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Abstract: Radiology reports are one of the main forms of communication between radiologists and
other clinicians, and contain important information for patient care. In order to use this information
for research and automated patient care programs, it is necessary to convert the raw text into struc-
tured data suitable for analysis. State-of-the-art natural language processing (NLP) domain-specific
contextual word embeddings have been shown to achieve impressive accuracy for these tasks in
medicine, but have yet to be utilized for section structure segmentation. In this work, we pre-trained
a contextual embedding BERT model using breast radiology reports and developed a classifier that
incorporated the embedding with auxiliary global textual features in order to perform section segmen-
tation. This model achieved 98% accuracy in segregating free-text reports, sentence by sentence, into
sections of information outlined in the Breast Imaging Reporting and Data System (BI-RADS) lexicon,
which is a significant improvement over the classic BERT model without auxiliary information. We
then evaluated whether using section segmentation improved the downstream extraction of clinically
relevant information such as modality/procedure, previous cancer, menopausal status, purpose
of exam, breast density, and breast MRI background parenchymal enhancement. Using the BERT
model pre-trained on breast radiology reports, combined with section segmentation, resulted in an
overall accuracy of 95.9% in the field extraction tasks. This is a 17% improvement, compared to an
overall accuracy of 78.9% for field extraction with models using classic BERT embeddings and not
using section segmentation. Our work shows the strength of using BERT in the analysis of radiology
reports and the advantages of section segmentation by identifying the key features of patient factors
recorded in breast radiology reports.

Keywords: BI-RADS; BERT; deep learning; natural language processing

1. Introduction

The radiology report is an invaluable tool used by radiologists to communicate high-
level insights and analyses of medical imaging investigations. It is common practice to
organize such an analysis into specific sections, documenting the key information taken
into account to determine the final impression/opinion [1]. The analysis of this report
information is important in medical image data analysis for automated large-dataset
labeling in machine learning computer vision. Unfortunately, computers cannot interpret
and categorize raw text, and it is infeasible to manually label a large radiology corpus that
can contain billions of words. Therefore, being able to automatically extract this image
information in free-text radiology reports is ideal. To solve this, many researchers use
natural language processing (NLP) techniques to extract radiology report information
automatically. In a systematic review by Casey et al. [2], NLP techniques are used for
patient or disease surveillance, identifying disease information for classification systems,
language analysis optimized to facilitate clinical decision support, quality assurance, and

J. Imaging 2022, 8, 131. https://doi.org/10.3390/jimaging8050131 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging8050131
https://doi.org/10.3390/jimaging8050131
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-8742-6586
https://orcid.org/0000-0003-3271-8087
https://orcid.org/0000-0003-1375-5501
https://doi.org/10.3390/jimaging8050131
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging8050131?type=check_update&version=2


J. Imaging 2022, 8, 131 2 of 19

epidemiology cohort building. In clinical breast cancer management and screening, this
could include the surveillance of benign-appearing lesions over time to determine if biopsy
is needed [3], or the investigation of diagnostic utilization and yield to determine hospital
resource allocation [4].

A prime opportunity for NLP applications exists in the breast radiology reports
of mammograms, ultrasounds, magnetic resonance imaging (MRI) exams, and biopsy
reports. This information is organized into designated sections to keep reports clear and
concise. The criteria and organization of this reporting system was first formalized in the
1980s by the American College of Radiologists in the Breast Imaging Reporting and Data
System (BI-RADS) [5]. In a breast radiology report, many important health indicators,
including menopausal status and history of cancer, are recorded together with the purpose
of the exam in a section typically called clinical indication (Cl. Ind.). These details give
evidence to whether the exam is for a routine screening or a diagnostic investigation of
an abnormality. Imaging findings include the presence of lesions, breast density, and
background parenchymal enhancement (BPE) (specifically in breast MRI). These health
indicators and imaging findings can be very useful for patient care, treatment management,
and research, such as large-scale epidemiology studies. For example, breast density and
BPE are factors of interest in breast cancer risk prediction [6,7]. Breast density is the ratio of
radiopaque tissue to radiolucent tissue in a mammogram, or the ratio of fibroglandular
tissue to fat tissue in an MRI, while BPE is the level of healthy fibroglandular tissue
enhancement during dynamic contrast-enhanced breast MRI. Both of these factors have
been shown to have an association with the incidence of breast cancer.

Recent advancements in NLP models, notably, the bi-directional encoder representa-
tions from transformers (BERT) model developed in 2018 by Google [8], have resulted in
significant performance improvements over classic linguistic rule-based techniques and
word to vector algorithms for many NLP tasks. Devlin et al. showed that BERT is able
to outperform all previous contextual embedding models at text sequence classification
and question-and-answering response. BERT techniques were swiftly adopted by medical
researchers to build their own contextual embeddings trained specifically for clinical free-
text reports, such as BioBERT [9] and BioClincal BERT [10], showing the importance of a
domain-specific contextual embedding.

Growing in popularity is the concept of utilizing report section organization to better
improve health indicator field extraction [11–13]. The BI-RADS lexicon includes a logically
structured flow of sections for the title of the examination, patient history, previous imaging
comparisons, technique and procedure notes, findings, impressions/opinions, and an
overall exam assessment category [5]. Since this practice is so well documented and
followed diligently by breast radiologists, it is an ideal dataset in which to determine
whether the automatic structuring of free-text radiology reports into sections will improve
health indicator field extraction. We hypothesize that, using a specialized BERT embedding
trained in breast radiology and fine-tuned for section segmentation and field extraction,
used in sequence, will give better performance than the classic BERT embedding fine-tuned
on field extraction.

With this project, we built a new contextual embedding with the BERT architecture,
called BI-RADS BERT. Our data was collected from the Sunnybrook Health Sciences Cen-
tre’s medical record archives, with research ethics approval, comprised of 180,000 free-text
reports in mammography, ultrasound, MRI, and image-guided biopsy procedures per-
formed between 2005–2020. Additionally, all pathological findings in image-guided biopsy
procedures were appended to the corresponding imaging reports as an addendum. We
pre-trained our model using masked language modeling on a corpus of 25 million words,
and then fine-tuned the model on free-text section-segmented reports to divide reports
into sections. In our exploration, we found it beneficial to use the contextual embedding
in conjunction with auxiliary data (BI-RADS BERTwAux) to better understand the global
report context in the section segmentation task. Then, with the section of interest in a report
identified, we fine-tuned further-downstream classifiers to identify imaging modality, the
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purpose for the exam, mention of previous cancer, menopausal status, density category,
and BPE category.

