
Citation: Horenko, I.; Pospíšil, L.;

Vecchi, E.; Albrecht, S.; Gerber, A.;

Rehbock, B.; Stroh, A.; Gerber, S.

Low-Cost Probabilistic 3D Denoising

with Applications for

Ultra-Low-Radiation Computed

Tomography. J. Imaging 2022, 8, 156.

https://doi.org/10.3390/

jimaging8060156

Academic Editors: Cecilia Di Ruberto,

Alessandro Stefano, Albert Comelli,

Lorenzo Putzu and Andrea Loddo

Received: 21 March 2022

Accepted: 19 May 2022

Published: 31 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Low-Cost Probabilistic 3D Denoising with Applications for
Ultra-Low-Radiation Computed Tomography
Illia Horenko 1,* , Lukáš Pospíšil 2 , Edoardo Vecchi 3 , Steffen Albrecht 4 , Alexander Gerber 5,
Beate Rehbock 6, Albrecht Stroh 7 and Susanne Gerber 8,*

1 Faculty of Mathematics, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
2 Department of Mathematics, VSB Ostrava, Ludvika Podeste 1875/17, 708 33 Ostrava, Czech Republic;

lukas.pospisil@vsb.cz
3 Institute of Computing, Faculty of Informatics, Universitá della Svizzera Italiana (USI),

6962 Viganello, Switzerland; edoardo.vecchi@usi.ch
4 Institute of Physiology, University Medical Center of the Johannes Gutenberg-University Mainz,

55128 Mainz, Germany; s.albrecht@uni-mainz.de
5 Institute of Occupational Medicine, Faculty of Medicine, GU Frankfurt, 60590 Frankfurt am Main, Germany;

dr.a.gerber@gmx.de
6 Lung Radiology Center Berlin, 10627 Berlin, Germany; dr.b.rehbock@gmx.de
7 Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg-University Mainz,

55128 Mainz, Germany; albrecht.stroh@unimedizin-mainz.de
8 Institute for Human Genetics, University Medical Center of the Johannes Gutenberg-University Mainz,

55128 Mainz, Germany
* Correspondence: horenkoi@usi.ch (I.H.); sugerber@uni-mainz.de (S.G.)

Abstract: We propose a pipeline for synthetic generation of personalized Computer Tomography
(CT) images, with a radiation exposure evaluation and a lifetime attributable risk (LAR) assessment.
We perform a patient-specific performance evaluation for a broad range of denoising algorithms
(including the most popular deep learning denoising approaches, wavelets-based methods, methods
based on Mumford–Shah denoising, etc.), focusing both on accessing the capability to reduce the
patient-specific CT-induced LAR and on computational cost scalability. We introduce a parallel
Probabilistic Mumford–Shah denoising model (PMS) and show that it markedly-outperforms the
compared common denoising methods in denoising quality and cost scaling. In particular, we show
that it allows an approximately 22-fold robust patient-specific LAR reduction for infants and a 10-fold
LAR reduction for adults. Using a normal laptop, the proposed algorithm for PMS allows cheap and
robust (with a multiscale structural similarity index >90%) denoising of very large 2D videos and 3D
images (with over 107 voxels) that are subject to ultra-strong noise (Gaussian and non-Gaussian) for
signal-to-noise ratios far below 1.0. The code is provided for open access.

Keywords: denoising; nonparametric methods; Mumford–Shah formalism; LAR reduction

1. Introduction

Computed tomography (CT) is one of the most frequently used medical imaging
techniques, with over 100 million CT scans performed yearly worldwide [1]. An additional
increase in the total number of CT examinations was observed in the recent COVID-19
epidemics [2,3]. However, distinguishing subtle CT image features relevant for diagnostic
purposes typically requires significant radiation exposure, and thus increases the patient’s
radiation-imposed lifetime attributable risk (LAR). This, in turn, leads to an additional
chance of developing a radiation-exposure attributable cancer type [1].

The quantification of LAR is a complex challenge and requires modeling the multi-
factorial interplay of DNA damage and repair mechanisms, as well as incorporating ran-
dom/stochastic effects that accumulate in the low-radiation regime. In silico simulations
and analytical estimates for net effects of such stochastic radiation-triggered reactions imply
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a linear model for the dependence of LAR on the accumulated radiation exposure [4–7],
with linear model coefficients being dependent on the patient’s age and sex, as well as on
the particular type of the CT. Despite some controversy regarding the possible existence of
low-radiation thresholds in the LAR models suggested by some studies [8], the Linear No-
Threshold models (LNT) are currently recommended for LAR assessment by the committee
for Biologic Effects of Ionizing Radiation (BEIR VII) of the National Academy of Sciences
of the USA [5] and by the World Health Organization [1]. Several recent epidemiological
and methodological studies support the statement that a safe radiation dose does not
exist [9–12] and that the LAR of CT is exceptionally high for infants and children [10–12].
The approximately 14 million pediatric CT scans of head, abdomen, pelvis, chest, or spine
performed each year worldwide [1,10] would therefore lead to approximately 12,000 fatal
cases of cancer, of which 4,800 are attributable to the USA alone.

The prognosis that the reduction of the highest 25% of doses to the median could
prevent 43% of these cancers [10] naturally suggests the increased use of low- and ultra-low-
radiation CT (radiation exposures down to 0.5 mGy). However, a reduction of radiation
exposure results in increased image noise and thus necessitates the application of reliable
image denoising and feature extraction tools. Facilitated by the rapid development of emer-
gent machine learning (ML) and deep learning (DL) algorithms, research on the boundary
between medical radiology and informatics has been attracting an increasing amount of
attention over the past years [13]. The currently available CT image denoising tools can
be roughly subdivided into unsupervised and supervised methods. The unsupervised
approaches search for a hidden pattern without prior learning, whereas the supervised
techniques aim to identify features previously learned from the training data. Unsupervised
methods do not require previous training, allow high-speed computations, and belong
to the most frequently-used image denoising instruments [14,15]. They include methods
based on local averaging of the data (such as Gaussian, weighted Gaussian, bilateral, and
mean average filtering) [14,16–18] and spectral methods (such as Fourier-, wavelet- and
PCA-denoising) [15,19–22]. Recent years have also seen the active development of very
successful CT denoising approaches based on semi-supervised ML ideas (for example,
methods based on generative adversarial networks) [23,24] and deep-learning algorithms
for denoising and image segmentation [13,25–27]. The deep learning methods have been
shown to be very successful for denoising and the current convention states that DL
performs much better than traditional unsupervised regularized denoising algorithms.

However, recent evidence in the literature indicates that ML and DL tools can struggle
when dealing with the denoising of real images, either due to the lack of an adequate
training samples, inaccurate priors, concept drift, or the increasing complexity (and compu-
tational cost) of the required network [28,29].

