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Abstract: No-reference image quality assessment (NR-IQA) methods automatically and objectively
predict the perceptual quality of images without access to a reference image. Therefore, due to
the lack of pristine images in most medical image acquisition systems, they play a major role in
supporting the examination of resulting images and may affect subsequent treatment. Their usage is
particularly important in magnetic resonance imaging (MRI) characterized by long acquisition times
and a variety of factors that influence the quality of images. In this work, a survey covering recently
introduced NR-IQA methods for the assessment of MR images is presented. First, typical distortions
are reviewed and then popular NR methods are characterized, taking into account the way in which
they describe MR images and create quality models for prediction. The survey also includes protocols
used to evaluate the methods and popular benchmark databases. Finally, emerging challenges are
outlined along with an indication of the trends towards creating accurate image prediction models.

Keywords: survey; image quality assessment; no-reference image quality assessment; magnetic
resonance images

1. Introduction

The advantages of magnetic resonance imaging (MRI) over other medical imag-
ing methods, including computed tomography (CT), X-ray and ultrasound imaging,
and positron emission tomography (PET) are based on its safety and ability to provide
detailed images in axial, sagittal, and coronal planes [1]. Delving into the subject of im-
proving the MRI quality, attention should be paid to the characteristics of the researched
material. Protons that are normally and randomly oriented within the water nuclei of
the examined tissue are arranged by a powerful, uniform, and external magnetic field.
The most commonly used MRI sequences are T1-weighted and T2-weighted scans. T1
(longitudinal relaxation time) is a fixed time that determines the velocity at which excited
protons return to equilibrium, while T2 (transverse relaxation time) is the constant that
determines the rate at which excited protons leave the phase with each other or reach
equilibrium. T1-weighted images are produced with the use of a short time to echo (TE)
and repetition time (TR). Its properties determine the contrast and brightness of the image.
On the other hand, the T2-weighted images are produced by using longer TE and TR.
Another broadly used sequence is the fluid-attenuated inversion recovery (FLAIR). This
sequence is similar to T2-weighted images aside from the fact that the TE and TR times are
much longer. It is exceptionally sensitive to pathology and facilitates the differentiation be-
tween cerebrospinal fluid and an abnormality [2,3]. MR imaging is prone to distortions due
to many reasons such as signal or image operations, equipment characteristics, or operator
mistakes [4]. Examples of operations that cause distortions are acquisition, enhancement,
compression, or reconstruction procedures. Furthermore, unexpected patient movement or
an error made by the operator performing the test can introduce additional and unwanted
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visual information to acquired images. These factors have an impact on the subjective
assessment of the obtained image and the subsequent diagnosis. The scanners are used to
provide a sequence of images valuable for further diagnostic purposes. They are created
with varying magnetic field strength and measured in Tesla units (T). Nowadays, the most
commonly utilized magnet strengths in MRI machines are 1.5T and 3T. The 1.5T scanner
can be considered as commonly used in clinical settings, whereas 3T is then employed in
research settings. Comparing two devices, some implants that are safe to go into a 1.5T
scanner may not be safe for the patient in a 3T scanner. On the other hand, 3T scanner
provides better image quality and faster scan speeds [5]. Therefore, automatic and objective
image quality assessment (IQA) is particularly important. With the growing development
of IQA research, several new algorithms have been created. This paper aimed to briefly
elaborate on the MR-IQA methods suitable for the evaluation of MR images. To the best
of the authors’ knowledge, such methods have not been covered in a single survey since
related surveys describe the general methods for IQA or methods designed for medical
images with the focus on fetal brain MRI [6,7]. Furthermore, since their creation, new MR
IQA methods have emerged.

The assessment performed by the method should be as close as possible to the subjec-
tive assessment, and with the development of reliable techniques, the human assessment
in MRI may be minimized or, in the longer term, completely replaced. The objective ap-
proaches for IQA can be categorized into full reference (FR), reduced reference (RR), and no
reference (NR)/blind image quality (BIQA) methods [8–11]. In the case of FR and RR, an
undistorted reference image, or a part of an image to which the assessed image is compared,
should be available. However, in the case of medical imaging, such an undistorted image
does not exist [12]. Therefore, the development of BIQA methods is of particular impor-
tance in this field [13–16]. NR methods can be further classified into opinion-aware and
opinion-unaware/completely blind approaches [17] depending on the access to subjective
scores while creating a quality model.

The rest of the paper is organized as follows. In Section 2, selected MRI distortions
are described. Section 3 presents NR-IQA features and briefly characterizes MRI methods.
Section 4 introduces databases and MRI NR-IQA protocols. Finally, Section 5 summa-
rizes the achievements in NR-IQA of MR images and indicates the main challenges and
future directions.

