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Abstract: In the past years, Deep Neural Networks (DNNs) have become popular in many disciplines
such as Computer Vision (CV), and the evolution of hardware has helped researchers to develop
many powerful Deep Learning (DL) models to deal with several problems. One of the most im-
portant challenges in the CV area is Medical Image Analysis. However, adversarial attacks have
proven to be an important threat to vision systems by significantly reducing the performance of the
models. This paper brings to light a different side of digital watermarking, as a potential black-box
adversarial attack. In this context, apart from proposing a new category of adversarial attacks named
watermarking attacks, we highlighted a significant problem, as the massive use of watermarks, for
security reasons, seems to pose significant risks to vision systems. For this purpose, a moment-based
local image watermarking method is implemented on three modalities, Magnetic Resonance Images
(MRI), Computed Tomography (CT-scans), and X-ray images. The introduced methodology was
tested on three state-of-the art CV models, DenseNet 201, DenseNet169, and MobileNetV2. The
results revealed that the proposed attack achieved over 50% degradation of the model’s performance
in terms of accuracy. Additionally, MobileNetV2 was the most vulnerable model and the modality
with the biggest reduction was CT-scans.

Keywords: medical image analysis; deep learning; computer vision; adversarial attack;
watermarking; robustness

1. Introduction

The evolution of deep learning and computer hardware has helped computer vision
applications become reality. Some disciplines that use DL for computer vision tasks
are robotics [1], image quality assessment [2], biometrics [3], face recognition [4], image
classification [5], autonomous vehicles [6], etc. One of the most important applications in
CV is medical image analysis, where usually DL models were trained to diagnose or predict
several diseases from numerous modalities such as MRI, CT-scans, X-rays, Histopathology
images, etc. Because of DL success, it has become a useful supportive tool for doctors
through medical image analysis as it saves significant time from doctors’ tasks.

Despite DL success, recent studies proved that these models can be easily fooled by
imperceptibly perturbating images [7]. According to Goodfellow et al. [8], these attacks
decrease the model’s efficiency due to its linearity. Adversarial attacks are divided into
three main categories. The first is “white-box attack” in which attackers know the structure
and the parameters of the model. The second is “grey-box attack” where attackers know
only the model’s structure, and the third is “black-box attack” in which attackers know
nothing about the model. Additionally, there are targeted and untargeted attacks. In the
former, attackers want to misclassify the input sample in a specific class, while in the latter
they just want the sample data to be misclassified. Some of the most known adversarial
attacks are Fast Gradient Sign Method (FGSM) [8], Projected Gradient Descent (PGD) [9],
Jacobian-based Saliency Maps Attacks (JSMA) [10], and Carlini & Wagner (C&W) [11].
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Defense in adversarial attacks can be done in two ways: data level defense and algorithmic
level defense. In the first category belong the adversarial training [8] and preprocessing
and postprocessing methods [12], while in the second category, some methods modify the
model’s architecture, classifier, and capacity [9].

This phenomenon raises questions about the safety of computer vision in medicine, as a
wrong diagnosis or prediction can cost a human life. There are several attacks and defenses
in medical image analysis [13] which can be exploited by the research community in order to
develop models and methods that overcome this challenge. In this paper, we propose a new
black-box attack, which is based on a digital watermarking methodology. When handling
medical images, the main priority is to ensure that the patient’s details are protected and
remain hidden from any forgery by unauthorized persons. That is why the main concern
of electronic medical systems is the integration of a standard solution for maintaining
the authenticity and integrity of medical images [14]. Digital watermarking is the main
solution for this issue. Watermarking enters patients’ information in an invisible way, and
usually this is done in binary format. This procedure is called watermark embedding. The
watermark embedding must be robust because information should be extracted correctly,
even if the image is attacked.

In this paper, we bring to light that watermarking could be a serious problem because
it is used for safety reasons, but we show that it can damage the performance of the decision
models. In this context, we applied digital watermarking in three modalities: MRIs for
brain tumor classification, X-rays for COVID-19, Pneumonia and Normal classification,
and CT-scans for COVID detection in lungs. Experiments showed that the proposed water-
marking attack can importantly decrease the performance of the models. The MobileNetV2
model was the most vulnerable, while DenseNets were more robust. Furthermore, the
lowest values of the watermarking control parameters were able to significantly reduce
the accuracy of models in CT-scans. The proposed attack reduced the accuracy by almost
50%. The rest of this paper is organized as follows. Section 2 presents related studies from
the literature that applied attacks on medical images. In Section 3, a background of the
applied moment-based watermarking method is provided. Section 4 provides details about
implementation such as models, datasets, and parameters. Finally, Section 5 concludes
this study.

2. Related Works

In recent years, several adversarial attacks for medical images have been proposed.
Some studies have experimented with existing attacks on medical images, while others
create attacks exclusively for medical images. Yilmaz et al. [15] applied FGSM attack
on mammographic images. They used “Digital Database for Screening Mammography”
(DDSM), which consists of normal and cancerous images. The accuracy decreased up to 30%
while the Structural Similarity Index SSIM index fell below 0.2. Pal et al. [16] applied FGSM
attack on X-rays and CT-Scans for COVID-19 detection. They used VGG16 and InceptionV3
models, showing that these models are vulnerable as the accuracy has decreased up to 90%
in VGG-16 and up to 63% in InceptionV3. Paul et al. [17] attacked on NLST dataset using
the white-box FGSM and the black-box One-pixel attacks. FGSM reduced the model’s
accuracy by 36% while One-pixel by only 2-3%. Huq and Pervin [18] applied the FGSM and
PGD attacks on dermoscopic images for skin cancer recognition. The model’s performance
decreased by up to 75%. Some of the most known white-box attacks, FGSM, PGD, C&W,
and BIM, were tested on three datasets with ResNet50. In some cases, the performance of
the model decreased by 100% [19]. Ozbulak et al. [20] proposed a targeted attack for medical
image segmentation, which is named Adaptive Segmentation Mask Attack (ASMA). This
attack creates imperceptible samples and achieves high Intersection-over-Union (IoU)
degradation. Chen et al. [21] proposed an attack for medical image segmentation by
generating adversarial examples using geometrical deformations to model anatomical
and intensity variations. Tian et al. [22] created an adversarial attack that is based on the
phenomenon of bias field which can be caused by the wrong acquisition of a medical image,
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and it can affect the efficacy of a DNN. Kiigler et al. [23] investigated a physical attack on
skin images by drawing dots and lines with pen or acrylic on the skin. Shao et al. [24]
proposed a white-box targeted segmentation attack, which is a combination of adaptive
segmentation mask and feature space perturbation in order to create a Multi-Scale Attack
(MSA). The authors used the gradient of the last layer and of the middle layer in order for
perturbation to be small. Yao et al. [25] proposed a Hierarchical Feature Constraint (HFC)
method that can be added to any attack. Adversarial attacks are detected easier in medical
images than in natural images, and this method helps attacks to hide adversarial features
in order for them to not be easily detected.

