
Citation: Kornilov, A.; Safonov, I.;

Yakimchuk, I. A Review of Watershed

Implementations for Segmentation of

Volumetric Images. J. Imaging 2022, 8,

127. https://doi.org/10.3390/

jimaging8050127

Academic Editors: Xiaohao Cai, Ping

Zhong and Gaohang Yu

Received: 15 March 2022

Accepted: 24 April 2022

Published: 26 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Review

A Review of Watershed Implementations for Segmentation of
Volumetric Images
Anton Kornilov 1,2 , Ilia Safonov 1,2,* and Ivan Yakimchuk 1

1 Schlumberger Moscow Research, Leningradskoe Highway, 16a, 125171 Moscow, Russia;
akornilov@slb.com (A.K.); iyakimchuk@slb.com (I.Y.)

2 Computer Science and Control Systems Department, National Research Nuclear University MEPhI,
Kashirskoye Highway, 31, 115409 Moscow, Russia

* Correspondence: isafonov@slb.com

Abstract: Watershed is a widely used image segmentation algorithm. Most researchers understand
just an idea of this method: a grayscale image is considered as topographic relief, which is flooded
from initial basins. However, frequently they are not aware of the options of the algorithm and the
peculiarities of its realizations. There are many watershed implementations in software packages
and products. Even if these packages are based on the identical algorithm–watershed, by flooding
their outcomes, processing speed, and consumed memory, vary greatly. In particular, the difference
among various implementations is noticeable for huge volumetric images; for instance, tomographic
3D images, for which low performance and high memory requirements of watershed might be
bottlenecks. In our review, we discuss the peculiarities of algorithms with and without waterline
generation, the impact of connectivity type and relief quantization level on the result, approaches
for parallelization, as well as other method options. We present detailed benchmarking of seven
open-source and three commercial software implementations of marker-controlled watershed for
semantic or instance segmentation. We compare those software packages for one synthetic and
two natural volumetric images. The aim of the review is to provide information and advice for
practitioners to select the appropriate version of watershed for their problem solving. In addition, we
forecast future directions of software development for 3D image segmentation by watershed.

Keywords: segmentation; watershed algorithm; waterline; flooding; Euclidean distance transform;
benchmarking; performance; memory consumption

1. Introduction

Image segmentation by the watershed algorithm, because of its innate ability to
produce closed-regions, has many applications in science, medicine, and industry. Despite
the great advances of deep neural networks (DNN) intended for segmentation, watershed
remains an important technique for solving some specific segmentation problems. One
of the typical uses for watershed is separation of touching or overlapping objects in a
binary image to employ an instance segmentation, when semantic segmentation has been
previously performed by another technique. Currently, DNN and watershed are often used
jointly [1–3].

Many publications mention the use of watershed. We enumerate here only a few of
them to demonstrate the huge variety of practical applications: a pore network extraction
from 3D X-ray computed tomography (CT) images of porous media [4]; a characterization of
ceramic proppant to the crush resistance by comparison of particles from two CT images [5];
a segmentation of melanin granules in the retinal pigment epithelium for images of optical
coherence tomography [6]; karyotyping of chromosome images obtained by means of
an optical microscope [7]; a location of spruces in a young stand with an unmanned
aerial vehicle [8]; and cell segmentation and detection in live-cell fluorescence microscope
imaging [9].

J. Imaging 2022, 8, 127. https://doi.org/10.3390/jimaging8050127 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging8050127
https://doi.org/10.3390/jimaging8050127
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-3651-0809
https://orcid.org/0000-0002-8270-943X
https://orcid.org/0000-0003-2494-0542
https://doi.org/10.3390/jimaging8050127
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging8050127?type=check_update&version=2

J. Imaging 2022, 8, 127 2 of 27

Typically, training courses and guides on computer vision or image processing only
explain the general concept of a watershed. The name refers metaphorically to a geo-
graphical watershed, which separates adjacent drainage basins. A 2D image or some of
its derivatives are treated as topographic relief (landscape). In classical watershed, local
minima in the relief are initial basins. In a marker-controlled method, the markers are
initial basins. Starting from the minimum of lowest height, the water gradually fills up all
catchment basins. Image elements where water from different basins meets are called by
watershed lines (WL) or dams. The process ends when the water reaches the maximum
peak of the relief, and as a result, every catchment basin (i.e., segment) gets covered by WL.
There is another explanation. Image elements at which a drop of water falls to the given
local minimum form a catchment basin. Image elements at which a drop of water can fall
to different basins form ridges or WL. Even if the watershed description was completed
via a set theory of mathematical morphology (for example, see the well-known book by
Gonzalez and Woods [10]), it does not reflect the peculiarities of the algorithms and their
implementations in software.

Figure 1 illustrates the simplest explanation of the watershed idea for an one-dimensional
signal. Pixels of relief are in a gray. Initial markers are designated by the crosses in red,
blue, and green. Filling starts from the initial markers, and as result, three segments (in red,
blue, and green, respectively) are formed. Watershed lines (in black) are placed between
the segments.

Figure 1. Illustration of marker-controlled watershed for one-dimensional signal.

There are many scientific studies that apply ready-to-use implementations of water-
shed from existing open-source or commercial software. For instance, the papers [11,12]
mention the watershed algorithm from the Insight Segmentation and Registration Toolkit
(ITK) library for brain extraction from magnetic resonance images and analysis of glass
foams using X-ray micro-CT (µCT); the papers [13,14] refer to the algorithm from the Maho-
tas library for a deep structured learning method for neuron segmentation from 3D electron
microscopy and tracking of surface-labeled cells in time-lapse image sets of living tissues;
the papers [15,16] mention the algorithm from the Scikit-image (Skimage) library for pore
network extraction from micro-CT data; the publication [17] describes segmentation of
blood cells by MATLAB®. Meanwhile, [18] refers to watershed segmentation of micro-CT
images of rock samples by Avizo®. Frequently, researchers use functions from software
without a deep understanding of the algorithms’ details and limitations. Sometimes, they
have no information about alternative solutions. This can lead to investigations with
disappointing results.

J. Imaging 2022, 8, 127 3 of 27

In 2018 we published a benchmarking study of marker-based watershed implementa-
tions in open-source software libraries called from the Python programming language [19].
Recently, we received much positive feedback and many requests for an update of this
evaluation. Our previous review was mainly focused on processing of 2D images, we only
briefly handled a single 3D synthetic sample. In this paper, we consider processing of
volumetric images by means of marker-based watershed implementations in open-source
and commercial software without any restriction on programming language. A description
of the watershed algorithm options is extended in comparison with our previous review. In
addition, the paper contains a performance comparison of 3D Euclidean distance transform
(EDT) implementations in the software under investigation, because EDT and watershed
are often applied one-by-one in a processing pipeline.

Our current review pursues three main goals: to reveal in a simple manner the peculiar-
ities and options of watershed algorithms; to compare various software implementations
of watershed for image segmentation; and to forecast future directions of software de-
velopment for 3D image segmentation by watershed. We hope our paper will be useful
for practitioners who use watershed in scientific or industrial applications as well as for
corresponding software developers to improve their products.

This paper is organized as follows: Section 2 discusses watershed algorithms and
factors that affect the results as well as the resources required; Section 3 describes seven
open-source libraries and three commercial products included in benchmarking. Section 4
demonstrates, on a simple 2D example, the differences in outcomes of several implementa-
tions and presents the measured execution time and amount of consumed memory during
processing of one synthetic and two natural volumetric images. Section 5 contains the
discussion about the current state of affairs and future advances in image segmentation via
watershed.

2. Description of Watershed Algorithms Applied in Software

Because the considered algorithms are intended for processing both 2D and 3D im-
ages (strictly speaking, n-dimensional images can be processed), we use the term “image
element” together with the terms pixel and voxel. Beucher and Lantuéjoul [20] introduced
watershed for segmentation of grayscale images, although the watershed transformation
as an operation of mathematical morphology was described a few years earlier [21,22]. To
solve the oversegmentation problem caused by a huge number of initial basins started from
each local minima of an image marker-controlled (or seeded) watershed was proposed [23].
Vincent and Soille [24] generalized watershed for an n-dimensional image and depicted an
algorithm based on an immersion process analogy, in which the flooding of relief by water
is simulated using a queue (first-in-first-out (FIFO) data structure) of image elements.

Beucher and Meyer [25] developed effective algorithms, in which a flooding process is
simulated by using a priority queue [26], where a priority is a value of a relief element, and
a lower value corresponds to a higher priority. An illustrative example of a pseudocode
describing steps of marker-controlled watershed by Beucher and Meyer is reported in
Algorithm 1. Here, we explain the variables and steps of this algorithm:

BM1 Image (relief) elements (i, ri) ∈ R corresponding to markers (labels) (i, mi) ∈ M that
have at least one unmarked neighbor (j, mj) ∈ ND(i, mi) (i.e., marker of background
bg) are added to the priority queue PQ; see lines 4–9 in Algorithm 1.

BM2 Element with the highest priority is extracted from the queue; if the priority queue
is empty, then the algorithm terminates; see lines 10–11.

BM3 Marker of the extracted element propagates on its unmarked neighbors; see
lines 12–13.

BM4 The neighbors marked in the previous step are inserted into the priority queue with
the same priority or lower than the extracted element (if neighbor has higher relief
value); then, go to step BM2; see line 14.

J. Imaging 2022, 8, 127 4 of 27

Algorithm 1 The marker-controlled watershed by Beucher and Meyer [25].