2. MRI Distortions

here are several categories of distortions, sequence artifacts, or distortions related
to image reconstruction that can be minimized by using an appropriate work protocol,
system improvements, or enhancing image quality improvement and processing methods.
Moreover, there are system artifacts due to the misused or faulty MRI equipment. However,
sample artifacts or human-induced distortions are more complex as their elimination
requires not only a thorough understanding of the patient’s anatomy and psychology but
also the use of specific pulse sequences [18]. The most common distortions are briefly
described below and their examples are shown in Figure 1.

2.1. Spike (Herringbone) Artifact

The noise spike points in the k-space are generated by gradients that have been used
in a very high duty cycle. The k-space is an extension of the Fourier concept, defined as
an array of the numbers representing spatial frequencies in two or three dimensions of an
object [19,20]. The distortions in the k-space are manifested by single or multiple points
varying in intensity compared to their surroundings. The combination of information
during the Fourier transform with the spike causes dark bands to be superimposed on the
image. The direction, angle, and distance between the bands depend on the displacement
of the noise spike from the center of the k-space. Spike noise usually occurs from loose
electrical connections and is more noticeable when using high-duty-cycle sequences. In this
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case, following the changes in the position of the pattern produced by the spike can be
used in further diagnosis [21,22].

(a) (b) (c)

(d) (e) (f)

(g)

Figure 1. Examples of artifacts in MR images: (a) herringbone; (b) ghosting; (c) magnetic suscep-
tibility; (d) slice overlap; (e) aliasing; (f) Gibbs effect; and (g) zipper. Cases were the courtesy of:
(a) Assoc. Prof. Frank Gaillard, rID: 19695; (b) Assis. Prof. Faeze Salahshour, rID: 81727; (c) Dr. Ayush
Goel, rID: 22731; (d) Dr. Roberto Schubert, rID: 16705; (e) Dr. Prashant Mudgal, rID: 26927; (f) Dr.
Prashant Mudgal, rID: 27302; and (g) Dr. Alan Nazerian, rID: 45665; radiopaedia.org (accessed on
27 April 2022).

2.2. Zipper Artifact

A zipper artifact is an area of alternating light and dark pixels. This distortion is placed
in the direction of the frequency coding and appears throughout the series of images. It
is caused by the leakage of electromagnetic energy into the magnet room or by electronic
equipment brought into the room and a breach of RF shielding in this equipment. Another
source of the zipper artifact is an external light source reaching the receiver coil as a result
of an open door in the room where the scanner is located [23,24].

radiopaedia.org
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2.3. Ghosting

Images are influenced not only by the physical reaction of the patient during the
examination or environmental factors but also by the pulsating movement. For example,
the ghosting artifact can be caused by cardiac beats, arterial or cerebrospinal fluid (CSF)
pulsations, respiration, and implants. When the motion is strong enough, the distortions,
resembling the shape of the imaged organ, overlap with the image itself. The arrangement
may resemble parallel imaging artifacts whilst resembling clots or dissections. Parallel
imaging is a method of improving MRI data acquisition that works by obtaining a reduced
amount of k-space data with a series of receiver coils [25,26]. The distance between the
distortions may depend on the frequency of movements and the repetition time. This
artifact is also categorized as motion distortion [27,28].

2.4. Blurring

Blur is a motion-type distortion that occurs as unevenly distributed over the entire
area of an image. It has a large impact on the strength of edge visibility, weakens the clarity
of the image, and reduces the contrast between different anatomical structures [29,30].

2.5. Aliasing Artifacts

Aliasing artifacts appear when the field of view is smaller than the body part being
imaged. The field of view is an area designated by the size of two- or three-dimensional
spatial encoding space of the MR image [31]. Aliasing occurs in the direction of phase
coding or cross-section in 3D acquisition. ‘The moire’ or ‘fringe artifact‘ is a type of
distortion that arises in the frontal lobe, where large fields of view produce these distortions.
One way of reducing or aligning the distortion is to change the imaging axis so that the
part of the body under study fits within the field of view. However, this can result in other
types of artifacts. An alternative approach is to increase the field of view phase or apply
spatial saturation pulses outside the field [32,33].

2.6. Gibbs Effect

Gibbs artifacts—also known as truncation artifacts or ringing artifacts—are a series of
lines in the MR image that appear parallel to the area in which there has been a sudden
and intense change in signal intensity. The Gibbs ring distortion is also mainly produced
due to insufficient samples in the direction of phase coding or reading [34].

2.7. Slice-Overlap Artifact

The slice-overlap artifact is associated with the loss of the signal visible in the image
from the multi-angle acquisition. With this distortion, the edge sections have a reduced
signal intensity and do not create a section profile with a straight edge. To reduce the
effect of the artifact, the angle of intersection between the ply groups should be decreased.
If there are difficulties in the performed examination, e.g., damage occurs between the
layers, the method of interleaving is used [35].