3. Materials and Methods

Image moments are one of the most important descriptors of the content of images
and they have been used in several research fields such as pattern recognition [26], com-
puter vision [27], and image processing [28]. In the past years, researchers developed
orthogonal moments, which are used as kernel function polynomials with orthogonal
basis. That means different moment orders describe different parts of images, which re-
sults in a minimum of information redundancy. Some well-known moment families are
Zernike [29], Tchebichef [30], and Krawtchouk [31]. The watermarking method we applied
used Krawtchouk moments due to its robustness under signal processing attacks.

3.1. Krawtchouk Moments

The Krawtchouk orthogonal moments are a family of high-resolution moments de-
fined in the discrete domain, which was introduced into the image analysis by Yap et al. [31].
Krawtchouk moments use the discrete polynomials Krawtchouk, which have the
following form,

1 N
Kn(x;p,N) = ,F; (—n, —x;—N; p) =Y o I 1)

wherex,n=0,1,2,... ,N,N>0,p € (0,1) and ,F; is the hypergeometric function.
However, using Equation (1) occurred numerical fluctuations and a more stable version
of them, the weighted Krawtchouk polynomials, was used,

— w(x;p,N)
Kn(x;p,N) = Kn(x;p,N)y| ————= (2)

(i p, N) = Kn(xip, Ny [0 200

where p(n; p, N), is the norm of the Krawtchouk polynomials,
1-p" n!
mp, N)=(-1)"(—L ,n=1...,N 3)
p(nip,N) = (=D"(—=) =
and w(x; p, N), the weight function of the Krawtchouk moments
N -

wtsp ) = () )pra-ph ) @

In Equation (3) the symbol (.), corresponds to the Pochhammer symbol, which for the
general case is defined as (a)y = (a+1)...(a+k+1).

Based on the above definitions, the orthogonal discrete Krawtchouk image moments
of (n + m)" order, of an NxM image with intensity function f(x, y) is defined as follows:

Kum = Zi\:ol Zﬁ/:ol Kn(x;p1, N — 1) Km(y; p2, M — 1) f(x,y) (5)
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Krawtchouk moments are very effective local descriptors, unlike the other moment
families which capture the global features of the objects they describe. This locality property
is controlled by the appropriate adjustment of the p1, p2 parameters of Equation (5).

3.2. Watermark Embedding

The method we used for watermark embedding was proposed by [32] and consists of
the processing modules depicted in Figure 1.

+ T Watermarked

’{ Krawtchouk l ’{ Dither

-4 Watermark A g
Moments J Modulation L Construction Image
K, K, Message
Iby by by |

Figure 1. Watermark embedding.

In Figure 1, the original image is the initial medical image where a L-bit length binary
message is inserted by constructing the final watermarked image. A set of Krawtchouk
moments is calculated according to Equation (5). In this stage, there is a key set K;
that corresponds to the set of parameters p: (p1, p2). Dither modulation is an important
methodology that integrates one signal into another one, enhances the embedding rate
with minimum distortion of the original image, and increases robustness under attacking
conditions. In this methodology, the Krawtchouk moments of the initial image is used as
the host signal where the L-bit length binary message (b, by, . .. , br) is inserted according to
Equation (6). The modified Krawtchouk moments, which resulted from dither modulation,
are used to construct the watermark information, which is added with the initial image in
the last step.

K”imi*dl (bi)

K”imi = { A

:|A+dl(bl),l_1,,L (6)
where [.] is the rounding operator, A the quantization step (key Kj3), which is actually
the embedding strength of the watermark information, and d;(.) the ith dither function
satisfying d;(1)= A/2 + d;(0). The dither vector (d1(0), d2(0), ..., dr(0)) is uniformly
distributed in the range [0, A].

3.3. Watermarking Adversarial Attack

Digital watermarking is a process that prevents tampering by providing authentication,
content verification, and image integration. It consists of two processes. The first process
is called watermark embedding, during which digital information is embedded into a
multimedia product and the second one is called watermark extraction, in which the
information is extracted or detected from the product. Watermarking in the medical field
has numerous practical applications, including telediagnosis, teleconferencing between
clinicians, and distance training of medical staff. The use of watermarking techniques
guarantees the confidentiality, security of the sent data, and the integrity of the medical
images. Furthermore, watermark authentication and tamper detection methods can be
used to locate the source of the medical images and the falsified area, respectively. All of
the above lead to the conclusion that watermarking is a crucial process and necessary in
medical image analysis.

So far, we have been taking advantage of the benefits of watermarking, however,
digital watermarking can garble the quality of a multimedia product such as an image.
These changes may not affect human decision making, but we hypothesize that they
can influence the decision of a deep learning model. In this study, we deal only with the
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watermark embedding part and not with the extraction part since we study the performance
of the models on watermarked images. There are numerous watermarking methodologies,
like other moment families [33] or transformations [34], that are applied in medical images,
and these can constitute a new category of attacks.