Require: |R| = |M|
1: function WATERSHED(R, M) . a relief and a markers as parameters
2: PQ← ∅ . the priority queue
3: bg← 0 . value of background
4: for (i, ri) ∈ R ∧ (i, mi) ∈ M ∧mi 6= bg do
5: for (j, mj) ∈ ND(i, mi) ∧mj = bg do . iterate over neighbors of element (i, mi)
6: push(ri, i, PQ) . push i into PQ with priority level ri
7: break
8: end for
9: end for

10: while |PQ| 6= 0 do
11: i← pop(PQ) . pop an element coordinate from the priority queue
12: for (j, mj) ∈ ND(i, mi) ∧mj = bg do
13: M← (M \ (j, mj)) ∪ (j, mi) . mark an element
14: push(max(ri, rj), j, PQ)
15: end for
16: end while
17: return M
18: end function

One can see that the algorithm by Beucher and Meyer does not form WL. Frequently,
watershed lines are valuable segmentation outputs. Meyer [27] described the algorithm
with WL construction. Pseudocode of this method is presented in Algorithm 2. Appendix A
contains source codes of Algorithms 1 and 2 for processing 3D images with 26-connectivity
in the Python programming language.

Algorithm 2 The marker-controlled watershed with WL construction by Meyer [27].

Require: |R| = |M|
1: function WATERSHEDWL(R, M)
2: PQ← ∅
3: bg← 0
4: wl ← max({mi|(i, mi) ∈ M}) + 1 . value of WL marker
5: V ← {i|(i, mi) ∈ M ∧mi 6= bg} . visited elements
6: for (i, ri) ∈ R ∧ (i, mi) ∈ M ∧mi 6= bg do
7: for (j, mj) ∈ ND(i, mi) ∧mj = bg ∧ j /∈ V do
8: push(rj, j, PQ)
9: V ← j ∪V . flag element as visited

10: end for
11: end for
12: while |PQ| 6= 0 do
13: i← pop(PQ)
14: Nms← {mj|mj ∈ ND(i, mi) ∧mj /∈ {bg, wl}} . neighbors markers of (i, mi)
15: if |Nms| = 1 then
16: M← (M \ (i, mi)) ∪ {(i, mj)|mj ∈ Nms}
17: for j ∈ {k|(k, mk) ∈ ND(i, mi) ∧ k /∈ V} do
18: push(max(ri, rj), j, PQ)
19: V ← j ∪V
20: end for
21: else
22: M← (M \ (i, mi)) ∪ (i, wl) . label element as WL
23: end if
24: end while
25: return M
26: end function

J. Imaging 2022, 8, 127 5 of 27

The variables and steps of the algorithm by Meyer are the following:

M1 Image elements corresponding to markers are flagged as visited i ∈ V; see line 5 in
Algorithm 2.

M2 Image elements having marked neighbors are added to the priority queue and
flagged as visited; see lines 6–11.

M3 The element with the highest priority is extracted from the queue; if the priority
queue is empty, then the algorithm terminates; see lines 12–13.

M4 If all marked neighbors Nms of the extracted element have the same marker, then
the image element is labeled by that marker; if marked neighbors of the extracted
element have different markers, then the elements are flagged as WL-belonged with
marker wl; see lines 14–23.

M5 Nonflagged as visited neighbors of the extracted element are added to a priority
queue (with same or lower priority) and flagged as visited if the extracted element is
not WL-belonged; then, go to step M3; see lines 17–20.

Let us consider how to operate the abovedescribed marked-controlled algorithms with
WL [27] and without WL [25] construction. Figure 2a shows a binary image containing
two overlapping discs. We generated this image by a simple code in Python. Then, we
create a relief by subtracting a constant from a rectangular area in the center part of the
inverted EDT result for image containing two overlapping disks (see Figure 2b). The image
containing initial markers (red and blue) is generated by placing the red and blue squares in
the centers of the discs (Figure 2c); correspondingly, the markers are located in local minima
of the relief. Segmentation results obtained by algorithms with (Figure 2e) and without WL
(Figure 2d) construction are different. This example refutes the common misconception
that differences in outcomes of watershed with and without WL result only from image
elements of WL. The example clearly shows that segmentation results can vary.

Over the 30-year history of the watershed, many algorithms have been developed:
by topographic distance [28], via image foresting transform [29,30], rain falling [31,32],
toboggan-based [33], via minimum spanning forest [34,35], hierarchical watersheds [36],
etc. Surveys [37–39] compare various approaches for a watershed calculation. However,
despite the enormous efforts to formulate the various mathematical concepts of watershed,
only flooding-based algorithms are implemented in well-known software libraries [19].

(a) (b) (c) (d) (e)

Figure 2. (a) Two overlapping binary discs; (b) relief; (c) initial markers; (d) segmentation result
without watershed lines (WL) construction; (e) segmentation result with WL construction.

Although all flooding-based implementations have estimation of computational com-
plexity as O(N), where N is the number of image elements, its processing speed strongly
depends on the used data structures, applied programming language, software optimiza-
tions, asymptotic constant, and other parameters [40]. Hendriks [41] performed research
on various priority queues in terms of performance and demonstrated the importance of
selecting the appropriate priority queue realization. For digital elevation models (DEM)

J. Imaging 2022, 8, 127 6 of 27

used in geographic information systems (GIS), Barnes et al. [42] showed how the choice of
different queues affects a performance of flooding-based watershed algorithms.

3. Implementations under Analysis

To select items for our analysis, we looked for the open-source and proprietary soft-
ware that are used in practice for watershed segmentation of 3D images. For this search,
we used Google® and GitHub® search engines, but also an IEEE Xplore database and the
Google Scholar engine for papers that describe the practically used libraries for watershed
segmentation, as well as the implementations of their algorithms. Table 1 contains informa-
tion about the version of software used in our benchmarking, the license, the programming
language applied in development of corresponding software, and the name of the function
under analysis. Functions for marker-controlled watershed were selected except MATLAB®

and Octave that have only the conventional watershed, which starts flooding from local
minima. For a fair comparison of MATLAB® and Octave, we used relief images with the
same locations of local minima as markers for other marker-controlled implementations.

We deal with the watershed segmentation implemented in the following seven open-
source software libraries: Insight Segmentation and Registration Toolkit (ITK) (https:
//itk.org/ (accessed on 14 March 2022)) [43,44], Mahotas (https://github.com/luispedro/
mahotas (accessed on 14 March 2022)) [45], Mathematical Morphology Image Library
(Mamba) (http://mamba-image.org/ (accessed on 14 March 2022)) [46], Scikit-image
(Skimage) (https://scikit-image.org/ (accessed on 14 March 2022)) [47], Simple Morpholog-
ical Image Library (SMIL) (https://github.com/MinesParis-MorphoMath/smil (accessed
on 14 March 2022)) [48], Octave (https://www.gnu.org/software/octave/ (accessed on
14 March 2022)) [49], and plug-in MorphoLibJ (https://imagej.net/plugins/morpholibj
(accessed on 14 March 2022)) [50] for ImageJ [51] (below we refer to this realization as
ImageJ). We also analyzed watershed implementations in three commercial products: a
powerful set of tools for scientific and engineering calculations MATLAB® by MathWorks
(https://www.mathworks.com (accessed on 14 March 2022)), software for CT and Mi-
croscopy image data visualization and analysis Avizo® by ThermoFisher Scientific (https:
//www.thermofisher.com (accessed on 14 March 2022)), and optimized software library
for 2D and 3D image processing IPSDK by Reactiv’IP SAS (https://www.reactivip.com
(accessed on 14 March 2022)). Indeed, there may be additional proprietary software for
watershed segmentation applications, but we selected these three products. We are confi-
dent that a skilled researcher can conduct performance testing of other implementations
for their purposes using our methodology.

Table 1. Watershed implementations under the review.

Software Version Language Object/Function License

Avizo 3D 2021.1 C++ Marker-Based Watershed commercial

ImageJ ImageJ 2.1.0/1.53c;
MorphoLibJ 1.4.3.1 Java legacy:inra.ijpb.plugins.

MarkercontrolledWatershed3DPlugin

ImageJ BSD-2;
MorphoLibJ

LGPL-3.0
IPSDK 3.0.1.0 C++ seededWatershed3dImg commercial

ITK 5.2.0 C++ MorphologicalWatershedFromMarkersImageFilter Apache 2.0
Mahotas 1.4.11 C++ cwatershed MIT
Mamba 2.0.2 C basinSegment, watershedSegment MIT

MATLAB 9.10.0 (R2021a) C/C++ watershed commercial
Octave 6.3.0; Package 2.12.0 C/C++ watershed GPL

Scikit-image 0.18.0 Cython segmentation.watershed BSD-3
SMIL 0.11 C++ basins, watershed BSD-style

Table 2 contains the following features of watershed implementations for volumetric
image processing: available data types for relief image, connectivity, whether there are

https://itk.org/
https://itk.org/
https://github.com/luispedro/mahotas
https://github.com/luispedro/mahotas
http://mamba-image.org/
https://scikit-image.org/
https://github.com/MinesParis-MorphoMath/smil
https://www.gnu.org/software/octave/
https://imagej.net/plugins/morpholibj
https://www.mathworks.com
https://www.thermofisher.com
https://www.thermofisher.com
https://www.reactivip.com

J. Imaging 2022, 8, 127 7 of 27

versions of the algorithm with and without WL construction, whether a mask can be used
inside an algorithm, or whether or not there is a parallel code.

The quantization level of a relief image can affect the segmentation results. Figure 3
demonstrates two outcomes of segmentation by the Beucher and Meyer algorithm [25] for
relief depicted in Figure 2b that was calculated as float32 and int16 data accordingly. Of
course, a difference in this example is not big. However, it is worth noting that storing
elements of a relief as floating-point or long integer enable us to obtain more accurate
results, but it leads to greater memory consumption.

Scikit-image can handle arbitrary floating point and integer NumPy array as an input
relief, but internally the array is cast to double the floating point type before watershed.
Because we handle ITK via Python, we indicate in the table input the data types available
from Python. ITK library in C++ has a wider possibility in sense data types. SMIL
contains source code for creating images with float and double float types. However, at the
moment, when compiling these types, compilation errors occur. The implementation of the
watershed algorithm itself is not intended to process these types, since the priority queue
size is calculated from the range of possible values for the image data type. For floating
point numbers, this range is not fixed.

(a) (b)

Figure 3. Segmentation outcome for relief from Figure 2b: (a) float32 data, (b) int16 data.

Table 2. Features of the considered implementations of watershed for 3D images.