2. Background
2.1. Contextual Embeddings

NLP was initially carried out using linguistic rule-based methods [14], but these were
eventually succeeded by word-level vector representations. These representations saw
major success with algorithms such as word2vec [15], GloVe [16], and fastText [17]. The
drawback of these word representations was the lack of contextual information from word
position and local grammatical cues of words in the vicinity.

This contextual information problem was ultimately solved using the ELMo contextual
embedding [18]. ELMo creates a context-aware embedding for each word in a sentence
by performing pre-training using masked language modeling (MLM) and next-sentence
prediction (NSP) [19]. Very soon after, BERT was developed, which uses a much larger
transformer architecture and pre-training corpus to fully capture intricate semantic and
contextual representations [8]. These transformer contextual embeddings have shown
impressive results once fine-tuned on question and answering, name entity recognition,
and textual entailment identification.

Since 2018, many successors to BERT have been developed using larger corpora and
architecture sizes. RoBERTa [20] was published by Facebook, demonstrating the efficient
usage of BERT with an extensive parameter grid search. They found that a larger number
of parameters and the usage of MLM without NSP gave superior results. Megatron-
lm [21], from NVIDIA, then showed that the application of a multi-billion-parameter
BERT trained across multiple graphical processing units (GPUs) gives an even greater
performance, further proving that the scaling of this method to larger models results in
greater generalizability.

2.2. Contextual Embeddings and Section Segmentation in Medical Research and Radiology

These contextual embedding algorithms have seen quick adoption to medical industry
tasks. In 2019, BioBERT [9] was published, showing the application of the BERT base in
medical research analysis. This model was trained on a corpus of biomedical article ab-
stracts retrieved from PubMed. This showed that a domain-specific BERT model performed
better on medical research NLP tasks, as opposed to a classic BERT base model. This was
further reinforced by BioClinical BERT [10], which exhibited a performance improvement
on medical domain-specific BERT training using the MIMIC-III database of intensive care
unit chart notes and discharge notes [22].

In radiology reports, CheXbert [23] was trained on MIMIC-CXR [24], and showed
improved performance on extracting diagnoses from radiology reports. This model had
a close alignment to radiologist performance, exhibiting the benefit of utilizing a BERT
model on large-scale data cohorts where expert annotations are infeasible. In breast cancer
management, Liu et al. [25] assessed the performance of a BERT model trained on a clinical
corpus consisting of the encounter notes, operation records, pathology notes, progress
notes, and discharge notes of breast cancer patients in China. This BERT model efficiently
extracted direct information on tumor size, tumor location, bio markers, regional lymph
node involvement, pathological type, and patient genealogy. This work showed the
application of BERT in the analysis of breast cancer treatment reports, but did not illustrate
the information retrieval of patient characteristics important to epidemiology studies of
breast cancer incidence and risk assessment.

A systematic review of section segmentation was published by Pomares-Quimbaya
et al. in 2019 [11]. They gave a very detailed history of the task of identifying sections
within electronic health records. Their review only included 39 peer-reviewed articles,
suggesting this task is under-researched in the field. Popular methods outlined in the article
include rule-based line identifiers, machine learning classifiers on textual feature spaces,
or a hybrid method of both. BERT was developed for section segmentation by Rosenthal
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et al. [26], giving very impressive results on extracting information from general electronic
health records.

3. Materials and Methods

This section will cover details on our dataset used to train BI-RADS BERT and on the
BERT pre-training procedure, the BERT model architecture, and variants for improved
section segmentation performance, as well as the downstream text sequence classification
tasks we evaluated. A visual outline of this paper is depicted in Figure 1.
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Figure 1. This project aims to improve health indicator field extraction tasks by using section
segmentation to narrow down the free-text report length. When a radiologist reads a report, they can
divide the report into sections that are useful for finding specific information. With a classic BERT
framework, the report is fed into the model without narrowing the report into sections, resulting in
some confusion as to where the information is located. Using a BI-RADS BERT model to segment
sections before field extraction, we achieve a higher performance.
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3.1. Data

With research ethics board approval at Sunnybrook Health Science Centre, free-text
breast radiology reports from 2005–2020 were retrieved from the electronic health records
archive. This data was acquired in two datasets. Further description of database statistics
can be found in Table 1. All free-text breast imaging radiology reports and biopsy procedure
reports were used for the development of the BI-RADS BERT embeddings.

Table 1. Dataset statistics.

Dataset Name Number of Number of Avg. Exams ± St.D. Exam
Patients Exams per Patient Date Range

Breast Imaging 7917 80,648 10.2 ± 7.0 2005–2020
Radiology Reports A

Breast Imaging 26,390 98,748 3.7 ± 3.0 2014–2018
Radiology Reports B

3.1.1. Breast Imaging Radiology Reports Dataset A

Inclusion criteria included all women aged 69 and younger who have had a breast MRI
exam within 2005–2020; this dataset was extracted as part of a research study focused on
women participating in the Ontario High-Risk Breast Screening Program [27]. In addition
to the reports relating to the screening population, patients undergoing MRI for diagnostic
purposes were also included. For this dataset we received 80,648 free-text reports from
7917 patients.

3.1.2. Breast Imaging Radiology Report Dataset B

An additional database of radiology reports for all women who had any type of
breast imaging exam between 2014–2018 was made available from a second research study.
There were 23,000 reports in dataset A that were also in dataset B; therefore, redundant
reports were eliminated by exam date and patient identifier. After removing all reports that
were duplicates of dataset A, we were left with an additional 98,748 free-text reports from
26,390 patients.

3.1.3. Pre-Training Data

For pre-training, we used 155,000 breast radiology reports from the combined datasets.
The pre-training dataset ultimately contained a corpus of 25 million words. In each report,
we left punctuation, acronyms, and short-form language that is typically used by radiolo-
gists, but added periods to the end of lines or paragraphs that did not end in punctuation.
We felt this improved the model’s ability to understand radiology reports with minimal
text pre-processing.