This is particularly true in medical imaging, where the approaches based on ML can
sometimes lack accuracy [30], while DL tools tend to rely too heavily on labeled datasets
and on sufficiently large training sets [29,31–33]. The size of the training set, as well as
the accuracy of prior data used in training, play a very central role also in the denoising
and segmentation of CT images, where the number of instances in the training set T is
significantly smaller than the feature space dimension D, corresponding to the number of
voxels. A problem characterized by D � T pertains to the so-called “small-data learning
challenge” [34–38], and represents a scenario in which ML and DL approaches are prone to
quickly overfit the small training set (which in addition often also contains missig data or
incorrectly labeled data) and to achieve an unsatisfactory performance on the validation
set [39–43]. To tackle this issue, several alternative approaches have been proposed [44,45],
with transfer learning representing one of the most powerful alternatives [46]. Even
the latter approach presents, however, some limitations that are particularly relevant in
the denoising of CT images; due to the individual variation of small-scale anatomical
features and of CT operation regimes, the structural similarity assumption between the
source domain and the target domain is usually not fulfilled, while the amount and type
of information that needs to be transferred if we want to avoid potential drawbacks—
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e.g., negative transfer—that could actually lead to a performance worse than the starting
deep learning model remains unclear [47,48]. Thus, while a combination of transfer learning
and deep learning is being widely used to attempt the solution of small data problems in
the denoising of medical images [49–51], the reported results can still be dissatisfactory due
to the lack of efficient strategies to systematically tackle these limitations [52].

The issues described above are not the only ones arising in the small data regime
characteristic of CT; a statistically-significant systematic comparison and benchmarking
of the supervised learning approaches can be strongly biased by so-called “concept drift”,
i.e., a scenario in which the non-stationarity of the learning problem leads to a mismatch
between the training data and the actual application data [53–57]. In CT imaging, such
context-dependence of supervised ML and DL tools becomes particularly problematic when
there is a discrepancy between the type of patient (age, sex, body size) and noise model
tackled in the training set and those tested in the validation. This context-dependence and
“concept drift” can quickly lead to unfair comparisons and unsatisfying performances of
supervised learning methods. Last but not least, the robustness of the learning methods can
be strongly confined by the existence of structural constraints inherent for ML and DL tools
in the “small data challenge” regime; for example, while spectral filtering methods tend to
outperform other unsupervised denoising algorithms [14], they also have a fundamental
difficulty in dealing with high noise levels in the data [19,20]. Recently, the existence of
statistically-significant overfitting boundaries has been shown empirically by employing
high-performance facilities; e.g., in [58], long short-term memory (LSTM) deep neural
networks [59] have been shown to systematically overfit the data and to produce results
which are not statistically-significant if the condition T ≥ 13.6D + 3.8 is not satisfied (where
T is the size of data statistics and D is the number of features).

While regularized time series clustering approaches have been recently demonstrated
to operate in these “small data, large noise” regimes, even when the noise is an order
of magnitude larger than the true signal [60–65], these studies were confined to only
one-dimensional denoising problems. A systematic comparison with a broad range of
supervised and unsupervised methods is still lacking. Due to the stochastic nature of the
noise in CT, a statistically-significant evaluation and comparison of different CT image
denoising methods has to rely on sufficiently large amounts of CT images taken from the
same patient under the same combination of controls (e.g., with the same tube current and
the same tube voltage). However, obtaining such an extensive set of reference-imaging
data for a particular patient without a medical necessity would be unethical. A systematic
comparison of methods would additionally require combining such data for multiple
patients in a sampled range of patient-specific parameters (age, sex, body size, etc.) as well
as for a large number of practically-relevant combinations of CT controls. Furthermore,
the standard quality measures such as the Mean-Squared Error (MSE), Peak Signal-to-
Noise Ratio (PSNE), and the Multi-Scale Structural Similarity Index (MS-SSIM) also rely
on the availability of the reference image without noise, but generated with the same set
of underlying features [66–68]. Finally, combining existing CT data from different sources
in a metastudy is problematic as well, since the very high level of individuality of the
more subtle anatomic features of the human body on a small scale [69,70] would introduce
a strong bias into such a comparative study, which would also lack the reference images.
Furthermore, very few datasets containing CT projection data covering the low-radiation
regime are currently available in open access, mainly due to the proprietary nature of this
data and the (hidden) manufacturer-specific processing of the raw data [71–74]. Even, when
this information is available, as in the low-dose CT image and projection dataset described
in [74], a systematic statistically-significant comparison is problematic, since for each of
the patients, only a couple of images (with and without noise) are available out of the
overall T = 299 clinically-performed patient CT exams, and with the radiation exposures
practically not going below 3 mGy. As we will show below, this ultra-low-radiation regime
with radiation exposure down to 0.5 mGy and with SNR < 1.0 imposes critical challenges
for the bulk of currently-available denoising methods and will receive particular attention
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in the tests performed below. To address these issues, we will lay two foundations in this
manuscript. First, we propose a pipeline for the automated patient-specific generation of
synthetic CT images, radiation exposure estimation, and LAR computation, following the
strengthening movement in radiological research and using synthetic images (e.g., as in the
software tool CatSim, v0.1.0) [71]. The created images are based on a data-driven estimation
of CT image noise intensities and their relationship to CT control parameters [70,75–77].
For this purpose, we combine the LNT model for the CT-induced lifetime attributable
risk [5,9–12] with the data-driven models that relate CT noise variance to the CT voltage,
current, and the amount of radiation exposure [75,78]. Second, we introduce the Proba-
bilistic formulation of the Mumford–Shah formalism (PMS) and propose a regularized
Scalable Probabilistic Approximation algorithm (rSPA) and its parallel extension DD-rSPA
as new methods for denoising of 3D images, comparing their computational cost and
denoising performances with the state-of-the-art methods in this field. Particular focus
is thereby given to investigating the possibility of reducing personalized LAR through
improving denoising performance in the ultra-low-radiation regime (down to 0.1–0.5 mGy,
with signal-to-noise ratios below 1.0).

2. Materials and Methods
2.1. Patient-Specific Generation of Synthetic CT Images, Radiation Exposure Estimation, and
LAR Computations

In the first step of the proposed pipeline, we provide algorithms for generating syn-
thetic noisy CT images for every relevant combination of CT control parameters, image
parameters, and patient-dependent variables. Regarding the CT control parameters, we
focus on the two most relevant ones that can be adjusted on the computer tomograph,
which are the tube voltage, kVp, and the tube current, mA. The CT image parameters
are the standard deviation of the CT quantum noise, σ, and the CT feature contrast in
Hounsfield Units (HU). The patient-dependent variables for computing the overall CT-
quantum noise as well as the CT-induced additional cancer risk, r, are the patient’s age, sex,
and the subject’s size, d, in cm, as well as the absorbed radiation dose density CTDIvol in
milligray (mGy).

Various approaches have been adopted in the literature to simulate the impacts of
noise on the generation and analysis of CT images and applied on various levels ranging
from raw data sinogram to fully-reconstructed CT images. For example, independent
quantum noise was shown to affect sinogram raw CT data, from which reconstructed
CT images are computed by inverting the integral Radon transform [79]. To address this
issue, we model the effect of quantum noise by deploying a range of various Gaussian and
non-Gaussian noises applied directly to the reconstructed images, mimicking the effect of
the original quantum noise on such Radon-transformed raw data sinograms.