2.8. Gradient-Related Distortion

This distortion is characterized by image compression and the inadequate rebound of
spins on the edges of images. It is created when the electric current receives the voltage
from the gradient coil while tapering to the sides of the magnet [36,37].

2.9. Parallel Imaging Artifact

In general, parallel imaging is a widely used method for accelerating the acquisition
of MRI data in which the distribution and sensitivity of the receiver coils play a major
role. This has its positive results in reducing the imaging time but may cause distortions.
As a consequence of the parallel imaging, in which each coil is at a different distance from
the pixel, the signal recorded by such a coil changes and the closer coils have stronger
signals. Professionals analyzing the MR images obtained from such an operation can
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misdiagnose the approximate source of the MR signal. In parallel imaging, the signals from
the individual coils are amplified and simultaneously processed along separate channels,
keeping the identity to the end. Furthermore, it may suffer from inhomogeneous noise
in reconstruction and unevenly distributed noise caused by the overlapping of different
structures whilst lacking the core information [26,38].

2.10. Susceptibility Effect

By placement in a magnetic field, the tissues become temporarily magnetized. How-
ever, magnetization is not uniform and depends on the magnetic susceptibility of the
tissue, as in the case of the air–tissue or bone–soft tissue interfaces. Bone and air are less
magnetically susceptible which means that a low-intensity signal is generated at these sites.
Such local variations in intensity give rise to geometric distortions in the images. Another
problem, also causing the non-uniformity in the signal, is a magnetized implanted device.
Metal implants have a much higher magnetic susceptibility than the rest of the tissues of
the human body, leading to signal distortions related to higher signal intensity [2,39].

3. NR-IQA Approaches

NR-IQA approaches are used in cases in which a reference image is not available.
Hence, such approaches support examination based on MR images by rejecting scans of
unsuitable quality. There are NR-IQA methods for medical images taking into account
distortions, e.g., noise, compression, or blur. For example, based upon the human visual
system (HVS) [40,41], Bhateja et al. [42] used two-stage MRI fusion metrics for IQA, where
two images are fused to improve the detection of distortion. With the objective of develop-
ing automatic deep learning methods, Xu et al. [7] introduced a semi-supervised technique
devoted to the IQA of fetal brain MR images with the use of a mean teacher method and
a region-of-interest (ROI) consistency. Furthermore, Liu et al. [43] used semi-supervised
learning to solve the problem of creating noisy annotation in the image segmentation task.
This three-staged quality assessment technique employs a hierarchical residual model,
and as the consequence, provides an assessment of the slice, volume, and subject level.
Another classification method uses unpaired generative adversarial network (GAN) and
weakly supervised trained classifier to assess MR images [44]. To address the problem
of wasting potentially important 3D spatial information, the HyS-net approach was cre-
ated. It was based on a hyper-network and is capable of self-adaptation [45]. A more
recent approach adapting the modified blind/referenceless image spatial quality evaluator
(BRISQUE) was proposed by Chow and Rajagopal [46] in which BRISQUE [47] aims to
quantify possible losses of ‘naturalness‘ in the image using the scene statistics of mean
subtracted contrast normalized (MSCN) coefficients.

Table 1 provides a brief comparison of NR-IQA approaches devoted to MR images.
Several methods focus on specific artifacts, e.g., QEMDIM [48], or an approach introduced
by Nabavi et al. [49]. However, most methods are designed to assess overall image quality
considering the characteristics of MR images: modified-BRISQUE [46], R50GR18 [50],
ENMIQA [51] or NOMRIQA [52]. The number of features depends on the way that the
images are described from simple entropy to features extracted from the layers of a neural
network. Most approaches were validated on one or two databases, among which large
datasets that are assessed by more than several specialists are rare. A more detailed
presentation of the methods is provided below. An experimental evaluation of recent
approaches and related discussion on their performance can be found in [50] or [45].

3.1. A Two-Step Automated Quality Assessment for Liver MR Images Based on Convolutional
Neural Network

In the method proposed by Wang et al. [53], a two-step method applied for image
classification purposes was used. The method focuses on the regions of interest (ROI),
i.e., each patch assessed by the radiologists as diagnostic or non-diagnostic is used to train
a convolutional neural network (CNN) for segmentation purposes. Then, another CNN is
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used to classify the quality of extracted patches. Overall image quality is assessed on the
basis of the number of non-diagnostic patches in all the liver patches of the image.

Table 1. Comparison of NR-IQA methods in terms of employed techniques, features, and
used datasets.