3.1.4. Fine-Tuning Data

For fine-tuning, we used 900 breast radiology reports from the combined datasets. We
did not have a separate test set in this study and decided to perform a 5-fold cross validation
experiment. For fine-tuning the dataset, annotation was performed by a clinical coordinator
trained in the BI-RADS lexicon criteria and advised by a breast imaging radiologist with
over 20 years of experience. For each report in the fine-tuning set, each sentence was labeled
into a BI-RADS section category, such as title, history/Cl. Ind., previous imaging, imaging
technique/procedure, findings/procedure notes, impression/opinion, and BI-RADS final
assessment category. Each report in the fine-tuning set was labeled at the report level for
modality/procedure performed, purpose for the exam (whether diagnostic or screening), a
mention of the patient having a previous cancer, patient menopausal status, breast density
category (mammography and MRI), and BPE category (MRI only).
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3.2. BERT Models
3.2.1. BERT Contextual Embeddings

For all BERT models, we used the base model architecture with an uncased WordPiece
tokenizer [8]. For BI-RADS BERT, the WordPiece tokenizer was trained from scratch,
following the WordPiece algorithm [28]. With the pre-training process, we trained BI-RADS
BERT from scratch using MLM only, with a sequence length limit of 32 tokens on the
breast radiology report pre-training corpus. For baseline comparison in the experimental
results, we used the classic BERT base model [8] and the BioClinical BERT base model [10].
Implementation was conducted in Python 3 with the transformers library developed by
HuggingFace [29], and can be found at https://github.com/gkuling/BIRADS_BERT.

Pre-training was run on Compute Canada WestGrid (Dell, Vancouver, Canada) with
one NVIDIA Tesla V100 SXM2 (NVIDIA, Santa Clara, United States of America) 32 GB
GPU, 16 CPU cores, and 32 GB of memory. Using sequence lengths of 32 and a batch size
of 256, 150,000 iterations took 26 h to train. We observed a significantly lower training time
due to the size of our training set (25 million words), and lower input sequence length. This
gave us the ability to train a single batch on one GPU, which lowered the processing time
by not necessitating data parallelization between multiple GPUs. This is in contrast to the
baseline models that are trained on input sequence lengths of 128 tokens initially, before
shifting to 512 tokens for the final 10% of iteration steps. All other training parameters were
kept consistent with the BERT training procedure [8].

3.2.2. BERT Classifiers

Model architectures are depicted in Figure 2. For text sequence classification tasks,
we used a sequence classification head attached to the embedding latent space with a
multi-class output. This includes a pooling layer connected to the first token embedding of
the input text sequence, which then feeds into a fully connected layer that connects to the
output classification (Figure 2A). All models compared were fine-tuned on the fine-tuning
dataset, and had the same multi-class sequence classification head architecture.

When including auxiliary data into the sequence classification (Figure 2B), we used
a 3-layer fully connected model ending with a Tanh activation function, resulting in a
vector of 128 features. This was heuristically chosen from preliminary experiments to avoid
a computationally intensive hyper-parameter grid search. The auxiliary feature vector
and the embedding vector were then concatenated and fed into the multi-class sequence
classification head.

3.3. BI-RADS Specific Tasks

For all of our fine-tuning procedures, we trained for 4 epochs with a batch size of
32, optimizer Adam with weight decay, and a learning rate of 5 × 10−5. For this project,
we performed four sets of fine-tuning tasks: section segmentation without auxiliary data,
section segmentation with auxiliary data, field extraction without section segmentation,
and field extraction with section segmentation. All experiments were evaluated using a
5-fold cross-validation experiment.

3.3.1. Section Segmentation with and without Auxiliary Data

This model was trained to split a report document into specific information sections
that are outlined in the BI-RADS lexicon. Pre-processing entailed taking the free-text
input and performing sentence segmentation to then label each sentence as belonging
to a specific section, such as title, patient history or Cl. Ind., prior imaging reference,
technique/procedure notes findings, impression/opinion, and assessment category.

For section segmentation with auxiliary data, a sentence from the text report was
identified by BI-RADS BERT by taking the BERT contextual embedding and concatenating
it with the auxiliary data encoding, which was then fed into a final classifier. The auxiliary
data that was used in this task was the classification of the previous sentence in the report,
the number of the given sentence that it is classifying, and the total number of sentences in

https://github.com/gkuling/BIRADS_BERT
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the report. These global textual features were intended to capture an understanding of the
flow of section organization in the BI-RADS lexicon [5].
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Figure 2. Visual representation of the model architectures used for classification. (A) Text sequence
classifier: this model takes a contextual embedding of the input text using a BERT architecture
and then feeds the embedding into a fully connected linear layer to output a classification. (B) Text
sequence classifier with auxiliary data: this model uses a auxiliary feature encoder to build an encoded
auxiliary data vector that is concatenated with the contextual embedding to use for classification.
(C) Auxiliary data encoder architecture: this encoder architecture include 3 fully connected layers
followed by a Tanh activation function.

3.3.2. Field Extraction without Section Segmentation

This task involves extracting specific health indicators or imaging findings from a
breast radiology report. Field extraction without section segmentation was performed by
feeding the whole free-text document into the BERT classifier without narrowing the text
down with the section segmenter. The architecture of the BERT for sequence classification
was used for each of these tasks (Figure 2A). The specific fields that were tested are
described in the following bullet points:

• Modality/Procedure: Identification of the imaging modality or procedure description
from the title, being MG, MRI, US, biopsy, or a combination of up to three of those
imaging modalities/procedures;

• Previous Cancer: Determination of whether the attending radiologist has mentioned
if the patient has a history of cancer. We included a “Suspicious” label for examples
where surgery or treatments were mentioned, but the radiologist made no direct
statement of whether it was for benign or malignant disease;

• Purpose for Exam: Determination of the purpose for the examination, being either
diagnostic screening or not stated;

• Menopausal Status: Description of the patient’s menopausal status, being either pre-
or post-menopausal, or no mention of menopausal status;

• Density: Description of fibroglandular tissue in the report as fatty, scattered, heteroge-
neously dense, ≤75% of breast volume, dense, or not stated;

• Background Parenchymal Enhancement: Description of background enhancement
in dynamic contrast-enhanced MRI, being minimal, mild, moderate, marked, or
not stated.