The initial reference data for the automated generation of a battery of synthetic test-
images can be either a set of real CT-data generated using high-dose radiation (Figure 1A)
or artificially simulated data. These reference data have to be characterized by high image
quality and low quantum noise (visualized in Figure 1B), as compared to the (ultra) low-
dose CT images (Figure 1C) that naturally contain a massive amount of noise and thus
result in low CT-image quality. Figure 1D gives a graphical abstract of the workflow from
image generation to the subsequent comparison of the various ML/DL-denoising methods
based on the accuracy of the denoised image data. Starting with high-quality reference data,
a broad range of typical CT image noises is imposed in a multitude of combinations from
patient-specific and CT control variables. The obtained noisy CT images are subsequently
denoised using various state-of-the-art methods. The denoised and segmented images are
then compared to the original noiseless reference data in various performance metrics and
under various CT regimes (see Section 3 for the experimental results).
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Figure 1. Graphical representation of our proposed pipeline workflow for automated generation
and risk assessment of CT images. (A): Initial reference data can be either a set of real CT-data
generated using high-dose radiation or artificially simulated data. (B) Exemplary high-quality and
low-quantum noise image of lung vessels. (C) exemplary low-dose CT images with high quantum
noise. (D) Workflow from image generation to subsequent benchmarking of ML/DL-denoising
methods. Starting with high-quality data or artificially generated reference data, respectively, a
spectrum of image noise σ is added for a multitude of combinations from patient-specific and CT
control variables, as suggested in Equation (1). The noisy images are then denoised using various
state-of-the-art methods and the processed images are compared to the original reference data.

To model the effect of noise in CT images, we deploy and compare three different
alternatives: (i) an additive Gaussian noise model that was shown to provide an adequate
description of quantum noise effects in real CT images on a small scale of several cen-
timeters [75,80]; (ii) a non-Gaussian multiplicative noise model where the quantum noise
variances change with the underlying feature color; and (iii) an empirical CT noise model
sampled from the real patient data.

Computation of the noise variance σ is performed for given CT control parameters
(tube current mA , tube voltage kVp), and patient-specific parameter (water-equivalent pa-
tient diameter d) using the non-linear regression model introduced in [75] (see Equation (1)).
Equation (2) of the workflow computes the effective absorbed radiation dose density
CTDIvol for a volume unit from the tube control parameters mA and kVp using the data-
driven regression model established in [78]. Equation (3) of the image generation workflow
computes the resulting lifetime attributable risk for a patient (LAR) utilizing the linear
no-threshold model (LNT) proposed by the committee for Biologic Effects of Ionizing
Radiation (BEIR VII) of the National Academy of Sciences of the USA [5].
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ln(σ) =α0(kVp) + α1(kVp)d + α2(kVp)ln(mA) + α3(kVp)d2

+ α4(kVp)ln2(mA) + α5(kVp)dln(mA),
(1)

CTDIvol =γ0(kVp, CT type) + γ1(kVp, CT type)mA, (2)

LAR =β0(age, sex, organ, exp.time) + β1(age, sex, organ, exp.time)CTDIvol . (3)

Measuring the “closeness” of synthetic images created with the noise from Equation (1)
to real images—where such “closeness” is measured in a statistical sense by averaging
over some sufficiently-representative statistical sample of images—would require a large
number of real CT images obtained over a range of regimes, organs, patients, etc. For exam-
ple, determining the optimal values for parameter functions α0(kVp), α1(kVp), α2(kVp),
α3(kVp), α4(kVp), and α5(kVp) requires quite a substantial number of real images taken
for different values of tube control variables for voltage and current [75]. Moreover, this
parametrization would be specific for the particular organ and it would require new statis-
tics of raw image data if one would want to apply it in a different CT setting. To address
this problem, in the following we focus only on thorax CT imaging, where an extensive
and qualitative parametrization for Equation (1) was achieved and “closeness” between
real and simulated images was demonstrated [75]. A similar scenario (with a potential
lack of a sufficiently-large statistics for real images) represents one of the central problems
when training supervised learning methods such as neuronal networks. However, it is
worth mentioning that this problem does not affect unsupervised methods such as the
Probabilistic Mumford–Shah (PMS) introduced in this paper since they do not require
training images for solving the denoising and segmentation problems.

In the following, we also use the data-driven parameters γ0, γ1, β0, and β1 from
Equations (2) and (3), which were measured in published studies involving different CT
scenarios (such as different tube voltages, currents, and exposition times), to assess the
overall accumulated radiation dose and LAR [78,81].

2.2. Probabilistic Mumford–Shah Model Formulation

In the following, we introduce the Probabilistic Mumford–Shah model formulation
(PMS). More algorithmic details and a complete derivation with mathematical proofs can
be found in the paper supplement. PMS (see Figure 2 for a graphical representation of the
underlying algorithms) seeks a simultaneous solution of probabilistic image segmentation
and noise elimination problems and aims to find the spatially most-persistent probabilistic
decomposition of the image in terms of K latent features. Direct application of popu-
lar segmentation and clustering methods from ML to the denoising problem results in
computationally-tractable tools with a favorable linear scaling of the computational cost,
but also in suboptimal irregular segmentations that disregard the spatial ordering of the
data [82–84]. Application of regularized clustering and segmentation tools that take into
account the spatial ordering and regularity of the data and features (e.g., methods based
on Mumford–Shah functional optimization) have unfavorable polynomial cost scaling,
limiting their application to very small images or requiring very extensive computational
resources [60–63,85]. In the following, we will address this key challenge with the proposed
PMS rSPA algorithm (regularized Scalable Probabilistic Approximation algorithm), simul-
taneously achieving a qualitative (in terms of low error and sufficient spatial regularity of
latent features) and computationally-tractable (linearly scalable) solution of the underlying
optimization problem.
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Figure 2. Graphical overview of the Probabilistic Mumford–Shah (PMS) framework. (A) Summary
of the parameters and variables. (B) Core rSPA algorithm idea: 3D-denoising with the regularized
Scalable Probabilistic Approximation algorithm (rSPA). Given the (noisy) CT voxel data V, rSPA
minimizes the function L(C, Γ) and seeks for the optimal segmentation of V in terms of the K
spatially-persistent latent features characterized by the latent feature probabilities in K rows of the
matrix Γ, as well as by the latent colors as K columns of the latent color matrix C. Persistency
of the feature segmentation is imposed by the second term of the right-hand side of the function
L(C, Γ), which penalizes the differences in feature probability values in the spatially-neighboring
points. (C) Denoising idea: latent feature probabilities are persistent (slowly-changing) 3D functions.
(D) Graphical representation of the overlapping domain decomposition used in the parallel DD-
rSPA algorithm.

We consider a 3D image to be provided as an array V = {V(1), V(2), . . . , V(T)} of
D-dimensional patch value vectors for all T of three-dimensional CT voxels, with patch
values V(t) ∈ RD being, for example, the grey-color intensities Vd(t), d = 1, . . . , D of the
D-dimensional voxel patch with an index t. Without a loss of generality, in the following
applications, we will consider the common grayscale CT images with one-voxel patches
(D = 1) and T being of the order 105–107 . The problem of denoising can then be considered
as a numerical problem of searching for K D-dimensional latent features characterized by K
D-dimensional distinct feature vectors

{
C1,k, . . . , CD,k

}
, with k taking values between 1 and

K. Spatial characteristics of these K latent features we will be searching for will be provided
by (a priori unknown) latent feature probabilities Γk(t), representing the probabilities of
an actual (noisy) voxel V(t) to belong to a particular latent (noiseless) feature with an
index k. Such a numerical procedure can be performed by a broad range of clustering and
segmentation algorithms from ML (e.g., K-means, scalable probabilistic approximation, and
others) [82–84,86]. For example, one possibility would be to minimize the sum of the errors
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Lt(C, Γ(t)) when approximating every vector V(t) with its probabilistic representation
ṼC,Γ(t) = ∑K

k=1 Γk(t)Ck:

[C∗, Γ∗] = arg min
C,Γ

1
T

T

∑
t=1

Lt(C, Γ(t)), (4)

where Lt(C, Γ(t)) = ‖V(t)− ṼC,Γ(t))‖2
2. It is straightforward to see that when C is fixed,

the solution of minimization problem (4) is equivalent to T independent minimizations
of individual errors Lt with respect to their particular Γ(t), and can be performed inde-
pendently for each t. This allows a very efficient, independent, and parallel numerical
treatment of Equation (4) and results in a favorable linear scaling of the computational
cost with growing size and dimension of the data [86]. The downside of this independent
and additive structure of optimization problem (4) is that it results in solutions that are
independent of any spatial permutation of the original data V, since the right-hand side
of Equation (4) is clearly invariant with respect to any arbitrary re-ordering of the sum-
mation indices t. This indicates that the solutions of such an optimization problem will
not change if we arbitrarily change the spatial ordering of the voxels in the original image.
This invariance of the clustering outcomes with respect to the data ordering is a common
characteristic of a broad class of ML methods, including, for example, K means and fuzzy-K
means clustering-methods that belong to the most popular ML algorithms, with over 3 mil-
lion citations according to Google-Scholar [86]. While analyzing spatially-ordered data,
in addition to a simple segmentation (4) of the image into K latent probabilistic features,
we would like to enforce a spatial persistence of the underlying features. To achieve this,
we can force any two voxel points V(t) and V(t′) to have similar latent probabilities of
belonging to the same features if their positions are close enough to each other. In order to
deal with the relative position of the voxels, we can use the kernel function, a very popular
concept in ML. The simplest alternative to measure the “closeness” of two different voxels
would be provided by the Euclidean kernel, defined as a distance function αt,t′ between
two distinct points with indices t and t′:

αt,t′ =

{
1 if distEucl(t, t′) ≤ α0,
0 if distEucl(t, t′) > α0,

(5)

where α0 is some user-defined threshold (e.g., α0 = 1 in this paper’s applications).
Then, following idea behind the Mumford–Shah functional formulation [85], the

spatially-persistent optimal probabilistic approximation ṼC∗ ,Γ∗ of the original image data V
can be computed via the numerical minimization of the regularized form of the original
clustering problem Equation (4):

[C∗, Γ∗] = arg min
C,Γ

1
T

[
T

∑
t=1

Lt +
ε̄

∑T
t,t′=1 αt,t′

T

∑
t,t′=1

αt,t′‖ṼC,Γ(t)− ṼC,Γ(t′))‖2
2

]
. (6)

The second term in the right-hand side of this functional controls the spatial regularity
and smoothness of the obtained solutions. Please note that, in contrast to the original
clustering problem Equation (4), Equation (6) is not invariant with respect to permutations
of V, and allows the obtaining spatially-regular solutions [C∗, Γ∗], with the persistence
growing when increasing the scalar control parameter ε̄. However, these features of the
regularized problem come at the price of losing the very favorable linear scalability of the
computational cost of Equation (4); optimization with respect to different Γ(t) cannot be
performed independently when C is fixed, unlike what happens in the case of clustering
problems such as SPA (4), where one solves T independent K-dimensional optimization
problems for Γ(t) with fixed C. The second term in Equation (6)—aimed at enforcing
spatial regularity and persistence—at the same time introduces global coupling between
different Γ(t) and requires the solution of very large coupled KT-dimensional nonlinear
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optimization problems [60,61,85]. This confines the applicability of the image analysis
methods based on Equation (6), when working on common hardware (e.g., workstations),
to relatively-small images, with KT not larger then 50,000–100,000 [60,61]. The direct
solution of Equation (6), as well as indirect Bayesian solutions of Equation (6) based on
Markov Chain Monte Carlo sampling (MCMC), are costly beyond 1D and would require
extensive use of High-Performance Computing facilities (HPC) for large realistic 3D images
with KT ≈ 105–107 [63,87].

One of the key methodological insights of this work is that one can systematically
derive an exact upper bound approximation of the regularized Equation (6) that can be
solved with a linearly scalable and parallelizable numerical algorithm for realistic 3D
images (with 106–107 voxels), while requiring few minutes on a common laptop:

[C∗, Γ∗] = arg
C,Γ

min
K

∑
k=1

[
1
T

T

∑
t=1

Γk(t)‖V(t)− Ck‖2

+
Kε‖Ck‖2

∑T
t,t′=1 αt,t′

T

∑
t,t′=1

αt,t′(Γk(t)− Γk(t′))2

]
,

such that min(V) ≤ Ck ≤ max(V),
T

∑
k=1

Γk(t) = 1 and Γk(t) ≥ 0 for all t, k.

(7)

As proven in Lemma S1 of the paper supplement, solutions of Equation (7) are also
exact solutions of the original regularized problem Equation (6) if the segmentations are
discrete (i.e., if Γk(t) take only discrete values 0 or 1). These solutions provide upper
bound approximate minimizers of Equation (6) if Γk(t) take fuzzy values between 0 and
1. In contrast to the original clustering SPA-functional Equation (4), Equation (7) has
Γ(t) outside of the norm in the first (clustering) term and the analytical structure of the
second (regularizing) term is very different from the structure that one would obtain by
directly deploying common regularization tools (such as Ridge, Lasso, and elastic net
regularizations) to the original clustering problem (4). Applying Ridge, Lasso and elastic
net regularizations with respect to both variables C and Γ in problem (4) would result in
regularization terms of the form +εC‖Ck‖+ εΓ‖Γk‖ and would require tuning at least the
two regularization parameters εC and εΓ.

The numerical solution of the obtained optimization problem Equation (7) can be
computed with the monotonically-convergent rSPA algorithm: starting with some ar-
bitrarily chosen K feature vectors C, one iterates between solving the above problem
for Γ (with fixed C) and minimizing (7) for C (with fixed Γ). As proven in Lemma
S2, S3 and in Theorem S1 of the paper supplement, rSPA always results in the mono-
tonic minimization of (7), with a linear iteration cost scaling O(KDT). The rSPA al-
gorithm can be efficiently parallelized by deploying the Domain Decomposition idea
(DD) widely used in various areas. A graphical representation of the idea underlying
the resulting parallel DD-rSPA algorithm is shown in Figure 2, while a detailed descrip-
tion of the DD-rSPA algorithm is provided in Section 2 of the paper supplement. Com-
mented computer code implementing both algorithms is provided for open access at https:
//www.dropbox.com/sh/rw4t6ydkpi64w8y/AAA9katysG09w7ljsvUqPwwna?dl=0 (ac-
cessed on 18 March 2022) and can be run on a laptop with a MATLAB installation. Nu-
merical tests on noisy images with different sizes and noise levels reveal that the overall
computational cost of both the sequential rSPA and parallel DD-rSPA algorithms grows
linearly with image size and with decreasing signal-to-noise ratios (corresponding to
increasing noise levels), as we can see in Section 3.