Method Approach and Features Number of Features Datasets

A two-step automated quality
assessment for liver MR

images based on
convolutional neural

network [53]

• Patch-based strategy
• CNN in image region

segmentation
• ROI

- Not defined in the paper

Semi-supervised learning for
fetal brain MRI quality
assessment with ROI

consistency [7]

• Semi-supervised learn-
ing

• ROI consistency
• Mean teacher model

- Scans acquired at Boston
Children’s Hospital

No-reference image quality
assessment of T2-weighted

magnetic resonance images in
prostate cancer patients [54]

• Generative adversarial
network

• Weakly supervised
• Trained deep classifier

-

• National Cancer
• Institute (NCI)
• PIE-AAPM-NCI Prostate
• MR Gleason
• Grade Group Challenge
• NIH Clinical Center

Two-stage multi-modal MR
images fusion method based

on parametric logarithmic
image processing (PLIP)

model [55]

• Two-stage MRI fusion
• PCA and PLIP operators
• Stationary wavelet trans-

form

- • Whole Brain Atlas [56]

Hierarchical non-local
residual networks for image

quality assessment of
pediatric diffusion MRI with

limited and noisy
annotations [43]

• Slice-wise, volume-wise,
and subject-wise IQA

• Non-local residual net-
works

• Semi-supervised learn-
ing

-

• Database from the Center
for Magnetic Resonance
Research (CMRR) at the
University of Minnesota

HyS-net [45]

• Content-adaptive hyper-
network

• A spatial feature extrac-
tion

• Network-based quality
predictor

- • Open dataset,
MRIQC [57]

QEMDIM [48]

• Difference of statistical
features between test im-
ages

• MSCN coefficients
• Multi-directional filtered

coefficients (MDFC)

20 • ADNI [58]
• ABIDE [59]

AQASB [60]

• Background-connected
distortions

• Decent level of back-
ground voxels

- • ADNI [58]
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Table 1. Cont.

Method Approach and Features Number of Features Datasets

Multi-class cardiovascular
magnetic resonance image
quality assessment using

unsupervised domain
adaptation [49,61]

• Unsupervised domain
adaptation

• Spatial and frequency do-
mains

• K-space manipulation

512

• UK Biobank
• Cardiac MRI dataset,

York University [62]
• K-space manipulation

MRIQC [63] • Quality measures
• Binary classifier

64 • ABIDE [59]
• OpenfMRI [64]

Brain and cardiac MRI images
in multi-center clinical

trials [65]

• The moments-preserving
property application

• Measures the differences
in texture contrast

The number of features
depends on the image

• NeuroRx research Inc.
• BrainCare Oy
• ADNI [58]
• Department of Diagnos-

tic Imaging of the Hos-
pital for Sick Children in
Toronto

Modified-BRISQUE [46]
• Luminosity, image char-

acteristics
• NSS

36

• Sirix DICOM Viewer
MRI database

• MR images from the
Academy Unit of Ra-
diology, University of
Sheffield

R50GR18 [50]
• Fusion of deep network

architectures
• SVR

3584 • DB1 [52]
• DB2 benchmarks [51]

ENMIQA [51]

• Thresholded local inten-
sity differences obtained
by using the non-
maximum suppression
(NMS) operation

• Entropy of a sequence of
extrema numbers

1 • DB1 [52]

NOMRIQA [52]
• FAST features
• Histograms of binary de-

scriptors
3840

• Simulated Brain
Database (SBD) [66]

• DB1 [52]

3.2. Semi-Supervised Learning for Fetal Brain MRI Quality Assessment with ROI Consistency

Semi-supervised learning for fetal brain MRI quality assessment with ROI consistency
is a semi-supervised deep learning method that responds to the difficulties arising in fetal
MRI [7]. The method is based on the average teacher model to control the consistency
between the student–teacher approach, thanks to the aggregation of network parameters at
different stages of training. It uses MR images classified according to the following criteria:
diagnostic, non-diagnostic, and images without a brain region of interest. In this method,
improved accuracy in detecting the non-diagnostic images of the brain’s ROI during feature
extraction is obtained. Importantly, the method is introduced and implemented on the
MR scanner, which makes it possible to check the condition of the obtained image and
if necessary, repeat the examination.

3.3. No-Reference Image Quality Assessment of T2-Weighted Magnetic Resonance Images in
Prostate Cancer Patients

No-reference image quality assessment method of the T2-weighted magnetic resonance
images in prostate cancer patients introduced by Masoudi et al. [54] is a classification
method to determine non-diagnostic images with an artifact, diagnostic images with
substantial noise or motion, and diagnostic images with trivial noise or motion. The model
assumes the extension of NR-IQA scans to FR-IQA, after an improvement of image quality
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by using CycleGAN. In the method, original images are compared with synthetic reference
images. The poor quality images receives further correction from CycleGAN [54].