3.3.3. Field Extraction with Section Segmentation

When performing field extraction with section segmentation, the section segmentation
task is performed first, and then the field extraction is performed on the section that contains
the given field. For the field extraction with section segmentation, we performed a grid
search on sequence length to observe its effect on classification. We evaluated sequence
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lengths of 32, 128, and 512, and these results can be found in Appendix A. We found that
the optimal sequence length was task-dependent, where a sequence length of 128 is better
for modality and menopausal status, while 32 is better for the rest. This result seemed
logical, due to the placement of this information in the report section. With the modality
task, the title describes all imaging performed. Consequently, the entirety of the text needs
to be evaluated. For menopausal status, the radiologists tend to mention the information at
the end of the history/Cl. Ind. section, while for the other field extraction tasks, the answer
to the classification question is placed near the beginning of the report section of interest.

3.4. Evaluation
3.4.1. Performance Metrics

We decided to use two evaluation metrics in this study. First, classification accuracy
(Acc.) was used to evaluate overall performance.

Acc. =
TP + TN

TP + FP + TN + FN
where TP, TN, FP, and FN are true positives, true negatives, false positives, and false
negatives, respectively.

Second, we implemented a general F1 measure (G.F1) based on the generalized dice
similarity coefficient [30].

G.F1 =
2 ∑C

i=0 wi · TPi

∑C
i=0 wi · (2 · TPi + FPi + FNi)

wi =
1

P2
i

where C is the class label, and Pi the amount of positive cases in the test set per class i.
We chose this metric over the classic F1 measure because it gives a more informative

performance evaluation when there are large class imbalances in the test set. The weighting
of wi in G.F1 forces the F1 measure to be more sensitive to inaccuracies of classification in
the minority class, which is important in our dataset because our imbalance favors reports
with negative findings. These class imbalances are further depicted in Figure 3.
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3.4.2. Statistical Analysis

Each experiment was evaluated with a 5-fold cross validation scheme. To determine
the best final model, we performed statistical significance testing with 95% confidence. We
used the Mann–Whitney U test to compare the medians of different section segmenters, as
the distribution of accuracy and G.F1 performance was skewed to the left (medians closer
to 100%) [31]. For the field extraction classifiers, we used the McNemar test (MN-test) to
compare the agreement between two classifiers [32]. The McNemar test was chosen because
it has been robustly proven to have an acceptable probability of Type-I errors (not detecting
a difference between the two classifiers when there is a difference). After evaluating
both the configurations of field extraction explored in this paper, we performed another
McNemar test to assist in choosing the best technique, either using section segmentation or
not. All statistical tests were performed with p-value adjustments for multiple comparisons,
testing with Bonferonni correction (B.Cor.) [33]. All statistical test results can be found in
Appendix B.

4. Results
4.1. Section Segmentation

Full results are displayed in Table 2. During the five-fold cross validation, the reports
were stratified by modality/procedure, and then the training set at the sentence level
was further stratified by section label for training–validation splits. For each contextual
embedding, all models without auxiliary data performed similarly in terms of accuracy and
G.F1, but multiple comparison testing showed they were significantly different from each
other, suggesting that the BioClinical BERT embedding performed the best (B.Cor. U test
p < 0.05). Incorporating auxiliary data that is applicable to the task achieves an accuracy
improvement of ∼2% across all the models. We did not find statistical significance between
the three section segmentation models with auxiliary data. This suggests that auxiliary
data gives sufficient information to segment the reports, regardless of the contextual
embedding used.

Table 2. Results of 5-fold cross validation section segmentation, evaluated with average accuracy
with standard deviation (Std.Dev.) and average G.F1 with standard deviation (Std.Dev.) across all
900 reports used for fine-tuning. Aux. Data = the classification of the previous sentence in the report,
the number of the given sentence it is classifying, and the total number of sentences in the report.

Base Model Fine-Tuned Avg. Acc. Avg. G.F1
± Std.Dev. ± Std.Dev.

Without Aux. Data Classic BERT 95.4 ± 8.0% 92.1 ± 22.6%
BioClinical BERT 95.9 ± 7.8% 93.2 ± 21.3%
BI-RADS BERT 94.1 ± 9.5% 89.5 ± 23.0%

With Aux. Data Classic BERT 97.7 ± 5.9% 94.6 ± 20.5%
BioClinical BERT 97.6 ± 6.1% 94.2 ± 21.1%
BI-RADS BERT 97.8 ± 5.7% 94.8 ± 19.8%

To further investigate the effectiveness of the BI-RADS contextual embeddings com-
pared to the baselines, we performed an ablation study to see if less training data would
still be useful with a specialized BERT embedding. These results are displayed in Table 3.
We can see a significant improvement of the BI-RADS BERT models over the baseline em-
beddings when auxiliary data is included. All models in this experiment were significantly
different based on the Mann–Whitney U test (B.Cor. U test p < 0.05). This suggests that the
BI-RADS BERT model is advantageous when the section segmentation data contains fewer
than 900 radiology reports.
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Table 3. Results of 5-fold cross validation section segmentation when trained using 10% of training
data, evaluated with average accuracy with standard deviation (Std.Dev.) and average G.F1 with
standard deviation (Std.Dev.) across all 900 reports used for fine-tuning. Aux. Data = the classification
of the previous sentence in the report, the number of the given sentence it is classifying, and the total
number of sentences in the report.

Base Model Fine-Tuned Avg. Acc. Avg. G.F1
± Std.Dev. ± Std.Dev.

Without Aux. Data Classic BERT 90.8 ± 10.8% 82.2 ± 31.7%
BioClinical BERT 85.8 ± 12.3% 60.9 ± 41.0%
BI-RADS BERT 92.8 ± 10.5% 85.1 ± 30.2%

With Aux. Data Classic BERT 91.8 ± 11.0% 84.8 ± 30.9%
BioClinical BERT 89.2 ± 11.4% 74.7 ± 37.0%
BI-RADS BERT 93.3 ± 9.9% 88.7 ± 25.4%

4.2. Field Extraction
4.2.1. Field Extraction without Section Segmentation

Results for this experiment can be found in Table 4. Statistical significance testing
showed the three models were all different from each other, with 95% confidence in the field
extraction tasks of BPE, modality, purpose, and previous cancer (B.Cor. MN-test p < 0.05).
For density, BI-RADS BERT was statistically different from BioClinical and classic BERT
(B.Cor. MN-test p < 0.05), but BioClinical and classic BERT were not significantly different
from each other. In the case of menopausal status, all three models were not significantly
different from each other, based on the McNemar test.