Software Relief Data Type Connectivity Without WL With WL Masked Parallel

Avizo 3D int(8, 16, 32), uint(8, 16, 32), float(32, 64) no info - + + +
ImageJ float32, uint(8, 16) 6, 26 + + + -
IPSDK int(8, 16, 32), uint(8, 16, 32) 26 - + - +

ITK float(32, 64), int16, uint(8, 16) 6, 26 + + - -
Mahotas float(32, 64), int(8, 16, 32), uint(8, 16, 32) custom + + - -
Mamba uint(1, 8, 32) 26 + + - -

MATLAB float(32, 64), int(8, 16, 32, 64), uint(8, 16, 32, 64) custom - + - -
Octave float(32, 64), int(8, 16, 32, 64), uint(8, 16, 32, 64) custom - + - -

Scikit-image float64 custom + + + -
SMIL int(8, 16, 32), uint(8, 16, 32, 64) custom + + - -

+ means the feature is supported; - means the feature is not supported.

IPSDK, Mamba, and probably Avizo® (although we do not have exact information)
enable us to use 26-connectivity only. ImageJ and ITK are able to apply 6- or 26-connectivity.
For others, an arbitrary connectivity can be set by a 3 × 3 × 3 matrix. Surely, the use of
custom connectivity is exotic, but perhaps it can be valuable in some applications. Figure 4

J. Imaging 2022, 8, 127 8 of 27

illustrates the segmentation result for relief from Figure 2b and markers from Figure 2c for

a vertical structural element

0 1 0
0 1 0
0 1 0

.

Figure 4. Result of watershed segmentation for relief from Figure 2b and markers from Figure 2c
with 2-connectivity defined by vertical structural element.

All analyzed software except Mahotas have an algorithm with WL construction.
Mahotas has a modification of the Mayers’s algorithm without WL, and it can return WL
in a separate array, but produced watershed lines are frequently improper. Avizo, IPSDK,
MATLAB, and Octave have no implementation of watershed without WL, other software
have such a feature. We viewed codes of all open-source software under consideration and
noticed that watershed implementations are based on algorithm by Beucher and Meyer
(without WL) [25] and Meyers’s method [27] (with WL) or one from their modifications
enumerated in [42].

The use of a masked watershed can be valuable for many tasks. In addition, a
calculation of watershed inside masked elements only allows us to reduce processing
time. Images in Figure 5 serve to illustrate masked watershed operation. Figure 5a shows a
binary image containing two overlapping discs and squares. The image was generated by
code in Python. Then, we create a relief by subtracting a constant from a rectangular area
inside the discs of the inverted EDT result for image from Figure 5a. Figure 5b shows the
relief. The markers image is generated by placing red and blue squares in the centers of the
discs (see Figure 5c). Figure 5d demonstrates the outcome of segmentation by watershed
without WL construction for relief from Figure 5b. The mask in Figure 5e is a binary image
containing only two overlapping disks from Figure 5a. Figure 5f demonstrates the outcome
of the masked watershed without WL. These two segmentation results are different. We
emphasize that in the general case, using a mask in a watershed algorithm is not equivalent
to applying a mask to a watershed outcome or an input relief. Only Avizo, ImageJ, and
Scikit-image have implementation of a masked watershed.

A concurrent execution is able to speed up watershed significantly. Unfortunately,
only commercial software Avizo and IPSDK have parallel implementations of watershed.
Moreover, both Avizo and IPSDK have two versions of watershed: repeatable and fast (or
optimized speed). An outcome of the repeatable version is the same as by the consecutive
watershed. Each execution of the fast parallel version provides a slightly different result. We
assume that fast versions sacrifice strict synchronization between threads during priority
queue processing to achieve a high processing speed.

J. Imaging 2022, 8, 127 9 of 27

(a) (b) (c)

(d) (e) (f)

Figure 5. (a) Two overlapping discs and a square; (b) a relief based on modified result of Euclidean
distance transform of image from (a); (c) initial markers; (d) result of the watershed without mask
considering; (e) mask; (f) result of the watershed operated only inside given mask.

4. Results
4.1. Measurement Procedure

We estimated the execution time and memory consumption of the various watershed
implementations on a workstation with 2 CPUs Intel® Xeon E5-2630 v3 (32 logical cores) @
2.4 GHz and 128 Gb of RAM. We used 64-bit Microsoft® Windows® 10 Enterprise operating
system (OS). When using other hardware and OS, the result may be different, but the ratio
of the results in most cases should be preserved.

Corresponding watershed functions from IPSDK, ITK, Mahotas, Mamba, scikit-image,
and SMIL are called via Python 3.8.8. Mamba and SMIL libraries were compiled by
Microsoft® Visual C++ 14.16 compiler. We applied the function perf_counter from the time
module for processing time estimation. For the estimation of peak memory usage, we used
the Python memory-profiler module (https://pypi.org/project/memory-profiler (accessed
on 14 March 2022)).

For time measurements of watershed in other software under consideration, we
employ: tic and toc functions for MATLAB and Octave; Python time module in Avizo®.
ImageJ plug-in reports the processing time itself. For estimation of peak memory con-
sumption in MATLAB®, Octave, and ImageJ, we used the Process Explorer software tool
(https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer (accessed
on 14 March 2022)). We did not measure memory consumption for Avizo®.

Processing time measurements were carried out several times and averaged:

T =
1
K

K−1

∑
i=0

(T1i − T0i), (1)

where K is the number of measurements, K = 10; T1i is the time after calling the watershed
function; T0i is the time before calling the watershed.

https://pypi.org/project/memory-profiler
https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

J. Imaging 2022, 8, 127 10 of 27

A similar formula for estimation of memory consumption was used. Source codes of
our benchmarking can be found at https://github.com/ant-Korn/Comparing_watersheds
(accessed on 14 March 2022). For processing 3D images, only 26-connectivity was consid-
ered. We used a relief image as uint16 data for all software except Mamba and Scikit-image,
where uint32 and float64 are used correspondingly.

4.2. Implementations with and without WL Construction

In this subsection, we demonstrate examples of marker-controlled watershed by those
software that have the option to create results with and without WL. Figures 6–9 contain
segmentation outcomes for image and markers from Figure 2b,c processed by ITK, Mahotas,
Mamba, SMIL, Scikit-image, and ImageJ for different types of connectivity. The aims are to
once again demonstrate the differences for algorithms with and without WL construction
as well as investigate peculiarities of various software implementations of watershed.

Figures 6 and 7 visualize the results of segmentation via watershed without WL for 8-
and 4-connectivity, respectively. Mamba supports 8-connectivity only. Certainly, the results
of algorithms for 4- and 8-connectivity differ. In our opinion, outcomes of watershed with
8-connectivity look more reasonable for that relief rather than 4-connectivity, except for
ImageJ, which produces an incorrect result for 8-connectivity.

(a) (b) (c)

(d) (e) (f)

Figure 6. Results of segmentation via watershed without WL (8-connectivity): (a) ImageJ; (b) ITK;
(c) Mahotas; (d) Mamba; (e) Scikit-image; (f) SMIL.

https://github.com/ant-Korn/Comparing_watersheds

J. Imaging 2022, 8, 127 11 of 27

(a) (b) (c)

(d) (e)

Figure 7. Results of segmentation via watershed without WL (4-connectivity): (a) ImageJ; (b) ITK;
(c) Mahotas; (d) Scikit-image; (e) SMIL.

Figures 8 and 9 visualize the results of segmentation via watershed with WL construc-
tion for 8- and 4-connectivity, respectively. Mahotas produces results that differ from others;
moreover, an outcome for 4-connectivity is improper. It is worth noting that the result of
the algorithm with WL construction and 4-connectivity looks very similar to the outcome
of the algorithm without WL construction and 8-connectivity.

In addition to illustrations, it is preferable to characterize a difference between various
implementation by quantitative measures. Segmentation quality metrics can serve for the
purpose. An accuracy for the results computed only for pixels inside the binary mask from
Figure 5a is calculated by the following statement:

Accuracy(Ŷ, Y, M) =
1

∑N−1
i=0

mi 6=0
mi

N−1

∑
i=0

mi 6=0

1(ŷi = yi), (2)

where N is the number of image pixels; mi ∈ M are the pixels of binary mask; ŷi ∈ Ŷ are
pixels of an image, for which we evaluate the quality of segmentation; yi ∈ Y are pixels of
a ground truth image; 1(x) is the indicator function [52].

J. Imaging 2022, 8, 127 12 of 27

(a) (b) (c)

(d) (e) (f)

Figure 8. Results of segmentation via watershed with WL (8-connectivity): (a) ImageJ; (b) ITK;
(c) Mahotas; (d) Mamba; (e) Scikit-image; (f) SMIL.

(a) (b) (c)

(d) (e)

Figure 9. Results of segmentation via watershed with WL (4-connectivity): (a) ImageJ; (b) ITK;
(c) Mahotas; (d) Scikit-image; (e) SMIL.

J. Imaging 2022, 8, 127 13 of 27

Naturally, we have no ground truth image in our benchmarking. However, segmen-
tation outcomes by any implementation can be considered as ground truth to compare
different realization with each other. As the ground truth images we define outcomes of
SMIL. Table 3 contains accuracy for the segmentation results shown in Figures 6–9.

Table 3. Segmentation accuracy for various watershed implementations in comparison with SMIL.

Features Accuracy
ImageJ ITK Mahotas Mamba Scikit-Image

Without WL, 8-connectivity 0.91 1 1 1 1
Without WL, 4-connectivity 1 1 1 - 1

With WL, 8-connectivity 1 1 0.98 1 1
With WL, 4-connectivity 1 1 0.96 - 1

- means that Mamba does not support 4-connectivity.

4.3. Processing Time and Consumed Memory vs. 3D Image Size

To estimate processing time and memory consumed depending on image size, we
developed a procedure for generation of a 3D synthetic binary image containing eight un-
touching balls. Surely, a simpler connected component labeling algorithm could be used for
segmentation of such an image, but it is applicable for benchmarking of various watershed
implementations as well. We placed eight initial unique markers in the centers of balls.
Figure 10 demonstrates a volumetric image containing balls and instances segmentation
result via a marker-controlled watershed.