3.4. Two-Stage Multi-Modal MR Images Fusion Method Based on Parametric Logarithmic Image
Processing Model

In the two-stage multi-modal MR images fusion method based on parametric log-
arithmic image processing model, image fusion is used to obtain a more accurate, final
image [42]. It is a two-step process and uses decomposition based on stationary folk trans-
formation (SWT) along with principal component analysis (PCA). The first and second
fusion coefficients are combined using the HVS-based parameterized logarithmic image
processing (PLIP) operator. To increase the accuracy, the obtained results are compared
using different measures.

3.5. Hierarchical Non-Local Residual Networks for Image Quality Assessment of Pediatric
Diffusion MRI with Limited and Noisy Annotations

The hierarchical non-local residual networks for image quality assessment of pediatric
diffusion MRI with limited and noisy annotations is a deep-learning method based on
local residual networks [43]. It consists of three stages, namely those involving the use of a
slice-wise QA network (i.e., SQA-Net); the extracted slice features with the volume-wise
QA network; and a compilation of the IQA results using the decision rule. Through these
actions, this method makes the evaluation results available at different levels: namely those
of slice, volume, and subject. SQA-Net is also constructed by implementing depthwise
separable convolutions (DSConv) and non-local mean operation. To increase the effective-
ness of the approach when working with a small amount of labeled data, semi-supervised
learning and the subsequent slice with volume self-training are used.

3.6. HyS-Net

The spatial-related hyper-network-based MRI BIQA works on the MRIQC open dataset
are based on the development of a hyper network that adapts to the content [45]. The struc-
ture of the 3D network was designed to explore spatial information of 3D images and
improve the BIQA performance. In addition to relying on a hyper set that generates dy-
namic parameters, the method includes the extraction of spatial features and a combined
network quality predictor.

3.7. QEMDIM

The quality evaluation using multi-directional filters for MRI (QEMDIM) is a method
that enables the detection of distortions with different characteristics, e.g., Gaussian noise,
motion artifacts, streaks, or aliasing [48]. It can be used not only in assessing the quality of
medical images but also in assessing the performance of MR hardware and software. It is
based on the feature difference between test and pre-scanned images. The performance of
the method varies according to the slice position.

3.8. AQASB

The automatic quality assessment in structural brain magnetic resonance imaging
(AQASB) is a method that focuses on the background area of the MRI image (i.e., the air) [60].
It specializes in analyzing images with distortions such as ghosting, motion, flow and
wrap-around. The method consists of three steps: (1) background air region delineation;
(2) computation of a model-free quality index; and (3) the computation of an additional
quality index. It is developed to inform the operator about the poor quality of the measure-
ment and to notify the need to perform an additional scan. The method has its limitations
as it assumes that each scanned image has a sufficiently large percentage of background
voxels to successfully perform the measurement. The method takes a limited number of
artifacts into consideration. It aims to overcome the challenge of not having access to data
labels and a reduction in computational time.
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3.9. Multi-Class Cardiovascular Magnetic Resonance Image Quality Assessment Using
Unsupervised Domain Adaptation

The multi-class cardiovascular magnetic resonance image quality assessment using
unsupervised domain adaptation is a deep learning model for automatic cardiovascular
magnetic resonance (CMR) IQA [49,61]. In the process of image quality assessment method
evaluation, the distortions in the spatial domain of 2D sliced CMR images are identified.
The domain adaptation is based on the trained model that is used to test the new dataset.
Before the image reconstruction, the frequency domain was described to use the method
on the data of k-space.

3.10. MRIQC

The MRI quality control tool (MRIQC) extracts quality measures and uses them as
input to a binary classifier [63]. The classification is performed on the basis of binary labels
from a set of MRI images. The model includes a selection of hyper-parameters in non-
nested cross-validation, the training process on ABIDE dataset, evaluation on the held-out
dataset, the normalization of features, and the elimination of features based on the site
prediction. The release of an MRI quality control tool, MRIQC, leads to the extraction of a
vector of 64 image quality measures (IQMs). The IQMs can be grouped into four categories—
(1) measures based on noise measurements: the coefficient of joint variation of GM and
WM (CJV), the contrast-to-noise ratio (CNR), the signal-to-noise ratio calculation (SNR) and
the second quality index (QI2); (2) measures based on information theory: the entropy-focus
criterion (EFC), the foreground-background energy ratio (FBER); (3) measures targeting
specific artifacts: the bias field extracted estimated by the INU correction, the first quality
index (QI1), the white-matter to maximum intensity ratio is the median intensity within
the WM mask (WM2MAX); (4) other measures: the full-width half-maximum (FWHM),
estimation of the ICVs, the residual partial volume effect feature (rPVE), several summary
statistics such as the mean or standard deviation (SSTATs), and overlap of tissue probability
maps (TPMs).

