (accessed on 12 January 2022).

21. Chahl, J.; Mizutani, A.; Strens, M.; Wehling, M. Autonomous navigation using passive sensors and small computers. In
Proceedings of the Infotech@ Aerospace, Arlington, VA, USA, 26–29 September 2005.

22. Barrows, G.L.; Chahl, J.S.; Srinivasan, M.V. Biomimetic visual sensing and flight control. In Proceedings of the 17th International
Unmanned Air Vehicle Systems Conference, Bristol, UK, 8–10 April 2002; pp. 1–15.

23. Rosser, K.; Chahl, J. Reducing the complexity of visual navigation: Optical track controller for long-range unmanned aerial
vehicles. J. Field Robot. 2019, 36, 1118–1140. [CrossRef]

24. Borges, P.V.K.; Vidas, S. Practical infrared visual odometry. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2205–2213. [CrossRef]
25. Delaune, J.; Hewitt, R.; Lytle, L.; Sorice, C.; Thakker, R.; Matthies, L. Thermal-inertial odometry for autonomous flight throughout

the night. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China,
3–8 November 2019; pp. 1122–1128.

26. Rosser, K.; Nguyen, T.X.B.; Moss, P.; Chahl, J. Low complexity visual UAV track navigation using long-wavelength infrared. J.
Field Robot. 2021, 38, 882–897. [CrossRef]

27. Nguyen, T.X.B.; Rosser, K.; Perera, A.; Moss, P.; Teague, S.; Chahl, J. Characteristics of optical flow from aerial thermal imaging,
“thermal flow”. J. Field Robot. 2022. [CrossRef]

28. Srinivasan, M.V. An image-interpolation technique for the computation of optic flow and egomotion. Biol. Cybern. 1994,
71, 401–415. [CrossRef]

29. Otte, M.; Nagel, H.H. Optical flow estimation: advances and comparisons. In Proceedings of the European Conference on
Computer Vision, Stockholm, Sweden, 2–6 May 1994; Springer: Berlin/Heidelberg, Germany, 1994; pp. 49–60.

30. Chahl, J. Optical flow and motion detection for navigation and control of biological and technological systems. J. Mod. Opt. 2016,
1–18. [CrossRef]

31. Corp, F. FLIR Lepton Engineering Data Sheet; FLIR Corp.: Wilsonville, OR, USA, 2014. Available online: https://www.cornestech.
co.jp/tech/wp-content/uploads/sites/2/2018/06/500-0659-00-09-Lepton-Engineering-Datasheet-Rev201.pdf (accessed on 12
January 2022).

32. Corp, G. Lidar Lite v3 Operation Manual and Technical Specifications; Garmin: Olathe, KS, USA, 2016. Available online: https:
//static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Specifications.pdf (accessed on 12 January
2022).

33. Shi, J. Good features to track. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA,
USA, 21–23 June 1994; pp. 593–600.

34. The Bureau of Meteorology. One Tree Hill Weather. Available online: http://www.bom.gov.au/places/sa/one-tree-hill/
(accessed on 12 January 2022).

35. Binder, M.D.; Hirokawa, N.; Windhorst, U. (Eds.) Aperture Problem. In Encyclopedia of Neuroscience; Binder, M.D.; Hirokawa, N.;
Windhorst, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; p. 159. doi: 10.1007/978-3-540-29678-2_310. [CrossRef]

36. Zeuch, S.; Huber, F.; Freytag, J.C. Adapting tree structures for processing with SIMD instructions. In Proceedings of the 17th
International Conference on Extending Database Technology (EDBT), Athens, Greece, 24–28 March 2014.

37. Plank, J.S.; Greenan, K.M.; Miller, E.L. Screaming fast Galois field arithmetic using intel SIMD instructions. In Proceedings of the
11th Conference on File and Storage Systems (FAST 2013), San Jose, CA, USA, 12–15 February 2013; pp. 299–306.

http://dx.doi.org/10.1007/s10846-013-9923-6
http://dx.doi.org/10.1109/LRA.2018.2808368
https://www.nist.gov/publications/calculating-time-contact-using-real-time-quantized-optical-flow
https://www.nist.gov/publications/calculating-time-contact-using-real-time-quantized-optical-flow
http://dx.doi.org/10.1002/rob.21874
http://dx.doi.org/10.1109/TITS.2016.2515625
http://dx.doi.org/10.1002/rob.22015
http://dx.doi.org/10.1002/rob.22065
http://dx.doi.org/10.1007/BF00198917
http://dx.doi.org/10.1080/09500340.2016.1221153
https://www.cornestech.co.jp/tech/wp-content/uploads/sites/2/2018/06/500-0659-00-09-Lepton-Engineering-Datasheet-Rev201.pdf
https://www.cornestech.co.jp/tech/wp-content/uploads/sites/2/2018/06/500-0659-00-09-Lepton-Engineering-Datasheet-Rev201.pdf
https://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Specifications.pdf
https://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Specifications.pdf
http://www.bom.gov.au/places/sa/one-tree-hill/
http://dx.doi.org/10.1007/978-3-540-29678-2_310

	Introduction
	Related Work
	Contributions
	Optical Flow Computation
	Hardware Implementation
	Thermal Sensor
	Interfacing with the Lepton Sensor
	Onboard Processor
	PixHawk and PX4Flow

	Software Implementation
	Lucas–Kanade Algorithm in OpenCV
	Automatic Gain Control
	Rescaling Technique
	Benefit of 14-Bit Implementation with the I2A


	Assessment Methodology
	Flying Platform
	Field Experiment
	Experiment 1: High Thermal Contrast Condition
	Experiment 2: Lower Contrast Condition

	Signal Analysis

	Results
	Experiment 1
	Experiment 2
	Aperture Problem

	Discussion
	Conclusions
	References