2.3. Relation of Probabilistic Mumford–Shah and rSPA Algorithm to Regularized Mumford–Shah
Framework (MS) and Rudin–Osher–Fatemi (ROF) Total Variation Model

The Mumford–Shah formalism originally introduced in [85] is one of the most well-
understood and elaborated theoretical and algorithmic frameworks for edge-preserving

https://www.dropbox.com/sh/rw4t6ydkpi64w8y/AAA9katysG09w7ljsvUqPwwna?dl=0
https://www.dropbox.com/sh/rw4t6ydkpi64w8y/AAA9katysG09w7ljsvUqPwwna?dl=0
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image denoising. It aims to find an optimally-denoised image Vd that is simultaneously
smooth and close enough to the original noisy image V. Then, keeping the previously intro-
duced notation, in the most common discrete Mumford–Shah formulation such a denoised
image Vd can be found as a solution to the following optimization problem:

[Vd] = arg
Vd

min
1
T

T

∑
t=1

[
‖V(t)−Vd(t)‖2 + ε2‖∇Vd(t)‖

]
, (8)

where the first term measures the “closeness” of the original and the denoised images,
and the second term regularizes the “smoothness” of the denoised image by penalizing the
norm of its average gradient. One of the key theoretical insights to this problem (8) was
provided in the work by Rudin, Osher, and Fatemi [88]; by deploying the Euler–Lagrange
principle, they showed that the solution to the minimization problem (8) is equivalent to
solving a parabolic Partial Differential Equation (PDE). This opened a way for applying very
efficient PDE solvers and the so-called level-set methods to the image denoising problem.
The numerical solution of both the original MS-formulation (8) and of the PDE-based
ROF-formalism is commonly achieved by deploying the Galerkin ansatz:

Vd(t) =
K

∑
k=1

CkΓk(t), (9)

where Γk(t) is a fixed set of known basis functions (e.g., mesh functions, finite element
functions, wavelet basis functions, Fourier basis functions, etc.) and Ck are the unknown
coefficients that are found numerically [88–93].

The most important difference between the Probabilistic Mumford–Shah (PMS) prob-
lem formulation (7) and the common MS and ROF methods is the form of the Galerkin
expansion (9); the PMS problem (7) deploys the probabilistic expansion (9), with C and
Γ(t) being a priori unknown non-parametric probability density vectors, whereas com-
mon MS and ROF tools dwell on a priori fixed parametric sets of non-probabilistic basis
functions Γ. Hence, in contrast to the parametric optimization problem (8) that allows a
straightforward Euler–Lagrange reformulation in form of the parabolic PDE, the intro-
duced PMS-formulation deals with a non-parametric variational problem (7) subject to both
equality and inequality constraints that does not allow a straightforward Euler–Lagrange
reformulation and does not allow the deployment of the aforementioned very efficient
algorithms from PDE numerics for its solution. One of the central methodological develop-
ments of this manuscript consists in showing that, despite this presumed limitation, it is
possible to efficiently solve the PMS problem numerically (7) with an iterative algorithm
that has a linear scalability of the computational cost. A direct numerical comparison
of PMS to the common MS- and ROF-tools [88,93] reveals very significant differences in
denoising performance, cost, and parallel scalability (see the results in Section 3).

2.4. Practical Implementation
2.4.1. Synthetic CT Image Generation Model

To create the additive Gaussian CT noise, we used the parameter value ‘gaussian’, while
the non-Gaussian multiplicative noise images were created by using the function imnoise()
with the parameter value ‘speckle’. The parameter σ is, in both cases, selected according to
the description below. The MATLAB code implementing this CT image generation work-
flow is available at https://www.dropbox.com/sh/rr0no9vdo8osx44/AAAHQxXJnxT8
P0LPs7wTRBv7a?dl=0 (accessed on 18 March 2022). Generation of the nonparametric
empirical CT noise was implemented in the function create_CT_image_noise() available
at https://www.dropbox.com/s/xbwwrk9y2napgpy/create_CT_image_noise.m?dl=0 (ac-
cessed on 18 March 2022).

https://www.dropbox.com/sh/rr0no9vdo8osx44/AAAHQxXJnxT8P0LPs7wTRBv7a?dl=0
https://www.dropbox.com/sh/rr0no9vdo8osx44/AAAHQxXJnxT8P0LPs7wTRBv7a?dl=0
https://www.dropbox.com/s/xbwwrk9y2napgpy/create_CT_image_noise.m?dl=0
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2.4.2. Common CT Image Denoising and Image Quality Assessment Methods

We used the same software platform (MATLAB, version: 2021b (The MathWorks, Inc.,
Natick, MA, USA)) and the same hardware (Mac workstation with 28 CPU cores (Apple Inc.,
Cupertino, CA, USA)) for all calculations to guarantee a fair comparison of the denoising
methods and to rule-out software- and platform-induced differences that could bias this
comparison. All deployed common denoising and image quality assessment tools are avail-
able in the MATLAB functions from the “Image Processing”, “Deep Learning”, “Machine
Learning”, and “Wavelets” toolboxes of MathWorks. We used denoising methods based
on local window filtering of the data (3D Gaussian filtering with the MATLAB function
imgaussfilt3(), 3D local median filtering with the MATLAB function medfilt3() and bi-
lateral filtering with the MATLAB function imbilatfilt()) [14,16–18], spectral denoising
methods (the 3D wavelets denoising with the MATLAB function wavedec3()) [15,19–22]
and a deep learning denoising method based on pre-trained feed-forward denoising con-
volutional neural networks (DnCNNs, with the MATLAB functions denoiseImage() and
denoisingNetwork()) [13,25–27].

3. Results and Discussion
3.1. Application and Comparison of the PMS Model with Standard Methods

Next, we compare the denoising performance for a broad selection of supervised and un-
supervised algorithms using the synthetic CT images generated with the pipeline introduced
above. As a noiseless CT reference, we first use the patient data exemplified in Figure 3A. It
has 274,625 voxels and represents a cubic CT area of around 5 cm × 5 cm × 5 cm. The data
came from a high-radiation CT (180 mA tube current, CTDIvol 15.4 mGy, section from a
thorax CT of a 19-year-old female patient).

For each particular combination of tube-specific and patient-specific parameters, we
used this reference image to create statistics of 100 different independent noisy synthetic
CT images for every parameter combination. Figure 3B shows the increase in noise when
reducing the radiation exposure. In the following, we use the state-of-the art version of
the ML, AI, and image processing toolboxes of MathWorks from 2021 to compare the
performance of all of the commonly-available denoising and segmentation algorithms in
these toolboxes to the PMS algorithm introduced in this paper. To illustrate the perfor-
mance of DL on these data, we first apply one of the most widely-used DL denoising
networks: the Convolutional Neuronal Network DnCNN-3 from [25], with over 3264
citations according to Google Scholar. It was trained on a comprehensive collection of
imaging datasets (including the Berkeley segmentation dataset, with over a million image
pairs for training) with a very broad range of signal-to-noise ratios and noise types (both
Gaussian and non-Gaussian). Figure 3C,D show the effects of denoising by DL DnCNN-3
from [25] and rSPA, respectively. in low- and ultra-low-radiation CT. Figure 3E shows a
3-dimensional segmentation obtained from a stack of such high-radiation CT data, whereas
Figure 3F,G give the segmentation based on the images denoised using DnCNN-3 and
rSPA, respectively. Figure 3E,F are all obtained from two feature isosurfaces at 625 and 200
Hounsfield Units (HU), respectively, representing the interior of blood vessels in the lung
volume segment.
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Figure 3. Radiation exposure, quantum noise, and denoising performance of CNNs and rSPA
in low-radiation and ultra-low-radiation thorax CT regimes. (A) Reference data of a thorax CT
voxel fragment (approx. 5 cm3) of a 19-year-old female with the BMI 27.5, acquired with the
Somatum Emotion 16 2007 (Siemens Aktiengesellschaft, Berlin, Germany) at 130 kV tube voltage.
(B) Simulated decrease in the radiation exposure CTDIvol from 15.6 mGy (reference frame) to 3.3mGy
(for low-radiation simulations) and 0.5 mGy (ultra-low-radiation) results in a significant increase of
quantum noise. (C) Reconstructed images using CNNs. (D) Reconstructed images using rSPA. (E) 3D
segmentation of the original reference frame. (F) 3D segmentation based on the images denoised
using CNNs. (G) 3D-segmentation of the images denoised by rSPA.
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Apparently, rSPA provides denoised images and segmentations that are much closer to
the high-radiation reference images. In particular, we observe that as the noise increases, DL
denoising methods start recognizing features from noise artifacts that were not part of the
true reference images. As already mentioned above, such deterioration of the performance
of ML and DL methods can be attributed to various reasons, including, on the one hand,
the insufficient training data set and the “small data challenge” [39–42] and, on the other
hand, the effect of “concept drift” stemming from the mismatch between the type of image
features and noise model used during the model training and the noise model in the
validation data [53–55].