Table 4. Results of 5-fold cross validation field extraction without section segmentation, evaluated
with average accuracy with standard deviation (Std.Dev.) and average G.F1 with standard deviation
(Std.Dev.) across all 5 folds.

Acc. (G. F1) of BERT Model
Classic BioClinical BI-RADS

Modality/Procedure 64.6 ± 15.0% (23.2 ± 6.0%) 53.8 ± 15.0% (23.4 ± 8.1%) 88.7 ± 2.1% (36.7 ± 16.0%)
Previous Cancer 75.9 ± 0.3% (16.5 ± 7.0%) 80.6 ± 6.0% (33.3 ± 24.7%) 91.1 ± 1.1% (78.0 ± 3.0%)
Menopausal Status 94.7 ± 1.0% (41.9 ± 4.7%) 94.4 ± 1.7% (39.4 ± 5.9%) 95.6 ± 2.1% (55.3 ± 11.1%)
Purpose 89.3 ± 8.9% (6.8 ± 2.0%) 86.6 ± 4.0% (6.5 ± 1.6%) 93.9 ± 3.4% (7.1 ± 1.4%)
Density 62.7 ± 22.1% (26.0 ± 8.2%) 64.4 ± 13.3% (25.6 ± 6.5%) 87.8 ± 4.0% (59.0 ± 15.2%)
BPE 86.1 ± 10.9% (20.0 ± 10.2%) 89.8 ± 5.7% (19.1 ± 6.0%) 92.3 ± 4.3% (20.7 ± 6.5%)

For field extraction without using section segmentation to narrow down the report
before classification, our BI-RADS BERT outperformed the baseline models in all tasks.
Performances in accuracy across the board were acceptably high, the lowest performance
being 87.8% in density extraction. G.F1 performance was low in general, with the lowest
being 13.3% for BPE extraction, suggesting that the models have a low sensitivity for the
minority classes in that given task when attempting to extract the information from the
whole free-text report.

4.2.2. Field Extraction with Section Segmentation

Results for this experiment can be located in Table 5. This experiment entailed using
the section segmenter to locate a designated section before feeding the section sentences
into the field extraction classifier. Therefore, for each task, we had varying amounts of
training data for each task (except for modality, because every report has a title) because not
all sections appeared in all reports. This resulted in having 613 reports with history/Cl. Ind.
sections for previous cancer, menopausal status, and purpose, while having 897 reports
with findings sections for density and BPE. For reports missing the report section of interest,
we dropped the example from training, and we gave the test subject a label of “Not Stated”
during evaluation. This way, in evaluating the different models, we could still perform
pair-wise performance with the McNemar test.
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Overall, this experiment resulted in higher performances than field extraction without
section segmentation for classic BERT, BioClinical BERT, and the BI-RADS BERT. This was
found to be statistically significant over field extraction without section segmentation with
all p-values < 0.05 by using the McNemar test.

For this experiment, we see that the BI-RADS BERT outperforms the baselines in
modality, previous cancer, menopausal status, purpose, and BPE (B.Cor. MN-test p < 0.05),
but BioClinical BERT performs the best in the density category extraction (B.Cor. MN-
test p < 0.05). The sequence length grid search results can be found in Appendix A.
With statistical significance, BI-RADS BERT’s performance is different from BioClinical
and classic BERT in menopausal status, modality, and previous cancer (B.Cor. MN-test
p < 0.05). There was no statistically significant difference between models for purpose and
BPE. BioClinical BERT performed the best on density, but this was only shown to have a
statistical significance over BI-RADS BERT (B.Cor. MN-test p < 0.05), and not classic BERT.

Table 5. Results of 5-fold cross validation field extraction with section segmentation, evaluated with
average accuracy with standard deviation (Std.Dev.) and average G.F1 with standard deviation
(Std.Dev.) across all 5 folds.

SL Section Training Set Acc. (G. F1) of BERT Model
Used Size (n) Classic BioClinical BI-RADS

Modality/Procedure 128 Title 900 89.7 ± 4.2% (27.9 ± 7.6%) 89.7 ± 2.8% (32.5 ± 7.6%) 93.8 ± 2.9% (70.6 ± 8.1%)
Previous Cancer 32 History/Cl. Ind. 613 89.2 ± 2.6% (83.2 ± 3.9%) 84.2 ± 3.4% (76.1 ± 4.0%) 95.1 ± 1.4% (91.8 ± 3.1%)
Menopausal Status 128 History/Cl. Ind. 613 94.6 ± 3.7% (61.0 ± 25.9%) 93.1 ± 2.2% (40.2 ± 6.9%) 97.4 ± 1.7% (76.1 ± 16.8%)
Purpose 32 History/Cl. Ind. 613 94.9 ± 3.1% (92.9 ± 4.3%) 95.4 ± 1.5% (93.7 ± 2.0%) 97.2 ± 1.1% (96.2 ± 1.5%)
Density 32 Findings 897 94.7 ± 3.4% (81.4 ± 17.1%) 95.8 ± 2.1% (89.1 ± 8.8%) 92.7 ± 6.0% (84.5 ± 10.3%)
BPE 32 Findings 897 95.6 ± 2.3% (37.5 ± 28.6%) 96.5 ± 2.2% (47.2 ± 32.7%) 97.5 ± 2.0% (84.7 ± 16.3%)

5. Discussion

This report has presented the application of a BERT embedding for report section seg-
mentation and field extraction in breast radiology reports. With different implementations
and a specialized BI-RADS BERT contextual embedding pre-trained on a large corpus of
breast radiology reports, we have shown that a BERT model can be effective at splitting
a report’s sentences into specific sections described in the BI-RADS lexicon; then, within
those report sections, it can identify pertinent patient information and findings, such as
modality used/procedure performed, record of previous breast malignancy, purpose for
the exam (being either diagnostic or screening), the patient’s menopausal status, breast
density category, and BPE category, specifically in breast MRI.