3.11. Brain and Cardiac MRI Images in Multi-Center Clinical Trials

The method assumes that MRI slices possess statistical properties describing different
levels of contrast degradation [65]. Thus, to each level of contrast-distorted MRI slice, a set
of pixel configurations is assigned. The IQA process is divided into four steps. Firstly, local
contrast features are extracted from the test image, then the mean and standard deviation
are computed. To obtain two separate z-scores, the mean and standard deviation are
processed. As a result, the prediction of the contrast quality score, and the texture contrast
quality score is performed. Focused on the labeling problem and the central limit theorem,
the approach aims to describe each possible level of contrast degradation in an MRI slice.
It perceives images with artifacts as darker than denoised ones, which also have lower
contrast. The method predicts higher texture contrast quality score.

3.12. Modified Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)

Modified blind/referenceless image spatial quality evaluator (BRISQUE) [47] is a
model initially created with natural images in mind, but it was adapted to evaluate the
quality of MR images [46]. It uses locally normalized luminosity coefficients for calculations,
the MR image function and the difference mean opinion score (DMOS) for training. The goal
of its development was to create a method that would be useful when working on images
with all types of distortions.

3.13. R50GR18

This method presents a different approach to image quality assessment as it is based
on the fusion of neural networks (ResNet50, GoogLeNet, and ResNet18) which then take
part in the transfer-learning process [50]. The large diversity of the architectures selected for
the study and fusion allows the assessment of a large spectrum of distortions. The method
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uses support vector regression (SVR) [67] on features extracted from connected networks to
improve the ability to evaluate the quality of images. Additionally, a network modification
is applied, in which the last three layers of each network used are replaced with a fully
connected layer and the regression layer to perform the regression task. Moreover, the size
of the input image is not constant but is adapted to the size of the input network.

3.14. Entropy-Based Magnetic Resonance Image Quality Assessment Measure (ENMIQA)

In the method, the entropy of the extrema of local intensity differences representing
filtered versions of an input image is used for quality prediction [51]. Specifically, the quality
prediction is expressed by the entropy of a sequence of extrema numbers obtained with the
thresholded non-maximum suppression (NMS) applied to filtered MR images.

3.15. No-Reference Image Quality Assessment of Magnetic Resonance Images with High-Boost
Filtering and Local Features (NOMRIQA)

The method introduced by Oszust et al. [52], NOMRIQA, uses high-boost filtering to
amplify high-frequency points allowing for the effective detection of distortions. Detected
interest points in filtered images are described using the fast retina key-point (FREAK)
descriptor and then represented by a histogram of such descriptors. The method builds a
quality model with the SVR approach.

3.15.1. PSNR/SNR

The peak signal-to-noise ratio (PSNR) in numerous studies is used as an NR-IQA
tool. For this reason, in this paper, PSNR and signal-to-noise ratio (SNR) [68–71] is also
described. PSNR depends on the value of RMSE among the target image and the reference
image. It is calculated as:

PSNR = 10log
m2max
RMSE2 , (1)

where mmax means the maximum pixel score. There is a poor correlation of PSNR with
subjective quality assessment performed by human observers. However, this dissimilarity
can be captured in each type of distortion by the perceptual complexity of the target image.
There have been attempts to improve the PSNR performance by the use of a linear score
mapping process with the use of factors such as image-free energy and type of distortion.

3.15.2. Maximum Difference

The maximum difference (MD) presents the maximum of the error signal [72]. Addi-
tionally, the quality of an image decreases with the growth of the MD value.

MD = Max(|Ce f − De f |), (2)

where e = 1, 2, . . . , n, f = 1, 2 . . . , m.

3.15.3. Normalized Cross-Correlation

The normalized cross-correlation (NCC or NK) measures the similarity of the image
sets and detects patterns or the object of an image [72,73]. The metric is used in image
registration.

NK =
∑n

j=1 ∑m
i=1 z(j, i)Zs(j, i)

∑n
j=1 ∑m

i=1(z(j, i))2 , (3)

where n denotes the number of pixels in the horizontal direction; m denotes the number of
pixels in vertical direction; s(j, i) denotes the filtered image at j and i coordinates; and z(j, i)
is the noisy image at j and i coordinates.
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4. Evaluation of IQA Models

The development of image quality assessment methods is stimulated by the existence
of suitable databases and widely accepted protocols, ensuring that the methods are fairly
and thoroughly compared.

4.1. Databases

There are many medical databases created to develop and test methods related to MR.
Most of them are assessed by authors of approaches to provide subjective scores for training
the methods. Only rare examples contain images along with human scores. Below, the
most commonly used databases are presented. Their summary and exemplary images are
shown in Table 2 and Figure 2, respectively.

Table 2. Details of the MR image datasets.