We experimented with a watermarking method that uses Krawtchouk moments,
because image moments are one of the most important descriptors of the content of images
and they are widely used in many fields of image processing. Moreover, another adversarial
attack, Discrete Orthogonal Moments Exclusion of Tchebichef image moments DOME-
T [35], uses moments to attack ImageNet dataset with remarkable results. Through this
research, we highlight a crucial problem that has not been re-studied—that watermarking
can impair the performance of the models. Watermarking is widely used in the analysis
of medical images, and therefore various watermarking methodologies for the safe use of
artificial intelligence in the medical field must be studied from this perspective. We name
this new category of adversarial attacks as Watermarking Adversarial Attacks, or WAZ for
short, and herein we are studying the Krawtchouk Moments based WA? represented by
the term KMsWA?.

4. Experimental Study

In order to investigate the performance of the proposed watermarking attack (The
source code of the proposed KMsWA?2 attack will be provided via the github account
(https://github.com/MachineLearningVisionRG/KMsWA2, accessed on 17 April 2022)
of our research group, upon acceptance of the paper), we trained three popular deep
learning models, DenseNet169, DenseNet201, and MobileNetV2, which are widely used
by the research community, and thus it is important to investigate their robustness. We
combined all p1 and p2 values, p1, p2 € [0.1, 0.2, ..., 0.9], with different L-bit lengths
and embedding strength a. The L-bit length ranges from 100 to 1000 with step 100. The
embedding strength takes four different values, 50, 100, 200, and 300. The watermark
embedding was implemented in MATLAB 2018a and the models were trained in Google
Collab with Keras 2.4.3. All models were pretrained in ImageNet dataset and they were
fine-tuned with Adam optimizer for 20 epochs with a learning rate of 0.0001. We also use
three different attacks, FGSM, PGD, and Square Attack [36], for comparison. FGSM and
PGD create samples with different models in order for them to treat as black-box attacks.
For this purpose, the Adversarial Robustness Toolbox (ART) [37] for creating adversarial
samples was applied. Finally, the SSIM index was calculated for the assessment of the
image distortion.

4.1. Datasets

The attack was applied in classification problems in three different modalities. The
first dataset [38] is an X-ray set from the lungs that classifies the images into three categories,
normal, pneumonia, and COVID-19, containing 3840 images. The second dataset [39] con-
sists of brain MRIs of four tumor categories with 3264 total images and the last dataset [40]
is a binary classification of CT-Scans for COVID-19 and non-COVID-19 lungs, providing
2481 images. In Figure 2 is presented a sample of the used datasets.

4.2. Ablation Study

The attack consists of three main parameters: embedding strength (a), embedding
message length (L-bit), and p values (p1, p2). The embedding strength is an important
parameter in digital watermarking because it affects the extraction of information. When
the strength value is big, the extraction method is more robust, but the perturbation in
images is more visible. The L-bit length concerns the size of information we insert in images.
If the size is large, then the part of the image, which is perturbated, is also large. The last
parameters, p values (p1, p2), function as coordinates of local patch of the image where the
watermark is inserted (Figure 3).
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Figure 2. Images from three datasets, (a) X-rays, (b) MRIs, and (c) CT-Scans.

(2) (®)

a

Figure 3. (a) Watermark embedding with p1 = 0.1 and p2 = 0.1, (b) Watermark embedding with
pl=0.9 and p2 =0.9.

As it is shown in Figure 3a, the watermarking is embedded on the upper left corner,
as the p parameters are equal to 0.1, while in (b) the watermarking was embedded on
the bottom right corner because p values are equal to 0.9. Both p values range from 0.1
to 0.9 by representing all local points of the image. In Figure 4, it is presented how the
embedding strength affects the distortion of an image while the other parameters are
constant (L-bit = 1000, p1 = 0.1, p2 = 0.1), and in Figure 5 the perturbation is presented from
L-bit length (embedding strength = 300, p1 = 0.1, p2 = 0.1). Embedding strength controls the
limit of watermark information that is inserted in the image. A large embedding strength
provides more robustness, but it is also more perceptible at the same time.
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(@ (e)

Figure 4. (a) Initial image. (b) Embedding strength = 50, (c) Embedding strength = 100, (d) Embedding
strength = 200, (¢) Embedding strength = 300. The rest of the parameters are L-bit = 1000, p1 = 0.1,
p2=0.1.

@ O]

Figure 5. (a) Initial image, (b) L-bit = 200, (c) L-bit = 500, (d) L-bit = 800, (e) L-bit = 800. The rest
parameters are Embedding strength = 300, p1 = 0.1, p2 = 0.1.
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As it is depicted in Figure 4, increasing the embedding strength the quality of the
image is getting worse and the noise becomes more perceptible and intense. On the other
hand, in Figure 5 the intense of the noise is almost the same in all L-Bit lengths, but it
changes the magnitude of the noise.

In addition, experiments were performed with FGSM, PGD, and Square Attack for
e values equal to 0.01, 0.03, 0.05, 0.07, 0.09, 0.12, and 0.15. In Figure 6, MRI with afore-
mentioned attacks and € = 0.01 are presented. The human eye cannot understand any
difference between these images. In Figure 7, attacks with e = 0.07 are depicted. Square
Attack causes the biggest distortion compared to FGSM and PGD. However, small changes
can be observed also in the other two attacks. In Figure 8, the € value has been increased to
0.15, making the noise perceptible.

QOO0

Figure 6. (a) Initial Image, (b) FGSM attack with € = 0.01, (c¢) PGD attack with e = 0.01, (d) Square
Attack with e = 0.01.

69696969

@ ® (©) (d

Figure 7. (a) Initial Image, (b) FGSM attack with € = 0.07, (c) PGD attack with e = 0.07, (d) Square
Attack with € = 0.07.

@ (®) (©) (d)

Figure 8. (a) Initial Image, (b) FGSM attack with e = 0.15, (c¢) PGD attack with e = 0.15, (d) Square
Attack with € =0.15.