Because the algorithm with and without WL construction differ, we measured the
processing time and memory consumption separately for both types of watershed. For
software products having two versions for the concurrent execution: repeatable and fast,
we handled them with both versions.

(a) (b)

Figure 10. (a) 3D image containing balls. (b) Segmentation result.

Figures 11 and 12 show logarithmic scale plots of processing time vs. image size for
watershed implementations with and without WL, respectively. Indeed, a computational
complexity for all implementations is O(N), but processing speed depend on implementa-
tion peculiarities significantly. The difference between the fastest and slowest realizations
of watershed can be some orders of magnitude. Surprisingly, ImageJ and Scikit-image
have the slowest watershed realizations, although these open-source packages are the most
popular. Expectedly, fast parallel implementations in Avizo and IPSDK demonstrate the
highest processing speed. Their parallel versions providing repeatable output perform

J. Imaging 2022, 8, 127 14 of 27

better than any other solutions that use consecutive processing. Mamba and SMIL have a
shorter processing time in comparison with other open-source software. For software that
has the option to do watershed with or without WL, processing with the construction of
WL requires more time than without it.

643 1513 2143 2533

Image size, voxels (logarithmic scale)

10 1

100

101

102

Pr
oc

es
sin

g
tim

e,
 s

(lo
ga

rit
hm

ic
sc

al
e)

Balls (with WL)
Scikit-image
Mahotas
SMIL
Mamba
ITK
IPSDK fast

IPSDK repeatable
Matlab
Octave
ImageJ
Avizo fast
Avizo repeatable

Figure 11. Processing time for watershed with WL depending on 3D image size.

643 1513 2143 2533

Image size, voxels (logarithmic scale)

10 1

100

101

Pr
oc

es
sin

g
tim

e,
 s

(lo
ga

rit
hm

ic
sc

al
e)

Balls (without WL)
Scikit-image
Mahotas
SMIL

Mamba
ITK
ImageJ

Figure 12. Processing time for watershed without WL depending on 3D image size.

A high memory requirement can be a bottleneck to use watershed for processing of
huge volumetric images. A good example of such 3D images is provided by X-ray micro-CT
of sizes 1024 × 1024 × 1000, 2048 × 2048 × 1000, and 4000 × 4000 × 2000, which are used
for the analysis of mineral particles [5,53,54]. To the best of our knowledge, there is no
theoretical estimation of required memory for watershed algorithms in the literature. We
are trying to do an estimation. Watershed algorithms take arrays of relief, markers and,
optionally, a mask as input parameters, allocate space for priority queue, and create an
array with segmentation result. Thus, theoretically, memory consumption grows linearly
with the number of image elements. However, in practice, it strongly depends on data
types of the arrays and queue. Additional overhead caused by the programming language
takes place as well.

Figures 13 and 14, which show logarithmic scale plots of peak memory consumption vs.
image size for watershed implementations with and without WL, support our theoretical

J. Imaging 2022, 8, 127 15 of 27

assumptions. Similar to processing time, the difference in peak memory usage between
the best and the worst realizations of watershed can be some orders of magnitude. ImageJ
and Scikit-image consume the largest volume of memory. Proprietary IPSDK, as well
as open-source SMIL and ITK require the smallest memory size. For software that has
the option to conduct watershed with or without WL, peak memory consumption can be
approximately the same (for example, SMIL and Mamba), or allocated memory volume for
the version with the construction of WL is notably bigger (for example, Scikit-image).

643 1513 2143 2533

Image size, voxels

100

101

102

103

Pe
ak

 m
em

or
y

siz
e,

 M
b

(lo
ga

rit
hm

ic
sc

al
e)

Balls (with WL)

Scikit-image
Mahotas
SMIL
Mamba
ITK

IPSDK fast
IPSDK repeatable
Matlab
Octave
ImageJ

Figure 13. Peak memory consumption for watershed with WL depending on 3D image size.

643 1513 2143 2533

Image size, voxels

101

102

103

Pe
ak

 m
em

or
y

siz
e,

 M
b

(lo
ga

rit
hm

ic
sc

al
e)

Balls (without WL)

Scikit-image
Mahotas
SMIL

Mamba
ITK
ImageJ

Figure 14. Peak memory consumption for watershed without WL depending on 3D image size.

4.4. Semantic Segmentation of FIB-SEM Image

In this subsection, we consider a real-world problem, namely semantic segmentation
of a volumetric image obtained by focused ion beam scanning electron microscope (FIB-
SEM). The aim of segmentation is to generate a digital twin of the rock sample for further
mathematical simulations used in digital rock physics [55]. In the segmentation procedure,
a voxel is classified as relating to solid or pore. One of the main specific features of FIB-SEM
images of porous media is referred to as the pore-back or shine- through effect. Because
pores are transparent, their back side is visible in the current slice whereas, in fact, it actually
lies in the next slices [56].

J. Imaging 2022, 8, 127 16 of 27

Figure 15 shows a 2D slice of a 3D FIB-SEM image of a sample of carbonate rock. The
stack of slices was acquired by FEI Helios NanoLab 660 DualBeam™ system. The 3D image
composed from these slices has a size of 1394 × 841 × 929 voxels; i.e., the number of image
elements is about 109.

Figure 15. A slice of an FIB-SEM image of a sample of carbonate rock.

Because pore-back effect segmentation of FIB-SEM images is a challenging problem,
several approaches based on marker-controlled watershed were proposed to solve it [57,58].
These approaches include those where relief is a combination of the pre-processed FIB-SEM
image and the results of its morphological processing, and markers of pores and solid are
the result of thresholding of various filter outputs. In considering cases, all voxels of images
should be classified; accordingly, a mask application to limit the number of processed
voxels is unusable. Voxels of the initial markers can occupy a significant part of an image;
the typical percentage of initially marked voxels is from 30 to 50%.

Table 4 contains the processing time and peak memory size of various watershed
implementations for the segmentation of an FIB-SEM image. Supposedly, a construction of
WL is unnecessary for the given problem. Nevertheless, we evaluate consumed resources
for both algorithms with and without WL construction. For proprietary software having
two versions for parallel execution, repeatable and fast, we handle both of them. Regarding
MATLAB and Octave, which have no function for the marker-controlled watershed, in
contrast to other tasks considered in the previous and next subsections, we were unable to
obtain a proper outcome, so their outcomes in Table 4 can be considered rough estimates
only.

Parallel realizations in commercial Avizo and IPSDK provide the fastest processing
speed, which is about 0.5 min. From open-source software libraries, Mamba has the
highest result, at about 3 min. SMIL and ITK process a given FIB-SEM image in about
10 min. Watershed execution time of an Scikit-image with WL construction is absolutely
unacceptable. The version of the Scikit-image without WL construction works in about
40 min, but its watershed with WL operates 6.5 times longer. In general, the difference
between the worst processing time (4.5 h) and the best time (0.5 min), is colossal depending
on the used software implementation.

J. Imaging 2022, 8, 127 17 of 27

Table 4. Processing time and peak memory consumption of various watershed implementations for
segmentation of an FIB-SEM image.

WL Software Time, s Peak Memory Usage, Gb

+ Avizo 3D (fast) 20.0 —
+ Avizo 3D (repeatable) 46.0 —
- ImageJ 2258.5 20.54
+ ImageJ 2304.7 21.33
+ IPSDK (fast) 31.9 3.35
+ IPSDK (repeatable) 109.7 3.35
- ITK 603.0 14.46
+ ITK 714.1 10.69
- Mahotas 1512.1 57.34
+ Mahotas 1621.3 57.34
- Mamba 165.7 12.18
+ Mamba 238.3 12.29
+ MATLAB 1104.7 21.40
+ Octave 848.3 34.83
- Scikit-image 2491.2 58.32
+ Scikit-image 16,113.1 92.94
- SMIL 598.6 21.79
+ SMIL 696.5 21.76

+ means version with WL construction; - means version without WL construction; — means that peak memory
usage was not estimated for Avizo 3D.

The differences in peak memory usage between various watershed realizations is also
considerable. IPSDK is the most memory efficient, using slightly more than 3 bytes per
image element. We assume it uses uint16 for relief and uint8 for both initial and final
markers. Other software libraries are more memory-wasteful. Mamba and ITK require
10 to 14 times more memory than the voxels number in an image. Peak memory size of
Scikit-image and Mahotas is about 60 times more than the number of image elements. For
example, to segment an image having only 10003 voxels, it would require a workstation
with at least 64 Gb memory.

The fast versions of both parallel implementations operate several times faster in
comparison with the repeatable ones. However, at first glance, it seems careless to use
implementations that produce irreproducible results. At least, it is important to find
the answers to the following questions: Is it suitable to use a realization that provides
unrepeatable outcomes? Where is the place for voxels that alter for different program
launches? How do those random changes affect the segmentation result? Figure 16
illustrates the results of segmentation using IPSDK and Avizo for fragments of a slice from
Figure 15: voxels of a solid in red tones, voxels of pore space in blue, difference between
repeatable and fast versions in green. Segmentation was conducted by the watershed-
based method described in [58]. One can see, the altered image elements are near the
border between classes. For both software, the percentage of changed voxels was about 1%.
Changed voxels were distributed among the pores and solids approximately equally, i.e.,
the total amounts of voxels of both classes remained almost the same, but segmentation
quality metrics such as accuracy and intersection-over-union (IoU) can vary several percent
between results of fast version runs. Therefore, each researcher should decide depending
on the application area, whether it is acceptable to obtain slightly irreproducible results by
increasing the processing speed or not. For segmentation of a given FIB-SEM image, we
prefer to apply the fast version of watershed due to the effect of changed voxels near the
border being between classes, which is less than the uncertainty in the locations of such a
border.

J. Imaging 2022, 8, 127 18 of 27

(a) (b) (c)

Figure 16. (a) Fragment of a slice from Figure 15; results of segmentation via (b) IPSDK and (c) Avizo:
solid in red, pore space in blue, difference between repeatable and fast versions in green.