To discern the potential impact of “concept drift” and to rule-out the possibility
that the “hallucinations” observed for DL CNN in Figure 3 in the ultra-low-radiation
regime are induced by the insufficient size of the training dataset, we additionally train
the DnCNN-3 from [25] first with 10,000 image pairs (with and without noise) of spheres
and circles of various sizes, and then with further 40,000 image pairs. We performed
this two-stage training procedure to evaluate the performance improvement induced
by providing more training data. The complete additional training took around 8 days
on a machine with 28 CPUs (Intel Xeon Gold 6240R 2.4G, 14C/28T (Intel Corporation,
Santa Clara, CA, USA)) and 384 GB RAM (DDR4-2933) using up to 90% of the physical
cores and ∼120 GB of memory. The resulting denoising network is provided for open
access at https://www.dropbox.com/s/ia69h9fhgud2vpt/additionallytrained_DnCNN-
3_network.mat?dl=0 (accessed on 18 March 2022). We found that using a larger training
dataset (with further 40,000 image pairs) can only bring negligible improvements, con-
firming the earlier finding reported in [25]. The noisy images in every pair were created
using the empirically sampled non-Gaussian CT noise at various levels, covering low-
and ultra-low-radiation regimes (down to 0.2 mGy, corresponding to signal-to-noise ratios
between 5 and 0.1). In Figure 4, we show some of the results obtained from the application
of the additionally trained DnCNN to the noisy images of circles and spheres that were
not used in the training by deploying the same empirically-sampled non-Gaussian CT
noise model used in the training at the medium noise level (SNR = 5, corresponding to the
low-radiation CT) and at the high noise level (SNR = 0.5, corresponding to the ultra-low-
radiation CT). Complete comparisons are provided as movie files and are available at https:
//www.dropbox.com/sh/n2dbl4h9p4o0p92/AABRkAalhXoaiKFO7ixsSzKga?dl=0 (ac-
cessed on 18 March 2022). In Figure 4, we observe the same effect of a quick deterioration of
DL denoising quality with the increasing noise as in Figure 3; at the medium noise level, DL
provides high-quality denoising, outperforming a very popular unsupervised 3D wavelets
denoising tool [15,19–22]. However, at high noise levels, DL is outperformed by the 3D
wavelet denoising. Interestingly, the best performance, in both cases, is achieved when
applying the DL denoising to the data that has been previously denoised by rSPA.

https://www.dropbox.com/s/ia69h9fhgud2vpt/additionally trained_DnCNN-3_network.mat?dl=0
https://www.dropbox.com/s/ia69h9fhgud2vpt/additionally trained_DnCNN-3_network.mat?dl=0
https://www.dropbox.com/sh/n2dbl4h9p4o0p92/AABRkAalhXoaiKFO7ixsSzKga?dl=0
https://www.dropbox.com/sh/n2dbl4h9p4o0p92/AABRkAalhXoaiKFO7ixsSzKga?dl=0
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Figure 4. Comparing denoising performance on synthetic CT images of noisy circles, with DL from
Figure 3 additionally trained to recognize circles for non-Gaussian noise model: (A) medium noise
scenario, corresponding to low-radiation regime with around 3.3 mGy; (B) high noise scenario,
corresponding to ultra-low-radiation regime with 0.5 mGy.

Making an interim assessment of these results, we can conclude that the deteriorating
performance of DL denoising is neither a result of “concept drift” (since the type of features
and the noise model deployed in the training and in validation were the same), nor a
consequence of the training data set insufficiency (since we observed only negligible
performance improvements of DL when expanding the additional training data from 10 K
to 50 K image pairs). A possible explanation can be given by the fact that here we observe a
fundamental robustness boundary of DL denoising in the high noise regime, similar to the
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Donoho-boundary for wavelets methods [19,20]. As we will see in the following, further
numerical results provided below give additional support to this hypothesis.

In the next step, we compare the computational cost scaling, denoising performance
scaling, and parallelizability scalings for DL, TV-regularized Mumford–Shah denoising
from [93], sequential rSPA, parallel DD-rSPA, and parallel DD-rSPA followed by DL. We
are particularly interested in analyzing the dependence of these characteristics on the
image size and noise intensity. For every combination of image size and noise level, we
create 10 randomly-generated images of spheres and circles with the non-Gaussian noise,
matching the characteristics of the additionally trained DnCNN-3 to avoid bias through
“concept drift”. The code reproducing these results is available at https://www.dropbox.
com/sh/6p3q62zaelcyugz/AACkEjggyKcIAdgtoHGWClWPa?dl=0 (accessed on 18 March
2022). The results are summarized in Figure 5; their computation required around 30 h
on a laptop with a MacBook Pro 3.1 GHz Quad-Core Intel Core i7 (4 cores) with 16 GB
RAM. The measurement of the computational cost for DL considered only the pure time
of applying the fully-trained DL network to a noisy image and did not include the time
needed for the additional training (that was around 8 days on the workstation, as mentioned
above). As can be seen in Figure 5, for all considered methods, the overall cost scales linearly
with the image size, while parallel DD-rSPA demonstrates the weak scaling of parallel
computation cost (see Figure 5C). DD-rSPA allows the denoising of a 3D image with 107–108

voxels in the ultra-low-radiation regime (SNR = 0.5) at around 3–10 min on a MacBook Pro
laptop with four cores. Interestingly, the costs of DL and common MS-denoising practically
do not depend on the noise level, whereas the cost of rSPA and DD-rSPA grows linearly
with the decreasing SNR. According to Theorem S1 of the paper supplement, the iteration
cost of rSPA and DD-rSPA does not depend on the noise intensity; this linear dependence
of the overall cost on noise is solely explained by the linear increase in the number of rSPA
and DD-rSPA iterations required to achieve the solution of the minimization problem (7)
with the linearly reducing SNR. In other words, these results show that DL and common
MS-denoising invest the same amount of work at different noise levels, whereas rSPA
and DD-rSPA invest work linearly-proportional to the SNR and increase with the relative
increase in the noise. A comparison of the denoising quality scalings in Figure 5 provides
additional evidence towards the hypothesis formulated above; the deterioration of the
denoising performance of DL in the area of large noise (small SNR) and smaller image
sizes—where DL is outperformed by the 3D wavelet denoising—is neither the result of
an insufficient training dataset nor of “concept drift”, but can be explained through the
existence of a fundamental robustness boundary for DL denoising in the high noise regimes
(with SNR < 1.0). Indeed, the scaling of DL performance decay observed in Figure 5 exhibits
a much steeper robustness boundary than the Donoho-boundary [19,20] of the wavelets
denoising robustness (compare magenta and orange surfaces in Figure 5E). This finding is
also confirmed by inspecting the performance of DL when it is applied to the images that
were previously denoised by DD-rSPA (light blue surface in Figure 5B). This combination
of unsupervised DD-rSPA followed by supervised DL exhibits the best performance among
all the considered methods in this high noise regime.