4.3. Results

All possible combinations of parameters are applied in images in order to investigate,
which set of parameters is more effective. As it is reasonable, big values of L-bit length
and embedding strength led to greater efficiency. However, adversarial attacks should
be as imperceptible as possible. That is why we experimented with all values in order to
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combine efficiency and imperceptibility. In Tables 1-3 the results before and after attack for
X-rays Images are presented, while Tables A1-A3 concern MRIs and Tables A4—-A6 concern
CT-scans, all for the case of the three examined DL pretrained models. For each L-bit length
and embedding strength, we present the most effective values of pl and p2. Moreover,
the term “original accuracy” refers to the performance of the models in non-watermarked
images. Additionally, the SSIM index (it takes values between 0-1 or 0-100% in percentage)
between the original and the attacked image is presented in the following tables. The lowest
SSIM index was given by X-rays (0.79) with embedding strength and L-Bit length equal to
500 and 1000, respectively. The attacking performance of FGSM, PGD and Square Attack
are presented in Tables A7-A9 for X-rays, MRIs, and CT-Scans, respectively. The value
€ in tables is the magnitude of perturbation for each attack. Each table shows the SSIM
index and the model’s accuracy for each e value. To make the text legible, Tables A1-A9
are available for viewing in Appendix A.

Table 1. KMsWA? attack on MobileNetV2 in X-rays dataset.

X-rays — MobileNetV2 — Original Accuracy = 96.8%

L-Bits Embed. Strength = 50 Embed. Strength = 100 Embed. Strength = 200 Embed. Strength = 300

o 5 W e m W oan B w e S
100 99.4 0.8,0.1 95.3 99.2 0.9,0.6 94.3 98.4 0.8,0.6 93.1 97.5 0.8,04 92.1
200 99.3 0.9,0.6 95.0 98.7 0.8,0.6 93.7 97.0 0.8,0.4 91.8 95.2 0.8,0.6 91.8
300 99.0 0.9,0.6 95.0 98.2 0.8,0.5 93.4 95.6 0.8,0.5 90.3 93.0 0.8,0.5 90.6
400 98.9 0.9, 0.6 94.3 97.6 0.8,0.4 93.1 94.2 0.8,0.4 89.3 90.9 0.8,04 88.7
500 98.7 0.8,0.5 93.7 97.1 0.8,0.4 92.8 92.9 0.8,0.4 89.0 88.9 0.7,04 89.3
600 98.5 0.8,0.5 94.0 96.5 0.7,0.4 92.1 91.5 0.7,0.5 87.5 86.9 0.7,0.5 87.8
700 98.3 0.8,0.5 93.7 95.9 0.7,0.5 91.2 90.2 0.7,0.3 86.8 84.9 0.7,0.5 86.8
800 98.1 0.8,0.5 93.4 95.3 0.7,0.5 90.0 88.8 0.7,0.5 87.5 83.0 0.7,0.5 84.3
900 97.9 0.7,0.5 93.1 96.7 0.7,0.6 89.3 87.4 0.7,0.5 83.4 81.0 0.7,0.5 79.0
1000 97.6 0.7,0.5 93.1 94.0 0.7,0.6 88.1 85.9 0.7,0.5 82.1 79.0 0.7,0.5 78.7

Table 2. KMsWA? attack on DenseNet201 in X-rays.
X-rays — DenseNet201 — Original Accuracy = 96.2%
L-Bits Embed. Strength = 50 Embed. Strength = 100 Embed. Strength = 200 Embed. Strength = 300
SSIM Acc. SSIM Acc. SSIM Acc. SSIM Acc.
I N 2 et 2 W O M O N ) Bt )

100 99.4 0.8,0.8 95.5 99.2 0.8,0.4 95.3 98.4 0.8,0.7 95.3 97.5 04,0.6 95.0
200 99.3 0.8,0.8 95.6 98.7 0.9,0.1 95.3 97.0 0.1,0.7 95.3 95.2 0.8,0.6 94.3
300 99.0 0.8,0.1 95.3 98.2 0.3,0.5 95.6 95.6 0.8,0.7 95.0 93.0 0.5,0.5 93.1
400 98.9 09,05 95.6 97.6 0.1,0.7 95.3 94.2 0.1,0.9 94.6 90.9 04,0.5 92.1
500 98.7 0.1,0.8 95.3 97.1 0.8,0.6 95.0 92.9 0.1,0.7 94.3 88.9 0.5,0.5 91.2
600 98.5 0.8,0.1 95.6 96.5 0.1,0.7 95.0 91.5 0.4,0.6 93.7 86.9 0.6,0.7 90.6
700 98.3 0.8,0.5 95.3 95.9 0.8,0.9 95.0 90.2 0.3,0.5 92.8 84.9 0.6,0.8 88.7
800 98.1 0.1,0.2 95.3 95.3 0.5,0.1 95.0 88.8 0.4,0.5 92.8 83.0 04,0.6 87.8
900 97.9 0.9,0.5 95.0 96.7 0.1,0.8 94.7 874 0.6,0.6 92.5 81.0 04,0.7 85.9
1000 97.6 0.1,0.8 95.3 94.0 04,03 944 85.9 04,05 90.3 79.0 04,0.5 82.1
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Table 3. KMsWA? attack on DenseNet169 in X-rays.
X-rays — DenseNet169 — Original Accuracy = 95.9%
L-Bits Embed. Strength = 50 Embed. Strength =100 Embed. Strength =200 Embed. Strength = 300