4.5. Instance Segmentation of 3D Binary Micro-CT Image

In this subsection, we consider the segmentation of a binary micro-CT image on pore
bodies. The WL between pore bodies are pore throats [59]. An initial grayscale micro-CT
image of Buff Berea sandstone was acquired by the Bruker Skyscan™ 1172 micro-CT system.
Additional details about scanning parameters can be found in [60]. To produce a binary
digital twin (see Figure 17), the indicator kriging algorithm [61,62] was used.

Figure 17. Digital twin of Buff Berea sandstone.

Then, we applied marker-controlled watershed to the inverted distance map (i.e.,
the result of 3D EDT) for this binary image. Markers are located in local minima of the
inverted distance map. In contrast to the segmentation of the FIB-SEM image described in
the previous subsection, initial markers occupy an insignificant part of the image volume.
The size of the 3D image is 10003 voxels. Porosity, that is, the percentage of voxels of pore
space for which segmentation is performed, is about 30%.

The calculation of a distance map precedes the segmentation by watershed. It is
interesting to assess the processing time of EDT implemented in various libraries. Besides
the software mentioned in Section 3, Table 5 includes a performance measure of the corre-
sponding EDT calculation functions for SciPy [63] and multilabel anisotropic 3D Euclidean
distance transform (MLAEDT-3D) (https://github.com/seung-lab/euclidean-distance-
transform-3d (accessed on 14 March 2022)), which applies an algorithm inspired by [64].
We did not carry out deep benchmarking, we estimated the processing time of the 3D
distance transform for the image depicted in Figure 17. Similar to watershed, the difference
in processing time of various EDT realizations is significant. IPSDK, MLAEDT-3D, and ITK

https://github.com/seung-lab/euclidean-distance-transform-3d
https://github.com/seung-lab/euclidean-distance-transform-3d

J. Imaging 2022, 8, 127 19 of 27

achieve performance of about 10 s. Surprisingly, popular Avizo, ImageJ, and SciPy operate
more than 10 times longer. Mahotas works unacceptably long.

Table 5. Processing time of 3D Euclidean distance transform implementations.

Software Version Object/Function Time, s

Avizo 3D 2021.1 Distance Map 193.2
Distance Map (signed) 829.8

ImageJ 2.1.0/1.53c legacy:fiji.process3d.EDT 168.0
IPSDK 3.0.1.0 morpho.distanceMap3dImg 6.1

ITK 5.2.0 SignedMaurerDistanceMapImageFilter 15.4
Mahotas 1.4.11 distance >1 day
MATLAB 9.10.0 (R2021a) bwdist 64.3

MLAEDT-3D 2.1.2 edt 14.0
SciPy 1.5.3 ndimage.distance_transform_edt 589.7
SMIL 0.11 distanceEuclidean 83.6

Table 6 contains the processing time and peak memory consumption of various water-
shed implementations for segmentation of the distance map created for the binary micro-CT
image. WL construction is required for a given problem because of the pore throat seg-
mentation. Nevertheless, we evaluated the consumed resources for both algorithms with
and without WL construction. In the considered task, only about one-third of voxels are
processed, because we are interested in segmentation in pore space only. That is why
using a mask, which indicates voxels for processing, is potentially able to speed up the
segmentation. Therefore, we additionally evaluated resources for watershed realizations
with masks for Scikit-image and ImageJ. Indeed, speeding up of processing takes place for
implementations with the “mask” parameter. Again, we tested both fast and repeatable
parallel versions of watershed in Avizo and IPSDK.

In general, the results in Tables 4 and 6 coincide, but small differences appear. Because
the numbers of image elements are approximately equal, it is essential to compare out-
comes from both tables to each other. Similar to the previous case, parallel realizations in
commercial Avizo and IPSDK provide the fastest processing speed; however, segmentation
works several times longer vs. an operation with an FIB-SEM image. This is because, in a
marker-controlled watershed of an FIB-SEM image, the initial markers occupy a notable
part of the volume, leading to a smaller number of image elements that need to be labeled.
Even though we are only interested in the segmentation of the pore space of a micro-CT
image, watershed implementations operate on the entire image, except those capable of
mask usage.

From open-source software libraries, SMIL, Mamba, and ITK process a given image
from 11 to 20 min. Versions with WL construction operate longer from 10 to 30%. Again,
watershed execution time of Scikit-image with WL construction is unacceptable, but Scikit-
image without WL construction and with mask has a comparable performance to SMIL.

J. Imaging 2022, 8, 127 20 of 27

Table 6. Processing time and peak memory consumption of various watershed implementations for
segmentation of distance map of micro-CT image.

WL Software Time, s Peak Memory Usage, Gb

+ Avizo 3D (fast) 109.2 —
+ Avizo 3D (repeatable) 319.8 —
- ImageJ 4612.4 21.91
- ImageJ (with “mask” parameter) 1004.9 10.45
+ ImageJ 4727.4 22.45
+ ImageJ (with “mask” parameter) 1036.8 11.54
+ IPSDK (fast) 67.2 3.65
+ IPSDK (repeatable) 316.4 2.80
- ITK 770.7 5.04
+ ITK 1232.2 5.97
- Mahotas 1428.4 19.44
+ Mahotas 1554.6 20.24
- Mamba 801.82 11.45
+ Mamba 942.1 11.45
+ MATLAB 2235.6 25.3
+ Octave 1788.5 31.98
- Scikit-image 3190.8 20.30
- Scikit-image (with “mask” parameter) 684.4 19.63
+ Scikit-image 36,991.6 38.65
+ Scikit-image (with “mask” parameter) 8262.3 33.48
- SMIL 673.3 6.71
+ SMIL 860.2 8.58

+ means version with WL construction; - means version without WL construction; — means that peak memory
usage was not estimated for Avizo 3D.

In general, for a given problem, total memory consumption is smaller than for FIB-
SEM segmentation. Again, IPSDK is the most memory efficient. ITK uses about 5 bytes
per image element, which is acceptable, as a rule. Memory consumption in SMIL is more
or less acceptable, especially for the version without WL. Other software libraries require
more memory. Again, peak memory size of Scikit-image is the largest.

Let us compare fast and repeatable versions of watershed for the segmentation of the
distance map of a micro-CT image. Figure 18 shows a fragment of a grayscale slice of an
initial micro-CT image of sandstone, the same fragment after semantic segmentation by
indicator kriging and instance segmentation on pore bodies by fast versions of watershed
in Avizo and IPSDK. Pore bodies are designated by various colors, and the difference
between repeatable and fast versions is in white. Similar to the previous case, the altered
image elements are near the border between classes. The percentage of changed voxels is
about 1% for Avizo and 1.5% for IPSDK. Changed voxels are distributed among adjusted
pore bodies approximately equally. Linear sizes, surface area, and volume of pore bodies
vary insignificantly; however, measures of pore throats (dams between bodies) are more
sensitive, especially for small throats. For segmentation of a given micro-CT image, we
prefer to apply the repeatable version of watershed because the effect of changed voxels on
pore throats in further simulations (e.g., modeling of capillary curves) can be notable.

J. Imaging 2022, 8, 127 21 of 27

(a) (b)

(c) (d)

Figure 18. Fragment of (a) slice of the micro-CT image; (b) segmented pore space; results of segmen-
tation via (c) IPSDK and (d) Avizo: pore bodies (different colors), difference between repeatable and
fast versions (white).

5. Discussion

Segmentation of volumetric images by watershed has a high computational burden.
In this paper, we have evaluated processing time and consumed memory of several marker-
controlled watershed implementations. Despite the fact that most of them implement the
same algorithms with O(N) time complexity relative to the number of image elements,
our benchmarking shows differences in several orders of magnitude in execution time
and used memory size, as it also depends on many other factors, such as implementation
language, applied software optimizations, etc. In general, the commercial software under
consideration demonstrates better performance in comparison with free publicly available
ones. In regards to open-source libraries, SMIL and Mamba operate faster than others.
However, you must be skilled in software engineering to apply those libraries. It is
impossible to setup SMIL and Mamba by means of the well-known Python package
managers pip and conda; however, they need to be built from C++ sources. We consider the
best option of all the off-the-shelf open-source software packages to be ITK.

Undoubtedly, there is much room for improvement in watershed implementations.
First, for some problems, simple tricks such as using masks to limit the number of processed
voxels enable us to decrease execution time significantly. Second, to the best of our knowl-
edge, existing watershed implementations are based on priority-flood algorithms [42],
whereas other types of watersheds have many valuable findings that potentially improve
performance or decrease the size of consumed memory. For example, in many publications,
approaches for parallelization were proposed earlier [65–73]. Even several concepts for wa-

J. Imaging 2022, 8, 127 22 of 27

tershed realization in GPU (graphics processing unit) were depicted [74–76]. A concurrent
execution is a promising way to speed up processing, but it is worth noting that parallel
implementation of segmentation by watershed is not available in any of the open-source
software considered in this study.

An insufficient memory size is a serious bottleneck dealing with huge 3D images. For
handling such images, development of out-of-core algorithms [77], i.e., approaches that are
capable of processing datasets larger than the main memory, are necessary. Open-source
Python package PoreSpy (https://porespy.org/ (accessed on 14 March 2022)) [78] applies a
prospective approach for processing of 3D images part-by-part. PoreSpy uses Scikit-image
watershed implementation for overlapped chunks of initial data via Dask (https://dask.org
(accessed on 14 March 2022)). The effectiveness of that technique depends on the set of
parameters: the number of chunks, the number of overlapping voxels between them, the
number of parallel processes for performing computations, etc. However, segmentation
outcomes can differ near borders of the chunks in comparison with segmentation results for
the entire image, and proper selection sizes of chunk and overlapping area is a nontrivial
issue. Nevertheless, frequently in practice, such a divide-and-conquer approach is the only
one possible. Moreover, a similar method can be applied for distributed computing of big
volumetric images in the cloud. We confidently forecast a growth of investigation in the
direction of distributed parallel processing of 3D images part-by-part in general and for
segmentation by watershed in particular.