https://www.dropbox.com/sh/6p3q62zaelcyugz/AACkEjggyKcIAdgtoHGWClWPa?dl=0
https://www.dropbox.com/sh/6p3q62zaelcyugz/AACkEjggyKcIAdgtoHGWClWPa?dl=0
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Figure 5. Comparing denoising quality, cost and parallelizability: (A–C) comparison of PMS rSPA
algorithm to the regularized Mumford–Shah denoising tool introduced in [93] and to the additionally
trained DL denoising algorithm from Figures 3 and 4; (D,E) computational cost scaling and perfor-
mance for DL (without taking into account time for additional training), sequential rSPA, parallel
DD-rSPA and DD-rSPA followed by DL. Each point of each method’s curve and surface is obtained
from statistical averaging of the respective values obtained by analyzing 10 randomly-generated
images with these particular combinations of image size and noise level.
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Next, from synthetic CT images generated from circles and spheres, we return to the
analysis of CT images generated from real anatomical features. Using the CT image gener-
ation and LAR-assessment pipeline, we compare the performance of denoising methods
with a broad range of absorbed radiation dose densities. This comparison is made for two
synthetic noise models (Figure 6A,B, with Gaussian and non-Gaussian noise) and for the
empirical nonparametric CT noise model obtained from the real patient data (Figure 6C).
The results of this comparison are shown in terms of three major image quality measures.
As expected, the Gaussian 3D filtering exhibits the best performance among the common
tools for all three additive Gaussian noise scenarios from Figure 6A. On the other hand,
the non-Gaussian deep learning DnCNN denoising outperforms the other tools (except
rSPA) in the non-Gaussian and empirical noise situations, as can be seen in Figure 6B,C.
However, in the overall comparison, the rSPA method markedly outperforms all considered
denoising tools in all image quality measures for all three noise models. As can be seen
from Figure 6, rSPA achieves the same quality of the denoised image obtained with DnCNN
(3D MS-SSIM around 0.9) with around 15-fold smaller absorbed radiation dose density
(CTDIvol = 0.95 mGy for rSPA vs. CTDIvol = 15 mGy for DnCNN).

Figure 6. Comparing CT image denoising performances for three CT noise models: (A) additive
Gaussian noise model (CT noise variance is independent of the feature color); (B) multiplicative
non-Gaussian noise model (CT noise variance changes with the amplitude of the underlying color
signal); (C) empirical noise obtained from the thorax CT patient data. In (A,B), generation of synthetic
images was performed for a patient with a water-equivalent diameter of 30 cm, which is subject to a
Thorax CT with a typical tube voltage of 120 kV in the range of tube currents between 5–180 mA and
a set of artificial anatomic features from Figure 2A (with a feature contrast of 200 HU). In (C), real
patient data were used. Comparison is performed with three primary image quality criteria: with
mean squared error (left panels); with peak signal-to-noise ratio (middle panels); and with the 3D
multiscale structural similarity index (right panels).
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In Figure 7, we compare the average denoising performances measured with the
3D MS-SSIM image quality measure for a range of practically-relevant CT feature color in-
tensity differences, lifetime attributable risks (LAR), and absorbed radiation dose densities.
These results again demonstrate that rSPA is superior to all other considered tools in all
analyzed regimes. The 3D MS-SSIM of the blue surfaces corresponding to rSPA is close
to 1.0 almost everywhere, thus indicating that the denoised images are very close to the
reference CT images without noise. The powerful effect of image quality-preserving LAR
reduction by denoising, especially in female infants, is visible in Figure 7B. Furthermore,
we can notice the substantial LAR reduction obtained through the application of the rSPA
algorithm. in particular in case of the infant patient. Indeed, Denoising with rSPA achieves
the same image quality obtained with DnCNN (3D MS-SSIM around 0.97 for feature color
differences around 50–100 HU), but with a 22.6-fold smaller LAR (LAR = 0.015% for rSPA
vs. LAR = 0.34% for DnCNN). In Table 1, we report, for the different methods, a compari-
son of the image quality loss caused by an increasing reduction of the lifetime attributable
risk in the case of the infant patient and with a fixed value of the feature contrast at 200 HU.

Figure 7. Comparing denoising methods with the average Multiscale Structural Similarity Index
(3D MS-SSIM): (A) varying the true underlying feature contrast and LAR for a synthetic 30-year-old
female patient with a water-equiv. cross-section of 27 cm; (B) varying the true underlying feature
contrast and LAR for a synthetic 1-year-old female infant patient with a water-equiv. cross-section
of 12.7 cm; (C) denoising performance comparison when varying the patient size and the effective
absorbed radiation dose density, with the 200 Hounsfield Units (HU) feature contrast differences.

Finally, in Figure 8, we evaluate the performance of DL with and without preliminary
DD-rSPA denoising, comparing it to the denoising performance of DD-rSPA for the synthetic
noisy CT images generated with real anatomic features from thorax CT. The noiseless thorax
CT image used as reference in this performance comparison is available at https://www.
dropbox.com/s/29x0xivg8l80q10/female_lung_thorax_CT_image_section_v2.mat?dl=0 (ac-
cessed on 18 March 2022). The dotted lines show 95% nonparametric confidence intervals
(c.i.) obtained for every value of CTDIvol from 100 different independently-generated noisy
synthetic CT images, using the MATLAB function quantile(). These results support our
previous findings; applying DL to the image previously denoised with DD-rSPA provides a
statistically-significant improvement of DL denoising performance.

https://www.dropbox.com/s/29x0xivg8l80q10/female_lung_thorax_CT_image_section_v2.mat?dl=0
https://www.dropbox.com/s/29x0xivg8l80q10/female_lung_thorax_CT_image_section_v2.mat?dl=0
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Figure 8. Comparing denoising methods with the average Multiscale Structural Similarity Index
(3D MS-SSIM) for simulated thorax CT: (A) varying the absorbed radiation dose for a synthetic
30-year-old female patient with a water-equiv. cross-section of 27 cm; (B) varying the absorbed
radiation dose for a synthetic 1-year-old female infant patient with a water-equiv. cross-section of
12.7 cm. Noiseless thorax CT image used as reference in this performance comparison is available
at https://www.dropbox.com/s/29x0xivg8l80q10/female_lung_thorax_CT_image_section_v2.mat?
dl=0 (accessed on 18 March 2022 ). Dotted lines show 95% nonparametric confidence intervals (c.i.)
obtained for every value of CTDIvol from 100 different independently-generated noisy synthetic CT
images, using the MATLAB function quantile().

Table 1. Deterioration of CT image quality (decrease in 3D MS-SSIM index, baseline = 100%) caused
by a reduction of lifetime attributable risk (LAR) for different methods. The CT scans pertain to the
infant patient, with a fixed feature contrast of 200 HU.