The improved accuracy could not have been possible without structured reporting in
radiology reports [1] and the BI-RADS lexicon [5]. The section structure from the American
College of Radiology’s handbook for residents instructs the radiologist to write reports as a
scientific report to respond to the requesting clinician’s inquiry. To identify the information
in a free-text report for a given interest, centering on a section via section segmentation
gives the advantage of not searching through unnecessary details for the answer. This
advantage of the BI-RADS BERT model makes it more desirable than previous methods.

It is important to note that these results support the findings by Lee at al. [9] and
Sentzer et al. [10], namely, that having a specialized BERT contextual embedding in your
domain gives an advantage for performing NLP tasks. Here, we have shown that breast ra-
diology imaging reports also have a distinct style and terminology which may not show up
in English text corpora, web-based corpora, biological research paper corpora, or intensive
care unit reporting corpora. This improvement may be explained by the process of training
the embeddings from scratch and creating a specialized tokenizer that understands phrases
that are common to the domain [28]. For example, we found the word "mammogram" was
split up differently depending on which embedding WordPiece tokenizer was used. This
example is shown in Table 6. For the classic BERT WordPiece tokenizer, "mammogram" is
split into four parts, while the BioClincal BERT splits it into three parts. Our specialized
BI-RADS WordPiece tokenizer gives one part for "mammogram", as a it is the most com-
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monly used breast imaging modality and, thus, makes the embedding more efficient at
identifying these important concepts as a whole, as opposed to a combination of sequential
word pieces.

Table 6. Example of WordPiece tokenizer results for the word "mammogram".

Model WordPiece Tokenizer Vector

Classic [’ma’, ’##mm’, ’##og’, ’##ram’]
BioClinical [’ma’, ’##mm’, ’##ogram’]
BI-RADS [’mammogram’]

Furthermore, a specialized WordPiece tokenizer gives an advantage at capturing text
data into shorter sequences that contain more domain-specific information. Radiologists
are taught to keep reporting concise [1], leading to many smaller sentences and statements
that directly correspond to the concept the radiologist is reporting. This lower sequence
length, in general, seems to result in higher performances across all the tasks (as seen in
Appendix A). Even when pre-training the embedding in MLM, we trained with an input
sequence of 32, which still outperformed classic BERT and BioClinical BERT trained on
sequence lengths of 128 and then 512 for the final 10% of the iteration steps. Therefore,
by using a smaller sequence length, the embeddings are more precise and can extract
information more efficiently than when using longer sequences.

The major limitations of our project are as follows. We had a limited dataset, as this was
a single institutional cohort of reports that were used to build the corpus, with a majority
of them being MRI reports. Further validation on external datasets is necessary to assess
generalizability. However, at present, public datasets do not exist for this specialized task.
By publishing our code and embeddings, we hope to make it possible for other researchers
to validate this pipeline on their own private datasets. Secondly, we chose to train the
BI-RADS BERT embeddings from scratch in order to build a custom BERT embedding
specialized in BI-RADS vocabulary, so the BERT embeddings were not initialized from a
previous BERT embedding. Previous work suggests that double pre-training on varying
datasets is highly efficient [10]. Therefore, further analyses of the gains and losses from this
implementation trade-off is needed. Thirdly, we could have evaluated the field extraction
models to find information in identified sections that we did not use for field extraction
during training. In some cases, information generally found in the history/Cl. Ind. will be
in the findings or impression sections. Identifying previous cancer, menopausal status, or
purpose for the exam may be possible by looking in another report section. Our fine-tuning
dataset was built to not have these discrepancies, and would not be appropriate to evaluate
this. Therefore, further work on this is necessary.

Domain shift is an ongoing research problem in radiology report analysis, as recording
styles change through the years. For example, the BI-RADS lexicon is currently in its fifth
edition (released in 2013), and it is possible that reports generated using the fourth edition,
which was released in 2003, differ significantly. Our dataset spans a 15-year period, and
the majority of reports were generated using the latest edition. However, it is possible
that using exam date as an auxiliary data feature could improve field extraction or section
segmentation.

6. Conclusions

This report has shown that a domain-specific BERT embedding trained on breast
radiology reports gives improved performance in NLP text sequence classification tasks, in
the context of breast radiology reports, over generic BERT embeddings fine-tuned to the
same tasks, such as classic BERT and BioClinical BERT. We have seen that these custom
embeddings are superior to general ones in extracting health indicator information pertain-
ing to the BI-RADS lexicon. We have further shown that the inclusion of auxiliary data,
such as global textual information, can significantly improve text sequence classification in
section segmentation. Our objective is to build a useful tool for large-scale epidemiological
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studies looking to explore new factors in the incidence, treatment, and management of
breast cancer.
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Appendix A. Sequence Length Experiment Results for Field Extraction with Section
Segmentation

In Table A1, we present grid search results for exploring the max sequence length that
is ideal for each field extraction task.

Table A1. Results of field extraction with section segmentation.

Task Section Used Data Size (n) Acc. (G. F1) of BERT Model

Modality
Procedure Title 900 Classic BioClinical BI-RADS

Max Seq = 32 89.4 ± 3.7% (30.1 ± 7.0%) 82.6 ± 14.6% (31.8 ± 9.2%) 87.2 ± 7.7% (64.5 ± 16.5%)
Max Seq = 128 89.7 ± 4.2% (27.9 ± 7.6%) 89.7 ± 2.8% (32.5 ± 7.6%) 93.8 ± 2.9% (70.6 ± 8.1%)
Max Seq = 512 89.7 ± 4.2% (27.9 ± 7.6%) 89.7 ± 2.8% (32.5 ± 7.6%) 93.8 ± 2.9% (70.6 ± 8.1%)

Previous Cancer History/Cl. Indication 613 Classic BioClinical BI-RADS

Max Seq = 32 89.2 ± 2.6% (83.2 ± 3.9%) 84.2 ± 3.4% (76.1 ± 4.0%) 95.1 ± 1.4% (91.8 ± 3.1%)
Max Seq = 128 83.4 ± 3.1% (72.9 ± 3.6%) 63.6 ± 15.6% (50.5 ± 16.3%) 92.8 ± 1.8% (88.4 ± 1.9%)
Max Seq = 512 82.9 ± 3.2% (68.5 ± 9.5%) 75.9 ± 9.6% (55.3 ± 14.2%) 92.5 ± 1.6% (87.2 ± 1.9%)