W o % W oee S W e 5 W e S
100 99.4 0.8,0.4 95.3 99.2 0.9,0.3 95.0 98.4 0.8,0.5 94.0 97.5 0.8,0.7 94.3
200 99.3 0.8,04 95.0 98.7 0.1,0.8 95.0 97.0 0.8,0.5 93.7 95.2 0.8,0.5 91.2
300 99.0 0.8,04 95.3 98.2 0.1,0.5 94.3 95.6 0.7,0.5 92.5 93.0 0.8,0.5 89.3
400 98.9 0.8,0.8 95.0 97.6 0.8,0.5 94.0 94.2 0.7,0.5 91.5 90.9 0.8,0.5 89.3
500 98.7 0.8,0.5 94.6 97.1 0.7,0.5 93.7 92.9 0.7,0.5 90.3 88.9 0.7,04 88.4
600 98.5 0.8,04 95.0 96.5 0.7,0.5 94.0 91.5 0.7,0.4 89.6 86.9 0.6,0.5 85.9
700 98.3 0.9,0.3 94.6 95.9 0.7,0.4 93.4 90.2 0.7,0.3 88.4 84.9 0.6,0.5 85.3
800 98.2 0.9,0.3 95.0 95.3 0.2,0.3 93.7 88.8 0.7,0.5 87.8 83.0 0.6,0.5 84.0
900 97.9 09,04 94.6 96.7 0.7,0.4 91.5 87.4 0.7,0.5 87.1 81.0 0.6,0.5 80.6
1000 97.6 0.8,0.6 94.6 94.0 0.7,0.4 91.5 85.9 0.6,0.5 85.0 79.0 0.6,0.5 80.3

5. Discussion

According to the results, CT-Scan was the least robust modality, as the accuracy of
the models was reduced almost by 50%. This is very interesting, as COVID-19 detection
using CT-Scans should have been the most robust problem because it has only two classes.
Even with the smallest perturbation, MobileNetV2 was decreased by 12.2% in terms of
accuracy (Figure 9). The CT-Scan modality should be further investigated to draw safe
conclusions. The problem of brain tumor classification was the most difficult one and
therefore the performance of the models, even with clean images, was low. However, the
models did not lose significant accuracy with an imperceptible perturbation. On X-rays,
accuracy decreases significantly when we increase the embedding strength, or we insert a
lot of information.

(a) (b)

Figure 9. (a) Clean Image, (b) Attacked image (L-Bit = 100, Embedding strength = 50).

Moreover, MobileNetV2 is the weakest model, as it loses accuracy easier than the
other two models with no need for a perceptible distortion. This may be due to the fact that
MobileNetV2 has fewer parameters compared to the other models. In CT-scans case, which
was the weakest one, all models lost an important percentage of accuracy with the lowest
values, however, the DenseNets lost their accuracy at a slower pace than MobileNetV2.
Furthermore, in MRI and X-ray cases DenseNet201 and DenseNet169 need a combination
of high values of embedding strength and L-Bit length to significantly reduce their accuracy.
On the other hand, the accuracy of MobileNetV2 is significantly decreased when either
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embedding strength or L-Bit length is high. As a consequence, DenseNets variants need
perceptible noise in order to decrease their accuracy. In the case of MRI, the most difficult,
DenseNets variants responded very well, losing 5% of their accuracy and needing high
values of embedding strength and L-Bit length, 200, and 700, respectively. The problem
of classification in medical images is usually difficult because there are no important
differences between the different classes. Additionally, there are cases such as X-rays from
lungs in which specific points determine the decision. That is why p1 and p2 values play
a significant role in the attack’s efficiency. We observe that each problem shares similar p
values because these values show the critical points. This is an important advantage of this
attack, as we can predefine the p values depending on the images we attack.

The comparison with the other attacks shows that there is not a clear winner. In
CT-Scan modality, the proposed attack achieved the greatest accuracy degradation in all
models by presenting a much better SSIM index. In X-rays there are cases in which the
other three attacks are more effective but with worse SSIM index. For instance, PGD with
€ = 0.15 dropped the accuracy to 79.8% with SSIM = 44.3%, while the proposed attack at
82% with SSIM = 80%. The proposed KMsWA? attack shows a high SSIM index even with
the high values of the embedding strength, and the L-Bit length is shown in Figures 10-12.
This is due to the fact that watermarking applied only to the p values and not to the whole
image. The other attacks create adversarial noise on the whole image, destroying its quality.

MobileNetV2 on CT-Scans under FGSM, PGD and Square Attack MobileNetV2 on CT-Scans under KMsWA? attack
100
® g 00 ? 0
90 75 4
@ 70
> 80 >
@ 8
3 Z 65
g ®
70
60
[
60
® ® 55
o ®@ooO

0 20 40 60 80 100 0 20 40 60 80 100
SSIM Index SSIM Index
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Figure 10. Scatter plots for MobileNetV2 in CT-Scans under (a) FGSM, PGD, Square Attack, and
(b) KMsWAZ attack.

DenseNet201 on X-Rays under FGSM, PGD and Square Attack DenseNet201 on X-Rays under KMsWA? attack
%
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Figure 11. Scatter plots for DenseNet201 in X-rays under (a) FGSM, PGD, Square Attack, and
(b) KMsWAZ? attack.



J. Imaging 2022, 8, 155

12 0of 19

DenseNet169 on MRIs under FGSM, PGD and Square Attack DenseNet169 on MRIs under KMsWA? attack
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Figure 12. Scatter plots for DenseNet169 in MRIs under (a) FGSM, PGD, Square Attack, and
(b) KMsWAZ attack.

In Figures 10-12, six representative scatter plots for the three image modalities are
presented, showing that the proposed KMsWA? attack achieves the same or better perfor-
mance degradation with significantly higher SSIM index. In Figures 10a, 11a, and 12a, the
dots are scattered from top right to bottom and left, indicating that the reduction in the
accuracy is achieved only with low SSIM index, while Figures 10b, 11b, and 12b present
a vertical direction, which means that the proposed KMsWA? attack drops the accuracy
without dropping much SSIM index. These results constitute evidence that watermarking
can be considered as an adversarial attack for the images and thus the research commu-
nity should study this phenomenon deeply, otherwise the watermarking methods will be
inhibitors to the computer vision applications in medical image analysis.