Name Year No. of Images Link (Accessed on 27 April 2022)

OpenfMRI 2010 Not specified/repository of datasets openfmri.org
ADNI-1 2004–2010 200 elderly controls, 400 MCI, 200 AD adni.loni.usc.edu

ADNI-GO 2009–2011 Existing ADNI-1 + 200 early MCI adni.loni.usc.edu
ADNI-2 2011–2017 Existing ADNI-1 and ADNI-GO + additional images adni.loni.usc.edu
ADNI-3 2017–2022 Existing ADNI-1, ADNI-GO, ADNI-2 + additional images adni.loni.usc.edu
ABIDE I 2012 1112 datasets fcon_1000.projects.nitrc.org
ABIDE II 2016 Existing ABIDE I and 1000 datasets fcon_1000.projects.nitrc.org

DB1 2020 70 marosz.kia.prz.edu.pl/ENMIQA.html
DB2 2020 240 marosz.kia.prz.edu.pl/NOMRIQA.html

4.1.1. OpenfMRI

The OpenfMR collection contains the MR and EEG of human brain images [64]. It
accepts all forms of data that include MR imaging, is perceived as simple in the organization,
and has no data access limitations. The data usually consist of four-dimensional datasets.
However, depending on the number and length of scanning runs, spatial resolution, and the
number of slices acquired, an fMRI study can range from fifteen patients for most studies.
The project was created to provide the open sharing of neuroimaging resources.

4.1.2. ADNI

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) was developed to contribute
to the early detection and tracking of Alzheimer’s disease [58]. It was founded in 2004 and
is divided into four areas of study: ADNI-1, ADNI-GO, ADNI-2, and ADNI-3. ADNI-1
includes 800 patients and uses MRI and PET imaging measures. ADNI-GO consists of
1000 patients and its main purpose for evaluation is the examination of biomarkers in
the earlier stages of Alzheimer’s disease. The ADNI-2 and -3 studies expanded upon
previously acquired image databases with hundreds of new examples. A new cohort was
added, significant memory concern (SMC), in addition to brain scans that detect tau protein
tangles (tau PET). In recent years, ADNI-3 has gathered data from scientists at 59 research
centers in the United States and Canada.

openfmri.org
adni.loni.usc.edu
adni.loni.usc.edu
adni.loni.usc.edu
adni.loni.usc.edu
fcon_1000.projects.nitrc.org
fcon_1000.projects.nitrc.org
marosz.kia.prz.edu.pl/ENMIQA.html
marosz.kia.prz.edu.pl/NOMRIQA.html
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(a)

(b)

Figure 2. Exemplary MR images from OpenfMRI (a) and DB1 (b) databases. MOS values for images
from DB1 database are also displayed.

4.1.3. National Resource for Quantitative Functional MRI

The National Resource for Quantitative Functional MRI project was created to de-
sign quantitative magnetic resonance acquisition and processing technology to track brain
changes during neurodevelopment or neurodegeneration. This technology is developed in
collaboration with a large community of specialists from several institutions in the USA.
The overall scope is divided into four databases of MR images (D1–4).
The D1 database concerns metabolic (S)I and operates on high-resolution MR spectroscopic
imaging (MRSI) [58,74] in the research of brain and spine metabolism at the magnetic
field strengths of 3 and 7 Tesla. The D2 database is related to psychological MRI that
aims to discover tissue biomarkers to provide early information about physiological and
metabolic changes in clinical imaging. The D3 database is devoted to functional MRI that
uses information about the blood oxygenation level to assess changes in the brain that
can be the cause of many diseases such as autism, ADHD, or Alzheimer’s [75]. The objec-
tive of the last database, D4, is to develop image analysis technologies able to integrate
different anatomical representations of the brain based on multi-modal MRI, including
multi-contrast anatomical MRI, functional MRI (fMRI), and MR spectroscopy (MRS) into a
common framework [76].
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4.1.4. Autism Brain Imaging Data Exchange (ABIDE)

ABIDE is a collection of 16 worldwide imaging sites that are openly sharing 1112 datasets
composed of structural and resting-state pre-processed MRI [59,77]. The age of the individ-
uals under control varies from 7 to 64 years old. The pre-processing was performed using:
the Connectome Computation System (CCS), the Configurable Pipeline for the Analysis of
Connectomes (CPAC), the Data Processing Assistant for Resting-State fMRI (DPARSF) and
the Neuroimaging Analysis Kit. Four pre-processing strategies were performed with each
pipeline: all combinations of with and without filtering and with and without global signal
correction as well as the statistical derivatives for each pipeline and strategy were calculated
by the CPAC software. Three different pipelines were used: ANTS, CIVET and Free Surfer.