Menopausal Status History/Cl. Indication 613 Classic BioClinical BI-RADS

Max Seq = 32 94.5 ± 1.8% (63.7 ± 17.8%) 92.0 ± 3.1% (59.7 ± 13.11%) 95.4 ± 2.4% (76.4 ± 13.4%)
Max Seq = 128 94.6 ± 3.7% (61.0 ± 25.9%) 93.1 ± 2.2% (40.2 ± 6.9%) 97.4 ± 1.7% (76.1 ± 16.8%)
Max Seq = 512 94.1 ± 2.3% (57.7 ± 17.0%) 94.0 ± 1.3% (40.6 ± 11.8%) 97.1 ± 1.5% (72.3 ± 17.9%)

Purpose History/Cl. Indication 613 Classic BioClinical BI-RADS

Max Seq = 32 94.9 ± 3.1% (92.9 ± 4.3%) 95.4 ± 1.5% (93.7 ± 2.0%) 97.2 ± 1.1% (96.2 ± 1.5%)
Max Seq = 128 92.3 ± 6.8% (90.4 ± 7.2%) 86.0 ± 8.1% (77.6 ± 15.3%) 95.1 ± 5.0% (93.5 ± 6.2%)
Max Seq = 512 95.3 ± 2.7% (93.2 ± 4.2%) 92.2 ± 7.6% (87.2 ± 13.8%) 96.6 ± 2.2% (95.3 ± 3.0%)

Density Findings 897 Classic BioClinical BI-RADS

Max Seq = 32 94.7 ± 3.4% (81.4 ± 17.1%) 95.8 ± 2.1% (89.1 ± 8.8%) 92.7 ± 6.0% (84.5 ± 10.3%)
Max Seq = 128 92.8 ± 3.7% (66.6 ± 18.5%) 92.6 ± 3.6% (68.3 ± 21.8%) 89.2 ± 5.5% (59.0 ± 20.7%)
Max Seq = 512 91.0 ± 4.3% (58.1 ± 22.0%) 85.5 ± 14.3% (64.5 ± 30.1%) 84.4 ± 8.4% (48.9 ± 24.0%)

BPE Findings 897 Classic BioClinical BI-RADS

Max Seq = 32 95.6 ± 2.3% (37.5 ± 28.6%) 96.5 ± 2.2% (47.2 ± 32.7%) 97.5 ± 2.0% (84.7 ± 16.3%)
Max Seq = 128 94.7 ± 2.6% (29.9 ± 32.3%) 93.4 ± 4.6% (32.8 ± 30.3%) 96.9 ± 1.8% (62.8 ± 25.9%)
Max Seq = 512 94.0 ± 3.1% (26.1 ± 35.5%) 93.6 ± 2.9% (20.5 ± 36.1%) 95.3 ± 2.5% (50.0 ± 27.8%)
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Appendix B. Statistical Test Results for All Experiments

The following Tables A2–A27 are statistical testing done on the results. It give the test
statistic (Stat), p-value (Pval), corrected p-value using Bonferroni correction (Pval Corr),
and the result of rejecting the null hypothesis (Reject).

Appendix B.1. Section Segmentation

Appendix B.1.1. Accuracy

Table A2. Bonferonni-corrected Mann–Whitney U test results for section segmentation without
auxiliary data.

Group1 Group2 Stat Pval Pval Corrected Reject

BI-RADS BioClinical 352,753.0 0.0 0.0 True
BI-RADS Classic 369,827.5 0.0002 0.0004 True
BioClinical Classic 387,735.0 0.0347 0.0347 True

Table A3. Bonferonni-corrected Mann–Whitney U test results for section segmentation with auxil-
iary data.

Group1 Group2 Stat Pval Pval Corrected Reject

BI-RADS BioClinical 394,951.5 0.0991 0.2974 False
BI-RADS Classic 403,380.0 0.4161 0.4161 False
BioClinical Classic 396,635.5 0.1428 0.2974 False

Ablation study:

Table A4. Bonferonni-corrected Mann–Whitney U test results for section segmentation without
auxiliary data in an ablation study with 10% of training data.

Group1 Group2 Stat Pval Pval Corrected Reject

BI-RADS BioClinical 304,253.0 0.0 0.0 True
BI-RADS Classic 374,838.0 0.0019 0.0019 True
BioClinical Classic 336,184.0 0.0 0.0 True

Table A5. Bonferonni-corrected Mann–Whitney U test results for section segmentation with auxiliary
data in an ablation study with 10% of training data.

Group1 Group2 Stat Pval Pval Corrected Reject

BI-RADS BioClinical 242,663.5 0.0 0.0 True
BI-RADS Classic 358,323.5 0.0 0.0 True
BioClinical Classic 288,753.5 0.0 0.0 True

Appendix B.1.2. G.F1

Table A6. Bonferonni-corrected Mann–Whitney U test results for section segmentation without
auxiliary data.

Group1 Group2 Stat Pval Pval Corrected Reject

BI-RADS BioClinical 347,125.0 0.0 0.0 True
BI-RADS Classic 363,098.0 0.0 0.0 True
BioClinical Classic 388,187.5 0.0385 0.0385 True
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Table A7. Bonferonni-corrected Mann–Whitney U test results for section segmentation with auxil-
iary data.

Group1 Group2 Stat Pval Pval Corrected Reject

BI-RADS BioClinical 395,781.0 0.1189 0.3568 False
BI-RADS Classic 403,920.0 0.4438 0.4438 False
BioClinical Classic 396,843.5 0.1489 0.3568 False

Ablation study:

Table A8. Bonferonni-corrected Mann–Whitney U test results for section segmentation without
auxiliary data in an ablation study with 10% of training data.

Group1 Group2 Stat Pval Pval Corrected Reject

BI-RADS BioClinical 295,455.5 0.0 0.0 True
BI-RADS Classic 379,517.0 0.0073 0.0073 True
BioClinical Classic 319,629.5 0.0 0.0 True

Table A9. Bonferonni-corrected Mann–Whitney U test results for section segmentation with auxiliary
data in an ablation study with 10% of training data.