6. Conclusions

In this study, we proposed a black-box adversarial attack for medical images using a
moment-based watermarking methodology. We experimented with three different modal-
ities, X-rays, MRIs, and CT-Scans, achieving performance degradation up to 41% to the
model, proving that digital watermarking may act as a trojan because it is usually used for
the patient’s privacy and safety. However, we showed that even with the least insertion of
information or the smallest embedding strength, the performance can be reduced. More-
over, the experiments revealed that the proposed attack is competitive to the established
adversarial attacks since it affects the accuracy of the deep learning models in an imper-
ceptible way without being perceived by human eyes. In addition, defending against this
attack is not an easy process because the images are distorted locally, and a huge number
of images must be created to apply adversarial learning. DenseNets models were the most
robust, while MobileNetV2 was the weakest and CT-scans was the most vulnerable modal-
ity. As future work, we would like to experiment with more watermarking methodologies
as well as more moment families following the same scheme proposed herein and also to
examine other popular medical image watermarking techniques, e.g., based on wavelets.
Moreover, we are planning to investigate if adversarial learning is able to alleviate the
effects of watermarking attacks.
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Appendix A

Table A1l. KMsWA? attack on MobileNetV2 in MRIs.

MRIs — MobileNetV2 — Original Accuracy = 77.6%

L-Bits Embed. Strength = 50 Embed. Strength =100 Embed. Strength =200 Embed. Strength = 300
SSIM Acc. SSIM Acc. SSIM Acc. SSIM Acc.

1, p2 o o 1, p2 o o 1,p2 o o 1,p2 o
@) PP () @) PP () %) PP (%) %) PP (%)
100 99.9 04,04 76.1 99.8 0.1,0.6 76.6 99.2 0.6,0.4 75.6 98.6 0.6,0.6 73.6
200 99.8 0.2,0.8 76.6 99.5 0.1,0.6 75.8 98.3 0.6,0.4 74.1 97.0 0.5,0.7 70.0

300 99.7 0.2,0.7 76.1 99.1 0.5,0.4 75.3 97.2 0.6,0.6 71.8 95.3 0.5,0.7 66.5
400 99.6 04,05 759 98.7 0.3,0.4 74.8 96.2 0.6,0.7 71.0 93.7 0.5,0.7 65.4
500 99.5 0.7,0.4 76.1 98.3 0.6,0.5 73.3 95.2 0.5,0.8 68.5 92,0 04,0.7 63.2
600 99.4 0.5,0.6 75.6 97.9 0.6,0.5 73.8 94.2 05,05 66.0 90.6 0.4,0.5 60.9
700 99.2 0.5,0.6 75.1 97.5 0.5,0.6 73.1 93.2 05,05 66.7 89.1 0.4,0.5 60.4
800 99.0 0.5,0.6 74.8 97.0 0.6,0.5 72.6 92.1 04,05 65.4 87.7 04,05 58.6
900 98.9 0.5,0.6 74.1 96.6 0.4,0.4 71.3 91.1 04,05 63.2 86.2 0.5,0.5 56.3
1000 98.8 0.5,0.6 74.5 98.8 04,05 70.3 90.0 04,05 62.6 84.9 0.4,0.5 54.8

Table A2. KMsWA? attack on DenseNet201 in MRIs.

MRIs — DenseNet201 — Original Accuracy = 71.3%

L-Bits Embed. Strength = 50 Embed. Strength =100 Embed. Strength = 200 Embed. Strength = 300
SSIM Acc. SSIM Acc. SSIM Acc. SSIM Acc.
1,2 o o 1,2 o o 1,2 o o 1,p2 o
%)  PvP (%) %)  PYP (%) %)  PYP (%) %)  PvP (%)
100 99.9 0.2,0.2 69.8 99.8 0.7,0.1 69.8 99.2 0.5,0.8 69.5 98.6 0.7,0.1 69.0

200 99.8 03,08 69.8 99.5 0.7,0.1 69.5 98.3 0.7,0.5 69.0 97.0 04,04 68.3
300 99.7 03,02 69.5 99.1 0.7,0.1 69.5 97.2 0.6,0.9 68.2 95.3 0.6,0.1 67.2
400 99.6 0.8,0.7 69.5 98.7 0.7,0.1 69.0 96.2 04,0.6 68.5 93.7 0.6, 0.6 65.7
500 99.5 09,08 69.8 98.3 0.6,0.9 69.0 95.2 0.6,0.9 68.0 92,0 0.6,0.6 64.4
600 99.4 0.6,09 69.5 97.9 05,09 69.0 94.2 0.7,0.7 66.7 90.6 04,04 64.2
700 99.2 0.7,0.9 69.5 97.5 0.6,0.9 69.2 93.2 04,05 64.5 89.1 0.4,0.5 61.7
800 99.0 0.1,0.2 69.5 97.0 09,08 68.5 92.1 04,05 64.2 87.7 0.5,0.5 57.1
900 98.9 0.6,09 69.0 96.6 09,08 68.0 91.1 04,05 63.4 86.2 0.4,0.5 56.6
1000 98.8 0.6,0.9 69.0 98.8 0.9,0.8 68.7 90.0 04,05 61.2 84.9 05,05 55.0
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Table A3. KMsWAZ? attacks on DenseNet169 in MRIs.