Author Contributions: Conceptualization, A.K. and I.S.; methodology, A.K. and I.S.; software, A.K.;
validation, A.K. and I.S.; investigation, A.K.; data curation, A.K. and I.Y.; writing—original draft
preparation, I.S. and A.K.; writing—review and editing, I.Y.; supervision, I.S.; project administration,
I.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Python code for generation of synthetic images used in the benchmark-
ing can be found at https://github.com/ant-Korn/Comparing_watersheds (accessed on 14 March
2022). Both natural volumetric images that support this study are available from the corresponding
author upon reasonable request.

Acknowledgments: The authors are grateful to Igor Varfolomeev and Olga Ridzel for the help in
performance evaluation of watershed in considered commercial products.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

2D two-dimensional
3D three-dimensional
CT computed tomography
DEM digital elevation models
DNN deep neural network
EDT Euclidean distance transform
FIFO first in first out
FIB-SEM focused ion beam-scanning electron microscope
GIS geographic information system
GPU graphics processing unit
IoI intersection-over-union
ITK insight segmentation and registration toolkit
OS operating system
SMIL simple morphological image library
WL watershed lines

https://porespy.org/
https://dask.org
https://github.com/ant-Korn/Comparing_watersheds

J. Imaging 2022, 8, 127 23 of 27

Appendix A

Listing A1. An example implementation of the marker-controlled watershed algorithm without WL
for 3D images and 26-connectivity in the Python programming language.

from queue import Priori tyQueue
import numpy as np

def marker_controlled_watershed_3D_without_WL_26connectivity (r e l i e f , markers) :
St ep BM1:
pr ior i ty_queue = PriorityQueue ()
i t = np . n d i t e r ([r e l i e f , markers] , f l a g s =[’ mult i_index ’])
for r e l i e f _ v a l u e , marker_value in i t :

i f marker_value :
for ngb_z , ngb_y , ngb_x in neighbours_window (i t . multi_index ,

markers) :
i f not markers [ngb_z , ngb_y , ngb_x] : # not marked n e i g h b o r

put c o o r d i n a t e s o f p i x e l wi th r e l i e f v a l u e p r i o r i t y :
pr ior i ty_queue . put ((r e l i e f _ v a l u e , i t . mult i_index))
break

while not pr ior i ty_queue . empty () :
St ep BM2:
c u r r e n t _ p r i o r i t y , c u r r e n t _ c o o r d i n a t e s = pr ior i ty_queue . get ()
St ep BM3:
for ngb_z , ngb_y , ngb_x in neighbours_window (current_coordinates ,

markers) :
i f not markers [ngb_z , ngb_y , ngb_x] : # not marked n e i g h b o r

markers [ngb_z , ngb_y , ngb_x] = markers [c u r r e n t _ c o o r d i n a t e s]
St ep BM4:
r e l i e f _ v a l u e = r e l i e f [ngb_z , ngb_y , ngb_x]
i f r e l i e f _ v a l u e <= c u r r e n t _ p r i o r i t y :

pr ior i ty_queue . put ((c u r r e n t _ p r i o r i t y , (ngb_z , ngb_y , ngb_x)))
e lse :

pr ior i ty_queue . put ((r e l i e f _ v a l u e , (ngb_z , ngb_y , ngb_x)))
return markers

def neighbours_window (pi xe l_co ord ina tes , markers) :
z , y , x = p i x e l _ c o o r d i n a t e s
ngb_z_start , ngb_y_start , ngb_x_s tar t = z − 1 , y − 1 , x − 1
ngb_z_stop , ngb_y_stop , ngb_x_stop = z + 2 , y + 2 , x + 2
o f f s e t _ z , o f f s e t _ y , o f f s e t _ x = −1 , −1 , −1
c h e c k s o f e l e m e n t s on t h e image b o r d e r :
i f z == 0 :

ngb_z_start , o f f s e t _ z = 0 , 0
i f z == markers . shape [0] − 1 :

ngb_z_stop = z + 1
i f y == 0 :

ngb_y_start , o f f s e t _ y = 0 , 0
i f y == markers . shape [1] − 1 :

ngb_y_stop = y + 1
i f x == 0 :

ngb_x_start , o f f s e t _ x = 0 , 0
i f x == markers . shape [2] − 1 :

ngb_x_stop = x + 1
n e i g h b o u r s window with c u r r e n t e l e m e n t :
neighbours = markers [ngb_z_s tar t : ngb_z_stop ,

ngb_y_star t : ngb_y_stop ,
ngb_x_s tar t : ngb_x_stop]

i t = np . n d i t e r ([neighbours] , f l a g s =[’ mult i_index ’] , op_f lags =[’ readwrite ’])
for marker_value in i t :

ngb_z , ngb_y , ngb_x = i t . mult i_index
ngb_z , ngb_y , ngb_x = z + ngb_z + o f f s e t _ z , \

y + ngb_y + o f f s e t _ y , \
x + ngb_x + o f f s e t _ x

y i e l d ngb_z , ngb_y , ngb_x

J. Imaging 2022, 8, 127 24 of 27

Listing A2. An example implementation of the marker-controlled watershed algorithm with WL for
3D images and 26-connectivity in the Python programming language.

def marker_controlled_watershed_3D_with_WL_26connectivity (r e l i e f , markers) :
St ep M1:
v i s i t e d = (markers != 0)
St ep M2:
pr ior i ty_queue = PriorityQueue ()
i t = np . n d i t e r ([markers] , f l a g s =[’ mult i_index ’])
for marker_value in i t :

i f marker_value :
for ngb_z , ngb_y , ngb_x in neighbours_window (i t . multi_index ,

markers) :
i f not markers [ngb_z , ngb_y , ngb_x] and \

not v i s i t e d [ngb_z , ngb_y , ngb_x] : # not marked n e i g h b o r
pr ior i ty_queue . put ((r e l i e f [ngb_z , ngb_y , ngb_x] ,

(ngb_z , ngb_y , ngb_x)))
v i s i t e d [ngb_z , ngb_y , ngb_x] = True

WL_MARKER = markers . max () + 1
St ep M3:
while not pr ior i ty_queue . empty () :

c u r r e n t _ p r i o r i t y , c u r r e n t _ c o o r d i n a t e s = pr ior i ty_queue . get ()
St ep M4:
nb_marker = None
for ngb_z , ngb_y , ngb_x in neighbours_window (current_coordinates ,

markers) :
i f markers [ngb_z , ngb_y , ngb_x] and \

markers [ngb_z , ngb_y , ngb_x] != WL_MARKER:
i f nb_marker i s None :

nb_marker = markers [ngb_z , ngb_y , ngb_x]
e l i f nb_marker != markers [ngb_z , ngb_y , ngb_x] :

markers [c u r r e n t _ c o o r d i n a t e s] = WL_MARKER
break

i f markers [c u r r e n t _ c o o r d i n a t e s] == 0 :
markers [c u r r e n t _ c o o r d i n a t e s] = nb_marker
St ep M5:
for ngb_z , ngb_y , ngb_x in neighbours_window (current_coordinates ,

markers) :
i f not v i s i t e d [ngb_z , ngb_y , ngb_x] :

r e l i e f _ v a l u e = r e l i e f [ngb_z , ngb_y , ngb_x]
i f r e l i e f _ v a l u e <= c u r r e n t _ p r i o r i t y :

pr ior i ty_queue . put ((c u r r e n t _ p r i o r i t y , (ngb_z , ngb_y ,
ngb_x)))

e lse :
pr ior i ty_queue . put ((r e l i e f _ v a l u e , (ngb_z , ngb_y , ngb_x)))

v i s i t e d [ngb_z , ngb_y , ngb_x] = True
return markers

References
1. Bernardini, M.; Mayer, L.; Reed, D.; Feldmann, R. Predicting dark matter halo formation in N-body simulations with deep

regression networks. Mon. Not. R. Astron. Soc. 2020, 496, 5116–5125. [CrossRef]
2. Negahbani, F.; Sabzi, R.; Jahromi, B.P.; Firouzabadi, D.; Movahedi, F.; Shirazi, M.K.; Majidi, S.; Dehghanian, A. PathoNet

introduced as a deep neural network backend for evaluation of Ki-67 and tumor-infiltrating lymphocytes in breast cancer. Sci.
Rep. 2021, 11, 8489. [CrossRef] [PubMed]

3. Kucharski, A.; Fabijańska, A. CNN-watershed: A watershed transform with predicted markers for corneal endothelium image
segmentation. Biomed. Signal Process. Control 2021, 68, 102805. [CrossRef]

4. Khan, Z.A.; Tranter, T.; Agnaou, M.; Elkamel, A.; Gostick, J. Dual network extraction algorithm to investigate multiple transport
processes in porous materials: Image-based modeling of pore and grain scale processes. Comput. Chem. Eng. 2019, 123, 64–77.
[CrossRef]

5. Safonov, I.; Yakimchuk, I.; Abashkin, V. Algorithms for 3D particles characterization using X-ray microtomography in proppant
crush test. J. Imaging 2018, 4, 134. [CrossRef]

http://doi.org/10.1093/mnras/staa1911
http://dx.doi.org/10.1038/s41598-021-86912-w
http://www.ncbi.nlm.nih.gov/pubmed/33875676
http://dx.doi.org/10.1016/j.bspc.2021.102805
http://dx.doi.org/10.1016/j.compchemeng.2018.12.025
http://dx.doi.org/10.3390/jimaging4110134

J. Imaging 2022, 8, 127 25 of 27

6. Harper, D.J.; Konegger, T.; Augustin, M.; Schützenberger, K.; Eugui, P.; Lichtenegger, A.; Merkle, C.W.; Hitzenberger, C.K.;
Glösmann, M.; Baumann, B. Hyperspectral optical coherence tomography for in vivo visualization of melanin in the retinal
pigment epithelium. J. Biophotonics 2019, 12, e201900153. [CrossRef]

7. Nguyen, H.T.; Nguyen, H.H.S.; Pham, T.V.H.; Nguyen, T.C.N.; Do, T.R.; Nguyen, T.B.M.; Luu, M.H. A Web-based Tool for
Semi-interactively Karyotyping the Chromosome Images for Analyzing Chromosome Abnormalities. In Proceedings of the
2020 7th NAFOSTED Conference on Information and Computer Science (NICS), Hanoi City, Vietnam, 26–27 December 2020;
pp. 433–437.