Image Quality Loss (3D MS-SSIM, in %)

Reduction of
LAR (in %) Raw Image 3D Gaussian

Filtering
DL CNN

Denoising
3D Wavelet

Filtering rSPA

6 1.16 0.77 0.54 0.79 0.01
16 1.26 0.84 0.59 0.86 0.01
23 1.34 0.90 0.63 0.92 0.01
29 1.44 0.96 0.67 0.99 0.01
36 1.56 1.04 0.73 1.07 0.01
42 1.70 1.13 0.79 1.16 0.01
49 1.88 1.25 0.88 1.29 0.01
56 2.12 1.41 0.99 1.45 0.02
63 2.45 1.63 1.14 1.67 0.02
70 2.92 1.95 1.36 2.00 0.02
77 3.69 2.46 1.72 2.52 0.03
83 5.11 3.40 2.38 3.49 0.04
90 8.72 5.81 4.07 5.97 0.06
97 25.96 18.20 13.37 18.16 0.17

3.2. Implementation Details

For each of the considered images, the standard deviation of the local Gaussian
smoothing kernel σ was changed in the range σ = [0.2, 0.4, 0.6, . . . , 2]. The value leading
to the least MSE deviation between the denoised and the original CT image was taken to
compute the curves in Figures 4 and 5. Similarly, for the optimal 3D wavelet filtering, all of
the wavelet bases available in MATLAB were checked for all of the possible depths of level
decompositions and the wavelet decomposition with the minimal MSE error was selected.
Pre-training of DnCNN was done with over 20 million images and was provided in the

https://www.dropbox.com/s/29x0xivg8l80q10/female_lung_thorax_CT_image_section_v2.mat?dl=0
https://www.dropbox.com/s/29x0xivg8l80q10/female_lung_thorax_CT_image_section_v2.mat?dl=0
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“Deep Learning Toolbox”. The image quality measures plotted in Figures 4 and 5 were
computed using the MATLAB functions from the “Image Processing Toolbox”: 3D mean-
squared error (MSE) [66] was computed as the average over the 2D MSE errors obtained
with the MATLAB function immse(); 3D Peak Signal-to-Noise Ratio (PSNR) was obtained
as an average over the 2D PSNR image error measures [67] implemented in the MATLAB
function psnr(); 3D Multi-Scale Structural Similarity Index Measure (3D MS-SSIM) [68]
was obtained with the 3D image volume measure MATLAB function multissim3().

The curves in Figures 6–8 show averages over individual denoising results obtained
for 100 different independently-generated noisy synthetic CT images that were obtained for
every particular combination of tube-specific and patient specific parameters. In Figure 5,
the surfaces represent averages over 10 randomly-realized noisy CT images. To provide a
fair comparison, the same random CT image realizations were used with every denoising
method. The dotted lines in Figures 6 and 8 show the 95% nonparametric confidence
intervals (c.i.) computed with the MATLAB function quantile().

4. Conclusions

We introduced an algorithmic pipeline for the generation of synthetic patient-specific
CT images and radiation-induced risk assessment. We used it to compare various CT image
denoising approaches in a range of practically-relevant CT regimes. The ultra-low-radiation
CT regime represents a three-fold challenge for all the standard denoising methods since:
(i) the reduction in the radiation exposure leads to a substantial increase in the noise level,
eventually making it impossible for the standard unsupervised and spectral denoising
tools to distinguish the noise from the underlying true image signal; (ii) the heterogeneity
of individual anatomical features, patient sizes, and CT conditions, together with the lack
of training data, can lead to the “concept drift” problem, thus making the identification of
some pre-trained features and patterns in the noisy CT images particularly difficult; (iii) in
this context, even the performance of one of the most popular supervised denoising CNNs,
trained in a wide range of noise regimes [25], quickly deteriorates.

To tackle these challenges, we introduced the Probabilistic Mumford–Shah formalism
(PMS) (7) and showed that it can be efficiently solved numerically through the unsuper-
vised regularized Scalable Probabilistic Approximation method (rSPA), which seeks a
simultaneous solution to the image segmentation and noise elimination problems. We
proved that it provides a computationally-cheap (with a linear cost scaling, see Figure 5,
Lemma S1–S3 and Theorem S1 of the paper supplement) exact upper bound approximation
of the numerically much more expensive regularized probabilistic segmentation prob-
lem (6). We also introduced DD-rSPA, a parallel extension of the rSPA algorithm based
on the decomposition of the 3D domain in overlapping subdomains. Commented code
for both algorithms was provided for open access. Numerical tests on images with differ-
ent sizes and noise levels revealed that: (i) the overall computational cost grows linearly
with the image size and with a decrease in the signal-to-noise ratio (SNR) for both the
sequential rSPA and the parallel DD-rSPA algorithms, while the common Mumford–Shah,
3D wavelets, and DL denoising tools require the same computational effort regardless
of the image SNR; (ii) the observed deterioration in the performance of DL denoising is
neither the result of “concept drift”, nor a consequence of the limited size of the training
set. Further tests on artificial and real data (Gaussian and non-Gaussian, with additive,
multiplicative, and nonparametric empirical CT noise, with continuous and discontinuous
feature boundaries) showed that rSPA outperforms all the other considered denoising meth-
ods in a wide array of performance measures. The linear scaling of the parallel DD-rSPA
algorithm allows using a normal laptop for tasks that would otherwise require extensive
hardware (e.g., workstations and HPC facilities). Indeed, with DD-rSPA it is possible to
obtain a high-quality denoising (with 3DMS-SSIM around 0.9) of a 3D image with 107

voxels in the ultra-low-radiation regime (SNR = 0.5) in only 3 min on a MacBook Pro laptop
with 4 cores. None of the other denoising methods considered were able to come close to
this performance.
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Using rSPA and DD-rSPA creates the opportunity to obtain a significant patient-specific
reduction of the radiation-imposed risks, allowing a 20-fold estimated LAR reduction for
infants and a 10-fold LAR reduction for adults. According to the risk assessment protocol
introduced in [10], these results from Figure 7B suggest that applying this personalized
denoising methodology to ultra-low-radiation pediatric CTs might lead to the prevention
of around 90% of the deadly cancers they induce (i.e., ∼11,000 cases every year worldwide).

We showed that the DD-rSPA algorithm can be used to generate a statistically-
significant increase in the performance of the other DL and ML methods that have been
recently developed. Indeed, many of the existing tools were trained in regimes with moder-
ate and low noise levels, and a preliminary unsupervised denoising step with DD-rSPA
can extend their applicability to the ultra-low-radiation regime, where the noise level is
significantly higher. Furthermore, the particular design of rSPA and DD-rSPA aims to si-
multaneously tackle the denoising and the segmentation of noisy 3D images by solving an
unsupervised learning problem, while allowing the optimal and linearly-scalable “smooth”
segmentation of the denoised image in 3D. This approach is different from the one adopted
by the majority of the available tools, which are focused exclusively on the denoising part
and lack the segmentation component.

Among possible other application areas of the sequential rSPA and the parallel DD-
rSPA algorithms, we can find the denoising and segmentation of ultra-noisy 2D and
3D movie data. In the case of 2D movies, the time component can be considered as a
third image dimension in the rSPA algorithm. Another possible application area—i.e., 3D
movies—emerges, for example, in fMRI applications pertaining to various biomedical areas
(e.g., in cardiology), where the main challenge consists in detecting the moving boundary of
the inner organ and in distinguishing it from other eventual shapes in a time-resolved noisy
dynamics [94] (Some examples of movie denoising with DD-rSPA are available at https://
www.dropbox.com/sh/n2dbl4h9p4o0p92/AABRkAalhXoaiKFO7ixsSzKga?dl=0 (accessed
on 18 March 2022)). Finally, beyond CT data denoising and segmentation, we also see
direct application possibilities for other imaging techniques such as fiber-optic fluorescence
imaging, diffusion tensor imaging, and large-scale 3D segmentation tasks with electron
microscopy images.
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