MRIs — DenseNet169 — Original Accuracy = 69.54%

L-Bits Embed. Strength = 50 Embed. Strength =100 Embed. Strength =200 Embed. Strength = 300
R A e
100 99.9 0.5,0.6 67.5 99.8 0.8,0.5 68.0 99.2 0.9,0.4 66.7 98.6 0.8,0.2 68.0
200 99.8 0.7,0.5 67.0 99.5 0.8,0.4 68.0 98.3 0.9,0.4 66.5 97.0 0.5,0.6 67.2
300 99.7 0.7,05 67.0 99.1 0.3,05 67.5 97.2 02,04 66.7 95.3 0.2,05 64.7
400 99.6 0.8,0.2 67.0 98.7 0.3,0.5 67.7 96.2 0.4,0.5 66.0 93.7 0.2,0.5 61.9
500 99.5 09,04 67.0 98.3 0.9,0.5 67.0 95.2 0.4,0.5 65.4 92,0 04,04 62.1
600 99.4 0.7,0.5 67.5 97.9 09,05 66.7 94.2 03,04 63.0 90.6 04,04 59.6
700 99.2 09,04 67.5 97.5 0.6,0.6 65.7 93.2 04,04 62.4 89.1 04,04 56.6
800 99.0 0.9,0.6 67.7 97.0 0.6,0.6 66.5 92.1 0.3,0.5 61.9 87.7 04,04 55.0
900 98.9 0.9,0.6 67.7 96.6 0.5,0.6 65.4 91.1 0.4,0.5 60.9 86.2 0.5,0.5 51.2
1000 98.8 0.9,0.6 67.2 98.8 0.5,0.6 64.7 90.0 0.4,0.5 58.3 84.9 0.5,0.5 48.4
Table A4. KMsWA? attacks on MobileNetV2 in CT-Scans.
CT-Scans — MobileNetV2 — Original Accuracy = 92.2%
L-Bits Embed. Strength = 50 Embed. Strength =100 Embed. Strength =200 Embed. Strength = 300
LA N N i N M A M Mt )
100 99.2 0.7,0.4 80.0 99.0 0.2,0.8 77.9 98.4 0.8,0.7 729 97.7 0.8,0.8 67.0
200 99.1 0.2,0.9 79.1 98.7 0.8,0.8 76.6 97.4 0.7,0.6 68.7 95.9 0.6,0.7 62.9
300 99.0 0.2,0.9 78.7 98.2 0.8,0.5 75.4 96.2 0.9,0.6 65.8 94.2 0.8,0.6 60.4
400 98.8 0.9,0.6 79.5 97.8 0.8,0.5 729 95.1 0.9,0.5 64.1 92.6 09,04 57.5
500 98.7 08,05 78.3 97.3 08,05 72.5 94.0 0.8,0.5 62.0 91.0 0.9,0.5 55.0
600 98.5 0.7,0.5 77.0 96.8 0.8,0.5 69.5 92.9 0.9,0.4 59.1 89.4 0.9,0.5 54.5
700 98.3 0.8,0.5 77.9 96.4 0.9,0.6 68.3 91.8 0.9,0.5 58.3 87.8 0.9,0.5 53.3
800 98.2 0.9,0.6 78.3 95.9 0.9,0.6 68.3 90.7 0.9,0.6 57.5 86.3 0.9,0.5 52.9
900 98.0 0.5,0.6 77.0 95.4 0.9,0.6 65.3 89.5 0.9,0.6 56.2 84.6 0.9,0.5 52.0
1000 97.8 0.7,0.5 76.6 94.9 0.9,0.6 66.2 88.3 0.9,0.5 56.2 83.0 0.9,0.5 51.6
Table A5. KMsWA? attacks on DenseNet201 in CT-Scans.
CT-Scans — DenseNet201 — Original Accuracy = 96.6%

L-Bits Embed. Strength = 50 Embed. Strength =100 Embed. Strength =200 Embed. Strength = 300
Woan by oswoone b S e by S e

100 99.2 0.6,0.8 89.1 99.0 0.3,0.9 87.9 98.4 0.4,0.9 87.0 97.7 0.7,0.6 83.7
200 99.1 0.3,0.2 89.1 98.7 0.3,0.9 87.9 97.4 0.6,0.7 84.5 95.9 0.6,0.7 75.8
300 99.0 0.9,0.9 88.3 98.2 0.3,0.9 87.5 96.2 0.6,0.3 81.2 94.2 0.7,0.7 71.6
400 98.8 09,02 88.7 97.8 0.3,09 88.3 95.1 0.6,0.3 79.5 92.6 0.6,0.5 70.8
500 98.7 0.5,0.1 89.1 97.3 0.4,0.6 87.5 94.0 0.6,0.4 76.6 91.0 0.7,04 65.8
600 98.5 0.7,0.2 88.3 96.8 0.4,0.6 87.0 92.9 0.7,0.5 76.6 89.4 0.6,0.5 65.8




J. Imaging 2022, 8, 155 15 of 19

Table A5. Cont.

CT-Scans — DenseNet201 — Original Accuracy = 96.6%

L-Bits Embed. Strength = 50 Embed. Strength =100 Embed. Strength =200 Embed. Strength = 300
700 98.3 0.8,0.9 88.7 96.4 0.4,0.6 86.2 91.8 0.7,0.5 75.8 87.8 0.6,0.6 65.8
800 98.2 07,04 88.7 95.9 0.4,0.6 85.8 90.7 0.7,0.5 75.0 86.3 0.7,0.5 65.4
900 98.0 0.5,0.9 88.3 95.4 0.4,0.6 85.8 89.5 0.7,0.5 75.0 84.6 0.6,0.5 65.8
1000 97.8 0.9,0.6 88.3 94.9 0.4,0.6 86.2 88.3 0.7,0.5 75.0 83.0 0.9,0.5 65.8

Table A6. KMsWA? attacks on DenseNet169 in CT-Scans.