4.1.5. 1.5T T2-Weighted MR Image Databases: DB1, DB2

The DB1 [52] and DB2 [51] datasets contain 70 and 240 MR images, respectively.
The DB1 benchmark consists of images selected from 1.5T MR T2-weighted sagittal se-
quences of several body locations, i.e., knee, shoulder, or spine. The resolution of images
in the dataset is between 192 × 320 and 512 × 512. Images were taken under different
conditions affecting the image quality (IPAT software to make generalized autocalibrating
partially parallel acquisitions (GRAPPAs); GRAPPA3 [78]). The DB1 also contains the
mean opinion score (MOS) ranging from 1 to 5 which was obtained in tests with a large
group of radiologists. The greater MOS value denotes the better quality of the image.
The DB2 collection contains T2-weighted MR images acquired during routine diagnostic
exams of different body locations, including shoulders, knees, or cervical and lumbar spine.
The dataset contains images of resolution from 192 × 320 to 512 × 512 and MOS (1–5).
To acquire images of different quality in a controlled way, the parallel imaging technique
was applied. Hence, a group of radiologists was also invited for the assessment of the
image quality.

4.2. Evaluation Protocol

To compare the performance of regression-based IQA approaches, four performance
criteria are typically used: Spearman rank-order correlation coefficient (SRCC); Kendall
rank-order correlation coefficient (KRCC); and Pearson linear correlation coefficient (PLCC);
and root mean square error (RMSE). The higher the SRCC, KRCC and PLCC, and the lower
the RMSE, the better the output of the IQA method is [79–81]. The works on IQA methods
that classify images often report the accuracy measured as the number of correctly classified
images, receiver operating characteristic curves (ROC), or the area under the curve, showing
the relation of the performance and a threshold. Furthermore, in the methods that classify
images, the quality assessment is commonly formulated by the use of diagnostic and non-
diagnostic labels from a trained observer [82–84]. The train–test split dataset protocol is
used to calculate the performance of algorithms in cases they are used to make predictions
on data not used to train the model. The results allow for comparing the performance of
machine learning algorithms for chosen predictive modeling problems. Typically, IQA
databases are randomly divided into a training set with 80% distorted images, and the
remaining 20% of distorted images are used to test the model [85]. The division is then
repeated and the metric of the quality measure is reported. For images with artificially
created distortions, the images compatible with the same reference image are paired with
the same set to provide the total separation of the training and testing content.

PLCC is used for prediction accuracy between the sets of values. It is calculated
as follows:

PLCC =
Ē oTŌs√
Ē oT Ē oŌsTŌs

, (4)

where Ē o and Ōs are mean-removed vectors. RMSE is obtained as:

RMSE =

√
(E o −Os)T(E o −Os)

n
, (5)
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where n means the total number of images. SRCC evaluates the prediction of monotonicity
and is calculated as follows:

SRCC = 1−
6 ∑n

i=1 b2
i

n(n2 − 1)
, (6)

where bi means the difference between the i-th image in Eo and Os, i = 1, 2, . . . , n. Finally,
KRCC is obtained as:

KRCC =
nc − nd

0.5n(n− 1)
, (7)

where nc is the number of concordant pairs in the dataset, and nd means the number of
discordant pairs. Since the calculation of PLCC and RMSE involves the nonlinear mapping
of objective scores eo into subjective opinions Os, the mapping model can be represented by:

e0 = y1(
1
2
− 1

1 + exp(y2(e0 − ye))
) + y4e0 + y5, (8)

where y = [y1, y2, . . . , y5].
There are three error measurement metrics commonly used in model evaluation:

RMSE [80], mean square error (MSE) [86] and mean absolute error (MAE) [87]. The metrics
calculate the objective quality scores after regression, O, and the errors between the datasets, E:

MAE(O, E) =
1
n

sumn
i=1|Oi − Ei|, (9)

MSE(O, E) =
1
n

sumn
i=1(Oi − Ei)

2, (10)

where n denotes the size of the dataset.

5. Conclusions

In this paper, diverse approaches to the automatic NR quality assessment of MR images
were presented, and detailed characteristics of recent methods, used features, and image
benchmarks that stimulate the development in this field were provided. As presented,
the number of works devoted to the assessment of MR images is relatively low, despite their
usability in practice. First, such approaches adapt methods from the IQA of natural images
or perform image processing steps that address the characteristics of MR images. More
recent methods often use or introduce powerful deep learning architectures. Despite the
present division of the methods into quality prediction and quality classification methods,
both types aim to indicate which images should not be used for diagnostic purposes.
However, the methods based on regression can be used for the development of image
enhancement algorithms due to the capability of distinguishing small quality differences
instead of binary classifiers that only reject unsuitable images.

Approaches are also divided into methods that assess slices and methods that can
be employed for 3D quality evaluation. However, the development of both types of
techniques requires access to large-scale MR image databases that also contain subjective
scores obtained in tests with human participants. Nowadays, the creation of such databases
can be considered the most challenging problem in MR-IQA. Its solution would lead to the
emergence of more accurate quality prediction approaches.
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