8. Ouattara, I.; Hyyti, H.; Visala, A. Drone based Mapping and Identification of Young Spruce Stand for Semiautonomous Cleaning.
IFAC-PapersOnLine 2020, 53, 15777–15783. [CrossRef]

9. Hajdowska, K.; Student, S.; Borys, D. Graph based method for cell segmentation and detection in live-cell fluorescence microscope
imaging. Biomed. Signal Process. Control 2022, 71, 103071. [CrossRef]

10. Gonzalez, R.C.; Woods, R.E. Digital Image Processing; Prentice Hall: Upper Saddle River, NJ, USA, 2008.
11. Beare, R.; Chen, J.; Adamson, C.L.; Silk, T.; Thompson, D.K.; Yang, J.Y.; Wood, A.G. Brain extraction using the watershed

transform from markers. Front. Neuroinform. 2013, 7, 1–15. [CrossRef]
12. Atwood, R.; Jones, J.; Lee, P.; Hench, L. Analysis of pore interconnectivity in bioactive glass foams using X-ray microtomography.

Scr. Mater. 2004, 51, 1029–1033. [CrossRef]
13. Funke, J.; Tschopp, F.; Grisaitis, W.; Sheridan, A.; Singh, C.; Saalfeld, S.; Turaga, S.C. A Deep Structured Learning Approach

Towards Automating Connectome Reconstruction from 3D Electron Micrographs. arXiv 2017, arXiv:1709.02974.
14. Mashburn, D.N.; Lynch, H.E.; Ma, X.; Hutson, M.S. Enabling user-guided segmentation and tracking of surface-labeled cells in

time-lapse image sets of living tissues. Cytom. Part A 2012, 81, 409–418. [CrossRef] [PubMed]
15. Gostick, J.T. Versatile and efficient pore network extraction method using marker-based watershed segmentation. Phys. Rev. E

2017, 96, 023307. [CrossRef]
16. Gouillart, E.; Nunez-Iglesias, J.; van der Walt, S. Analyzing microtomography data with Python and the scikit-image library. Adv.

Struct. Chem. Imaging 2016, 2, 18. [CrossRef]
17. Monteiro, A.C.B.; Iano, Y.; França, R.P. Detecting and counting of blood cells using watershed transform: An improved

methodology. In Brazilian Technology Symposium; Springer: Berlin/Heidelberg, Germany, 2017; pp. 301–310.
18. Garfi, G.; John, C.M.; Berg, S.; Krevor, S. The sensitivity of estimates of multiphase fluid and solid properties of porous rocks to

image processing. Transp. Porous Media 2020, 131, 985–1005. [CrossRef]
19. Kornilov, A.S.; Safonov, I.V. An overview of watershed algorithm implementations in open source libraries. J. Imaging 2018,

4, 123. [CrossRef]
20. Beucher, S.; Lantuéjoul, C. Use of Watersheds in Contour Detection. In Proceedings of the International Workshop on Image

Processing: Real-Time Edge and Motion Detection/Estimation, Rennes, France, 17–21 September 1979; Volume 132.
21. Lantuéjoul, C. La Squelettisation et son Application aux Mesures Topologiques des Mosaı̈ques Polycristallines. Ph.D. Thesis,

Ecole des Mines, Paris, France, 1978.
22. Digabel, H.; Lantuéjoul, C. Iterative algorithms. In Proceedings of the Actes du Second Symposium Européen d’Analyse

Quantitative des Microstructures en Sciences des Matériaux, Biologie et Médecine, Caen, France, 4–7 October 1977; Chermant,
J.L., Ed.; Dr. Riederer: Stuttgart, Germany, 1978; pp. 85–99.

23. Meyer, F.; Beucher, S. Morphological segmentation. J. Vis. Commun. Image Represent. 1990, 1, 21–46. [CrossRef]
24. Vincent, L.; Soille, P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern

Anal. Mach. Intell. 1991, 13, 583–598. [CrossRef]
25. Beucher, S.; Meyer, F. The morphological approach to segmentation: The watershed transformation. In Mathematical Morphology

in Image Processing; Marcel Dekker, Inc.: New York, NY, USA, 1993; Volume 34, Chapter 12, pp. 452–464.
26. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2009.
27. Meyer, F. Un algorithme optimal de ligne de partage des eaux. In Proceedings of the 8th Congress AFCET, Lyon, France,

25–20 November 1991; Volume 2, pp. 847–859.
28. Meyer, F. Topographic distance and watershed lines. Signal Process. 1994, 38, 113–125. [CrossRef]
29. Lotufo, R.; Falcao, A. The Ordered Queue and the Optimality of the Watershed Approaches. In Mathematical Morphology and

Its Applications to Image and Signal Processing; Goutsias, J., Vincent, L., Bloomberg, D.S., Eds.; Springer: Boston, MA, USA, 2000;
pp. 341–350. [CrossRef]

30. Falcão, A.X.; Stolfi, J.; de Alencar Lotufo, R. The image foresting transform: Theory, algorithms, and applications. IEEE Trans.
Pattern Anal. Mach. Intell. 2004, 26, 19–29. [CrossRef]

31. Bieniek, A.; Moga, A. An efficient watershed algorithm based on connected components. Pattern Recognit. 2000, 33, 907–916.
[CrossRef]

32. De Smet, P.; Pires, R. Implementation and analysis of an optimized rainfalling watershed algorithm. In Proceedings of the Image
and Video Communications and Processing, San Jose, CA, USA, 25–28 January 2000; Volume 3974, pp. 759–766.

33. Lin, Y.C.; Tsai, Y.P.; Hung, Y.P.; Shih, Z.C. Comparison between immersion-based and toboggan-based watershed image
segmentation. IEEE Trans. Image Process. 2006, 15, 632–640. [PubMed]

34. Meyer, F. Minimum Spanning Forests for Morphological Segmentation. In Mathematical Morphology and Its Applications to Image
Processing; Serra, J., Soille, P., Eds.; Springer: Dordrecht, The Netherlands, 1994; pp. 77–84. [CrossRef]

http://dx.doi.org/10.1002/jbio.201900153
http://dx.doi.org/10.1016/j.ifacol.2020.12.205
http://dx.doi.org/10.1016/j.bspc.2021.103071
http://dx.doi.org/10.3389/fninf.2013.00032
http://dx.doi.org/10.1016/j.scriptamat.2004.08.014
http://dx.doi.org/10.1002/cyto.a.22034
http://www.ncbi.nlm.nih.gov/pubmed/22411907
http://dx.doi.org/10.1103/PhysRevE.96.023307
http://dx.doi.org/10.1186/s40679-016-0031-0
http://dx.doi.org/10.1007/s11242-019-01374-z
http://dx.doi.org/10.3390/jimaging4100123
http://dx.doi.org/10.1016/1047-3203(90)90014-M
http://dx.doi.org/10.1109/34.87344
http://dx.doi.org/10.1016/0165-1684(94)90060-4
http://dx.doi.org/10.1007/0-306-47025-X_37
http://dx.doi.org/10.1109/TPAMI.2004.1261076
http://dx.doi.org/10.1016/S0031-3203(99)00154-5
http://www.ncbi.nlm.nih.gov/pubmed/16519350
http://dx.doi.org/10.1007/978-94-011-1040-2_11

J. Imaging 2022, 8, 127 26 of 27

35. Cousty, J.; Bertrand, G.; Najman, L.; Couprie, M. Watershed cuts: Minimum spanning forests and the drop of water principle.
IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 1362–1374. [CrossRef]

36. Perret, B.; Cousty, J.; Guimaraes, S.J.F.; Maia, D.S. Evaluation of hierarchical watersheds. IEEE Trans. Image Process. 2017,
27, 1676–1688. [CrossRef] [PubMed]

37. Mahmoudi, R.; Akil, M. Analyses of the watershed transform. Int. J. Image Process. 2011, 5, 521–541.
38. Roerdink, J.B.; Meijster, A. The Watershed Transform: Definitions, Algorithms and Parallelization Strategies. Fundam. Inf. 2000,

41, 187–228. [CrossRef]
39. Audigier, R.; de Alencar Lotufo, R. Watershed by image foresting transform, tie-zone, and theoretical relationships with other

watershed definitions. In Proceedings of the 8th International Symposium on Mathematical Morphology, Rio de Janeiro, Brazil,
10–13 October 2007; Volume 1, pp. 277–288.

40. Kriegel, H.P.; Schubert, E.; Zimek, A. The (black) art of runtime evaluation: Are we comparing algorithms or implementations?
Knowl. Inf. Syst. 2017, 52, 341–378. [CrossRef]

41. Hendriks, C.L.L. Revisiting priority queues for image analysis. Pattern Recognit. 2010, 43, 3003–3012. [CrossRef]
42. Barnes, R.; Lehman, C.; Mulla, D. Priority-flood: An optimal depression-filling and watershed-labeling algorithm for digital

elevation models. Comput. Geosci. 2014, 62, 117–127. [CrossRef]
43. McCormick, M.M.; Liu, X.; Ibanez, L.; Jomier, J.; Marion, C. ITK: Enabling reproducible research and open science. Front.

Neuroinform. 2014, 8, 13. [CrossRef]
44. Johnson, H.J.; McCormick, M.M.; Ibanez, L. The ITK Software Guide: Design and Functionality; Kitware Clifton Park: Clifton Park,

NY, USA, 2015; Volume 5,
45. Coelho, L.P. Mahotas: Open source software for scriptable computer vision. J. Open Res. Softw. 2013, 1, e3. [CrossRef]
46. Beucher, N.; Beucher, S. Hierarchical Queues: General Description and Implementation in MAMBA Image Library. 2011.