CT-Scans — DenseNet169 — Original Accuracy = 95.8%

L-Bits Embed. Strength = 50 Embed. Strength = 100 Embed. Strength = 200 Embed. Strength = 300

L N A N N N )
100 99.2 0.4,0.2 89.5 99.0 0.2,0.3 87.9 98.4 04,08 82.9 97.7 0.3,0.3 77.0
200 99.1 0.7,0.2 89.5 98.7 0.3,0.3 87.5 97.4 0.3,0.1 79.5 95.9 0.3,0.3 73.7
300 99.0 0.7,0.2 89.5 98.2 0.3,0.1 86.6 96.2 04,0.1 79.1 94.2 04,03 70.0
400 98.8 0.7,0.2 90.0 97.8 0.3,0.1 87.0 95.1 04,0.2 78.7 92.6 04,03 70.0
500 98.7 0.5,0.8 90.0 97.3 04,01 86.2 94.0 04,01 80.0 91.0 04,04 69.1
600 98.5 0.7,0.2 89.5 96.8 0.3,0.1 85.4 929 0.1,0.4 75.8 89.4 04,05 67.0
700 98.3 09,09 89.5 96.4 0.1,0.4 86.2 91.8 0.1,0.4 76.6 87.8 04,05 65.8
800 98.2 0.1,0.3 89.1 95.9 0.1,03 86.6 90.7 0.1,04 75.8 86.3 04,05 67.0
900 98.0 09,09 89.5 95.4 0.1,0.5 84.5 89.5 0.1,0.4 74.1 84.6 0.1,0.5 64.5
1000 97.8 09,09 89.1 94.9 0.1,0.3 85.0 88.3 0.1,0.5 72.0 83.0 0.1,0.5 65.0

Table A7. SSIM index and performance for each attack in X-rays.

X-rays
Acc. (%)

Attack SSIM (%) MobileNetV2 ~ DenseNet201  DenseNet169
FGSM ¢ = 0.01 98.9 95.3 95.2 96.2
FGSM ¢ = 0.03 94.6 86.1 943 95.0
FGSM ¢ = 0.05 82.8 65.9 94.0 80.4
FGSM ¢ = 0.07 73.6 549 90.5 713
FGSM ¢ = 0.09 60.1 29 90.2 653
FGSM e = 0.12 457 36.0 87.7 62.1
FGSM ¢ = 0.15 353 36.9 80.7 60.2

PGD € = 0.01 99.2 95.9 95.2 95.6
PGD € = 0.03 96.3 90.9 95.9 95.3
PGD € = 0.05 88.5 703 937 87.0
PGD ¢ = 0.07 81.7 55.5 92.5 75.7
PGD ¢ = 0.09 70.1 416 89.3 68.5
PGD € =0.12 55.9 34.0 84.2 62.8
PGD € =0.15 443 33.4 79.8 60.0

Sq. Ate =0.01 99.3 97.5 95.9 95.9
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Table A7. Cont.
X-rays
Acc. (%)

Attack SSIM (%) MobileNetV2 DenseNet201 DenseNet169
Sq. At e =0.03 95.9 97.1 96.2 95.9
Sq. At e =0.05 85.9 82.0 95.0 93.4
Sq. At e =0.07 78.5 65.0 924 89.3
Sq. At e =0.09 70.0 54.9 91.8 85.5
Sq. Ate =0.12 56.9 53.3 88.0 83.6
Sq. Ate =0.15 48.0 53.0 87.0 79.8

Table A8. SSIM index and performance for each attack in MRIs.
MRIs
Acc. (%)

Attack SSIM (%) MobileNetV2 DenseNet201 DenseNet169
FGSM € =0.01 98.5 729 71.9 69.3
FGSM € =0.03 941 60.1 67.3 63.4
FGSM € = 0.05 84.0 484 51.9 54.5
FGSM € = 0.07 77.3 41.2 45.0 49.1
FGSM € =0.09 68.3 33.5 38.4 455
FGSM € =0.12 58.7 28.4 37.6 45.0
FGSM € =0.15 51.1 26.6 37.0 40.9

PGD e =0.01 98.8 76.5 74.6 72.1
PGD e =0.03 95.2 70.3 74.2 729
PGD e =0.05 87.2 65.5 65.7 59.6
PGD e =0.07 81.6 63.2 60.6 59.6
PGD € =0.09 73.6 56.3 54.5 57.0
PGD e =0.12 64.3 50.7 49.9 56.0
PGD € =0.15 56.5 47.0 49.1 57.0
Sq. Ate =0.01 99.0 75.7 724 67.0
Sq. At e =0.03 95.2 65.5 69.3 62.1
Sq. At e =0.05 87.3 52.9 51.0 489
Sq. At e =0.07 82.7 425 41.5 42.5
Sq. At e =0.09 744 37.9 37.0 40.7
Sq. Ate =0.12 67.4 34.0 33.8 34.8
Sq. Ate =0.15 65.0 35.6 35.6 37.3
Table A9. SSIM index and performance for each attack in CT-Scans.
CT-Scans
Acc. (%)

Attack SSIM (%) MobileNetV2 DenseNet201 DenseNet169

FGSM € =0.01 99.6 92.3 92.0 93.2
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Table A9. Cont.

CT-Scans
Acc. (%)
Attack SSIM (%) -
MobileNetV2 DenseNet201 DenseNet169
FGSM € =0.03 96.7 83.0 88.6 94.0
FGSM € = 0.05 88.0 63.6 82.6 84.3
FGSM € = 0.07 81.0 58.0 78.8 814
FGSM € =0.09 70.2 54.2 78.0 80.5
FGSM € =0.12 57.8 53.4 78.8 78.0
FGSM € =0.15 48.3 53.0 80.0 78.0
PGD e =0.01 99.8 95.4 90.4 95.8
PGD € =0.03 98.0 98.8 86.7 97.5
PGD € =0.05 92.6 98.3 70.8 91.2
PGD e = 0.07 87.3 98.3 65.0 79.6
PGD € =0.09 70.0 97.9 61.7 75.0
PGD € =0.12 66.7 97.5 62.5 79.2
PGD e =0.15 55.7 98.3 62.5 76.7
Sq. Ate =0.01 99.6 91.1 91.5 93.2
Sq. Ate =0.03 97.3 725 90.7 915
Sq. At e =0.05 89.9 55.5 77.1 80.0
Sq. At e =0.07 84.8 54.2 69.5 724
Sq. Ate =0.09 76.8 54.2 61.9 60.6
Sq. Ate =0.12 68.0 53.4 53.8 53.8
Sq. Ate =0.15 59.8 54.2 58.9 55.0
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