Group1 Group2 Stat Pval Pval Corrected Reject

BI-RADS BioClinical 229,853.0 0.0 0.0 True
BI-RADS Classic 362,248.5 0.0 0.0 True
BioClinical Classic 261,946.0 0.0 0.0 True

Appendix B.2. Field Extraction without Section Segmentation

Table A10. Bonferonni-corrected McNemar test results for field extraction with no section segmenta-
tion of modality.

Group1 Group2 Stat Pval Pval Corr Reject

BI-RADS BERT BioClinical 30.0 0.0152 0.0152 True
BI-RADS BERT Classic 36.0 0.0 0.0 True
BioClinical Classic 55.0 0.0072 0.0145 True

Table A11. Bonferonni-corrected McNemar test results for field extraction with no section segmenta-
tion of previous cancer.

Group1 Group2 Stat Pval Pval Corr Reject

BI-RADS BERT BioClinical 30.0 0.0152 0.0152 True
BI-RADS BERT Classic 36.0 0.0 0.0 True
BioClinical Classic 55.0 0.0072 0.0145 True

Table A12. Bonferonni-corrected McNemar test results for field extraction with no section segmenta-
tion of menopausal status.

Group1 Group2 Stat Pval Pval Corr Reject

BI-RADS BERT BioClinical 30.0 0.0152 0.0152 True
BI-RADS BERT Classic 36.0 0.0 0.0 True
BioClinical Classic 55.0 0.0072 0.0145 True
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Table A13. Bonferonni-corrected McNemar test results for field extraction with no section segmenta-
tion of purpose.

Group1 Group2 Stat Pval Pval Corr Reject

BI-RADS BERT BioClinical 30.0 0.0152 0.0152 True
BI-RADS BERT Classic 36.0 0.0 0.0 True
BioClinical Classic 55.0 0.0072 0.0145 True

Table A14. Bonferonni-corrected McNemar test results for field extraction with no section segmenta-
tion of density.

Group1 Group2 Stat Pval Pval Corr Reject

BI-RADS BERT BioClinical 30.0 0.0152 0.0152 True
BI-RADS BERT Classic 36.0 0.0 0.0 True
BioClinical Classic 55.0 0.0072 0.0145 True

Table A15. Bonferonni-corrected McNemar test results for field extraction with no section segmenta-
tion of BPE.

Group1 Group2 Stat Pval Pval Corr Reject

BI-RADS BERT BioClinical 30.0 0.0152 0.0152 True
BI-RADS BERT Classic 36.0 0.0 0.0 True
BioClinical Classic 55.0 0.0072 0.0145 True

Appendix B.3. Field Extraction with Section Segmentation

Table A16. Bonferonni-corrected McNemar test results for field extraction with no section segmenta-
tion of modality.

Group1 Group2 Stat Pval Pval Corr Reject

BI-RADS BERT BioClinical 2.0 0.0 0.0 True
BI-RADS BERT Classic 3.0 0.0005 0.0142 True
BioClinical Classic 11.0 0.1496 1.0 False

Table A17. Bonferonni-corrected McNemar test results for field extraction with no section segmenta-
tion of previous cancer.

Group1 Group2 Stat Pval Pval Corr Reject

BI-RADS BERT BioClinical 2.0 0.0 0.0 True
BI-RADS BERT Classic 3.0 0.0005 0.0142 True
BioClinical Classic 11.0 0.1496 1.0 False

Table A18. Bonferonni-corrected McNemar test results for field extraction with no section segmenta-
tion of menopausal status.

Group1 Group2 Stat Pval Pval Corr Reject

BI-RADS BERT BioClinical 2.0 0.0 0.0 True
BI-RADS BERT Classic 3.0 0.0005 0.0142 True
BioClinical Classic 11.0 0.1496 1.0 False
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Table A19. Bonferonni-corrected McNemar test results for field extraction with no section segmenta-
tion of purpose.

Group1 Group2 Stat Pval Pval Corr Reject

BI-RADS BERT BioClinical 2.0 0.0 0.0 True
BI-RADS BERT Classic 3.0 0.0005 0.0142 True
BioClinical Classic 11.0 0.1496 1.0 False

Table A20. Bonferonni-corrected McNemar test results for field extraction with no section segmenta-
tion of density.

Group1 Group2 Stat Pval Pval Corr Reject

BI-RADS BERT BioClinical 2.0 0.0 0.0 True
BI-RADS BERT Classic 3.0 0.0005 0.0142 True
BioClinical Classic 11.0 0.1496 1.0 False

Table A21. Bonferonni-corrected McNemar test results for field extraction with no section segmenta-
tion of BPE.

Group1 Group2 Stat Pval Pval Corr Reject

BI-RADS BERT BioClinical 2.0 0.0 0.0 True
BI-RADS BERT Classic 3.0 0.0005 0.0142 True
BioClinical Classic 11.0 0.1496 1.0 False

Appendix B.4. Field Extraction without Section Segmentation Tested against Field Extraction with
Section Segmentation

Table A22. McNemar test results for field extraction of modality.

Group1 Group2 Stat Pval Pval Corr Reject

BI-RADS BERT BI-RADS BERT with Segmentation 10.0 0.0 0.0 True

Table A23. McNemar test results for field extraction of previous cancer.

Group1 Group2 Stat Pval Pval Corr Reject

BI-RADS BERT BI-RADS BERT with Segmentation 10.0 0.0 0.0 True

Table A24. McNemar test results for field extraction of menopausal status.

Group1 Group2 Stat Pval Pval Corr Reject

BI-RADS BERT BI-RADS BERT with Segmentation 10.0 0.0 0.0 True

Table A25. McNemar test results for field extraction of purpose.

Group1 Group2 Stat Pval Pval Corr Reject

BI-RADS BERT BI-RADS BERT with Segmentation 10.0 0.0 0.0 True

Table A26. McNemar test results for field extraction of density.

Group1 Group2 Stat Pval Pval Corr Reject

BI-RADS BERT BI-RADS BERT with Segmentation 10.0 0.0 0.0 True
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Table A27. McNemar test results for field extraction of BPE.

Group1 Group2 Stat Pval Pval Corr Reject

BI-RADS BERT BI-RADS BERT with Segmentation 10.0 0.0 0.0 True
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