Available online: https://hal.archives-ouvertes.fr/hal-01403940/ (accessed on 14 March 2022)
47. van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. scikit-image: Image

processing in Python. PeerJ 2014, 2, e453. [CrossRef]
48. Faessel, M.; Bilodeau, M. SMIL: Simple morphological image library. In Séminaire Performance et Généricité; LRDE: Villejuif,

France, 2013. Available online: https://hal-mines-paristech.archives-ouvertes.fr/hal-00836117 (accessed on 14 March 2022)
49. Eaton, J.W.; Bateman, D.; Hauberg, S.; Wehbring, R. GNU Octave Version 7.1.0 Manual: A High-Level Interactive Language for

Numerical Computations. 2021. Available online: https://octave.org/doc/v7.1.0/ (accessed on 14 March 2022).
50. Legland, D.; Arganda-Carreras, I.; Andrey, P. MorphoLibJ: Integrated library and plugins for mathematical morphology with

ImageJ. Bioinformatics 2016, 32, 3532–3534. [CrossRef] [PubMed]
51. Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next

generation of scientific image data. BMC Bioinform. 2017, 18, 529. [CrossRef]
52. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
53. Wang, Y.; Lin, C.; Miller, J. Improved 3D image segmentation for X-ray tomographic analysis of packed particle beds. Miner. Eng.

2015, 83, 185–191. [CrossRef]
54. Alvaro, V.; Chen-Luh, L.; Miller, J.D. Watershed Functions Applied to a 3D Image Segmentation Problem for the Analysis of

Packed Particle Beds. Part. Part. Syst. Charact. 2006, 23, 237–245. [CrossRef]
55. Reimers, I.; Safonov, I.; Kornilov, A.; Yakimchuk, I. Two-Stage Alignment of FIB-SEM Images of Rock Samples. J. Imaging 2020,

6, 107. [CrossRef]
56. Reimers, I.; Safonov, I.; Yakimchuk, I. Construction of 3D Digital Model of a Rock Sample Based on FIB-SEM Data. In Proceedings

of the 2019 24th Conference of Open Innovations Association (FRUCT), Moscow, Russia, 8–12 April 2019; pp. 351–359.
57. Prill, T.; Schladitz, K.; Jeulin, D.; Faessel, M.; Wieser, C. Morphological segmentation of FIB-SEM data of highly porous media. J.

Microsc. 2013, 250, 77–87. [CrossRef]
58. Reimers, I.; Safonov, I.; Yakimchuk, I. Segmentation of 3D FIB-SEM data with pore-back effect. J. Phys. Conf. Ser. 2019, 1368,

032015. [CrossRef]
59. Gerke, K.M.; Sizonenko, T.O.; Karsanina, M.V.; Lavrukhin, E.V.; Abashkin, V.V.; Korost, D.V. Improving watershed-based

pore-network extraction method using maximum inscribed ball pore-body positioning. Adv. Water Resour. 2020, 140, 103576.
[CrossRef]

60. Varfolomeev, I.; Yakimchuk, I.; Safonov, I. An application of deep neural networks for segmentation of microtomographic images
of rock samples. Computers 2019, 8, 72. [CrossRef]

61. Oh, W.; Lindquist, B. Image thresholding by indicator kriging. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 590–602.
62. Houston, A.N.; Otten, W.; Baveye, P.C.; Hapca, S. Adaptive-window indicator kriging: A thresholding method for computed

tomography images of porous media. Comput. Geosci. 2013, 54, 239–248. [CrossRef]
63. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser,

W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272.
[CrossRef]

64. Meijster, A.; Roerdink, J.B.; Hesselink, W.H. A general algorithm for computing distance transforms in linear time. In Mathematical
Morphology and Its Applications to Image and Signal Processing; Springer: Berlin/Heidelberg, Germany, 2002; pp. 331–340.

http://dx.doi.org/10.1109/TPAMI.2008.173
http://dx.doi.org/10.1109/TIP.2017.2779604
http://www.ncbi.nlm.nih.gov/pubmed/29324420
http://dx.doi.org/10.3233/FI-2000-411207
http://dx.doi.org/10.1007/s10115-016-1004-2
http://dx.doi.org/10.1016/j.patcog.2010.04.002
http://dx.doi.org/10.1016/j.cageo.2013.04.024
http://dx.doi.org/10.3389/fninf.2014.00013
http://dx.doi.org/10.5334 /jors.ac
https://hal.archives-ouvertes.fr/hal-01403940/
http://dx.doi.org/10.7717/peerj.453
https://hal-mines-paristech.archives-ouvertes.fr/hal-00836117
https://octave.org/doc/v7.1.0/
http://dx.doi.org/10.1093/bioinformatics/btw413
http://www.ncbi.nlm.nih.gov/pubmed/27412086
http://dx.doi.org/10.1186/s12859-017-1934-z
http://dx.doi.org/10.1016/j.mineng.2015.09.007
http://dx.doi.org/10.1002/ppsc.200601055
http://dx.doi.org/10.3390/jimaging6100107
http://dx.doi.org/10.1111/jmi.12021
http://dx.doi.org/10.1088/1742-6596/1368/3/032015
http://dx.doi.org/10.1016/j.advwatres.2020.103576
http://dx.doi.org/10.3390/computers8040072
http://dx.doi.org/10.1016/j.cageo.2012.11.016
http://dx.doi.org/10.1038/s41592-019-0686-2

J. Imaging 2022, 8, 127 27 of 27

65. Moga, A.N.; Viero, T.; Dobrin, B.P.; Gabbouj, M. Implementation of a Distributed Watershed Algorithm. In Mathematical
Morphology and Its Applications to Image Processing; Serra, J., Soille, P., Eds.; Springer: Dordrecht, The Netherlands, 1994; pp. 281–288.
[CrossRef]

66. Moga, A.N.; Cramariuc, B.; Gabbouj, M. Parallel Watershed Transformation Algorithms for Image Segmentation. Parallel Comput.
1998, 24, 1981–2001. [CrossRef]

67. Bieniek, A.; Burkhardt, H.; Marschner, H.; Nölle, M.; Schreiber, G. A parallel watershed algorithm. In Proceedings of the 10th
Scandinavian Conference on Image Analysis (SCIA’97), Lappeenranta, Finland, 9–11 June 1997; pp. 237–244.

68. Moga, A.N.; Gabbouj, M. Parallel image component labelling with watershed transformation. IEEE Trans. Pattern Anal. Mach.
Intell. 1997, 19, 441–450. [CrossRef]

69. Moga, A.N.; Viero, T.; Gabbouj, M.; Nölle, M.; Schreiber, G.; Burkhardt, H. Parallel watershed algorithm based on sequential
scanning. In Proceedings of the IEEE Workshop on Nonlinear Signal and Image Processing, Neos Marmaras, Greece, 20–22 June
1995; pp. 991–994.

70. Noguet, D. A massively parallel implementation of the watershed based on cellular automata. In Proceedings of the IEEE
International Conference on Application-Specific Systems, Architectures and Processors, Zurich, Switzerland, 14–16 July 1997;
pp. 42–52. [CrossRef]

71. Moga, A.N.; Gabbouj, M. Parallel Marker-Based Image Segmentation with Watershed Transformation. J. Parallel Distrib. Comput.
1998, 51, 27–45. [CrossRef]

72. Meijster, A.; Roerdink, J.B.T.M. Computation of Watersheds Based on Parallel Graph Algorithms. In Mathematical Morphology
and Its Applications to Image and Signal Processing; Maragos, P., Schafer, R.W., Butt, M.A., Eds.; Springer: Boston, MA, USA, 1996;
pp. 305–312. [CrossRef]

73. Meijster, A.; Roerdink, J.B.T.M. A disjoint set algorithm for the watershed transform. In Proceedings of the 9th European Signal
Processing Conference (EUSIPCO 1998), Rhodes, Greece, 8–11 September 1998; pp. 1–4.

74. Körbes, A.; Vitor, G.B.; Alencar Lotufo, R.d.; Ferreira, J.V. Advances on watershed processing on GPU architecture. In International
Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing; Springer: Berlin/Heidelberg, Germany,
2011; pp. 260–271.

75. Quesada-Barriuso, P.; Heras, D.B.; Argüello, F. Efficient GPU asynchronous implementation of a watershed algorithm based on
cellular automata. In Proceedings of the 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with
Applications, Leganes, Spain, 10–13 July 2012; pp. 79–86.

76. Hučko, M.; Šrámek, M. Streamed watershed transform on GPU for processing of large volume data. In Proceedings of the 28th
Spring Conference on Computer Graphics, Smolenice, Slovakia, 28–30 May 2012; pp. 137–141.

77. Drees, D.; Eilers, F.; Jiang, X. Hierarchical Random Walker Segmentation for Large Volumetric Biomedical Images. arXiv 2021,
arXiv:2103.09564.

78. Gostick, J.T.; Khan, Z.A.; Tranter, T.G.; Kok, M.D.; Agnaou, M.; Sadeghi, M.; Jervis, R. PoreSpy: A python toolkit for quantitative
analysis of porous media images. J. Open Source Softw. 2019, 4, 1296. [CrossRef]

http://dx.doi.org/10.1007/978-94-011-1040-2_36
http://dx.doi.org/10.1016/S0167-8191(98)00085-4
http://dx.doi.org/10.1109/34.589204
http://dx.doi.org/10.1109/ASAP.1997.606811
http://dx.doi.org/10.1006/jpdc.1998.1448
http://dx.doi.org/10.1007/978-1-4613-0469-2_35
http://dx.doi.org/10.21105/joss.01296

	Introduction
	Description of Watershed Algorithms Applied in Software
	Implementations under Analysis
	Results
	Measurement Procedure
	Implementations with and without WL Construction
	Processing Time and Consumed Memory vs. 3D Image Size
	Semantic Segmentation of FIB-SEM Image
	Instance Segmentation of 3D Binary Micro-CT Image

	Discussion
	Appendix A
	References

